1. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 1001902. 中国科学院大学化学与化工学院,北京 100049
收稿日期:
2018-02-06修回日期:
2018-04-11出版日期:
2018-12-22发布日期:
2018-12-19通讯作者:
陈仕谋基金资助:
国家重点基础研究发展规划(973)基金资助项目Advances on high-voltage electrolyte of lithium ion batteries
Juntian FAN1,2, Tao DONG1,2, Lan ZHANG1,2, Shimou CHEN1,2*1. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-02-06Revised:
2018-04-11Online:
2018-12-22Published:
2018-12-19Contact:
Shimou Chen 摘要/Abstract
摘要: 传统碳酸酯类电解液在高压(>4.3 V, vs. Li/Li+)下易发生氧化分解反应,导致锂离子电池不可逆容量增加、循环性能下降. 为解决这一问题,需从理论和实验两方面对电解液溶剂、锂盐、添加剂及其基本组成等进行针对性设计. 耐高压溶剂是提升电解液稳定性的关键因素之一,既经济又有效,添加高浓锂盐是近年来研究较多的可提升电解液电化学窗口和循环稳定性的新策略. 本工作从耐高压溶剂、高压添加剂和高浓锂盐三方面综述了近几年锂离子电池高压电解液的研究进展.
引用本文
凡俊田 董陶 张兰 陈仕谋. 锂离子电池高压电解液研究进展[J]. 过程工程学报, 2018, 18(6): 1167-1177.
Juntian FAN Tao DONG Lan ZHANG Shimou CHEN. Advances on high-voltage electrolyte of lithium ion batteries[J]. Chin. J. Process Eng., 2018, 18(6): 1167-1177.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218133
http://www.jproeng.com/CN/Y2018/V18/I6/1167
参考文献
[1]Dunn B, Kamath H, Tarascon J M.Electrical Energy Storage for the Grid: A Battery of Choices[J].Science, 2011, 334(6058):928-935 [2]Liu C, Li F, Ma L P, et al.Advanced Materials for Energy Storage[J].Adv. Mater., 2010, 22(8):E28-E62 [3]Goodenough J B, Kim Y.Challenges for Rechargeable Li Batteries[J].Chem. Mater., 2010, 22(3):587-603 [4]Liu J, Thomas E C, Song X Y, et al.Spherical Nanoporous LiCoPO4C Composites as High Performance Cathode Materials for Rechargeable Lithium-ion Batteries[J].J. Mater. Chem., 2011, 21(27):9984-9987 [5]Wang D Y, Xiao J, Xu W, et al.Preparation and Electrochemical Investigation of Li2CoPO4F Cathode Material for Lithium-ion Batteries[J].J. Power Sources, 2011, 196(4):2241-2245 [6]Santhanam R, Rambabu B.Research Progress in High Voltage Spinel LiNi05Mn1.5O4 Material[J].J. Power Sources, 2010, 195(17):5442-5451 [7]Yim T, Woo S G, Lim S H, et al.V-class High-Voltage Batteries with Over-lithiated Oxide and a Multi-functional Additive[J].J. Mater. Chem. A, 2015, 3(11):6157-6167 [8]Etacheri V, Marom R, Elazari R, et al.Challenges in the Development of Advanced Li-ion Batteries: A Review[J].Energy Environ. Sci., 2011, 4(9):3243-3262 [9]Flamme B, Garcia G R, Weil M, et al.Guidelines to Design Organic Electrolytes for Lithium-ion Batteries: Environmental Impact,Physicochemical and Electrochemical Properties[J].Green Chem., 2017, 19(8):1828-1849 [10]Choi N S, Han J G, Ha S Y, et al.Recent Advances in the Electrolytes for Interfacial Stability of High-voltage Cathodes in Lithium-ion Batteries[J].RSC Adv., 2015, 5(4):2732-2748 [11]Yan G C, Li X H, Wang Z X, et al.Tris(trimethylsilyl)phosphate: A Film-forming Additive for High Voltage Cathode Material in Lithium-ion Batteries[J].J. Power Sources, 2014, 248(查不到期号):1306-1311 [12]Jankowski P, Wieczorek W, Johansson P.SEI-forming Electrolyte Additives for Lithium-ion Batteries: Development and Benchmarking of Computational Approaches[J].J. Mol. Model., 2017, 23(1):6-14 [13]Yamada Y, Yamada A.Review-Superconcentrated Electrolytes for Lithium Batteries[J].J. Electrochem. Soc., 2015, 162(14):A2406-A2423 [14]Zhang Z C, Hu L B, Wu H M, et al.Fluorinated Electrolytes for 5 V Lithium-ion Battery Chemistry[J].Energy Environ. Sci., 2013, 6(6):1806-1810 [15]Tang W J, Peng W J, Yan G C, et al.Effect of Fluoroethylene Carbonate as an Electrolyte Additive on the Cycle Performance of Silicon-Carbon Composite Anode in Lithium-ion Battery[J].Ionics, 2017, 23(12):3281-3288 [16]Kim C Y, Kim K, Shin K, et al.Synergistic Effect of Partially Fluorinated Ether and Fluoroethylene Carbonate for High-Voltage Lithium-Ion Batteries with Rapid Chargeability and Dischargeability[J].Acs. Appl. Mater. Inter., 2017, 9(50):44161-44172 [17]Wang C Y, Tang S H, Zuo X X, et al.Tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane as a High Voltage Solvent for LiNi13Co13Mn13O2Graphite Cells[J].J. Electrochem. Soc., 2015, 162(10):A1997-A2003 [18]Luo Y, Lu T L, Zhang Y X, et al.Enhanced Electrochemical Performance of LiNi05Mn1.5O4 Cathode Using an Electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane[J].J. Power Sources, 2016, 323(查不到期号):134-141 [19]Abouimrane A, Belharouak I, Amine K.Sulfone-based Electrolytes for High-Voltage Li-ion Batteries[J].Electrochem. Commun., 2009, 11(5):1073-1076 [20]Shao N, Sun X G, Dai, S, et al.Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries[J].J. Phys. Chem. B, 2011, 115(42):12120-12125 [21]Wu F, Zhou H, Bai Y, et al.Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes[J].Acs. Appl. Mater. Inter., 2015, 7(27):15098-15107 [22]Hilbig P, Ibing L, Wagner R, et al.Ethyl Methyl Sulfone-Based Electrolytes for Lithium Ion Battery Applications[J].Energies, 2017, 10(9):1312-1325 [23]Wang G J, Fang S H, Luo D, et al.Functionalized 1,3-dialkylimidazolium Bis(fluorosulfonyl)imide as Neat Ionic Liquid Electrolytes for Lithium-ion Batteries[J].Electrochem. Commun., 2016, 72(查不到期号):148-152 [24]Kim H T, Kang J, Mun J Y, et al.Pyrrolinium-based Ionic Liquid as a Flame Retardant for Binary Electrolytes of Lithium Ion Batteries[J].ACS Sustainable Chem. Eng., 2016, 4(2):497-505 [25]Kazemiabnavi S, Zhang Z C, Thornton K, et al.Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries[J].J. Phys. Chem. B, 2016, 120(25):5691-5702 [26]Xu K.Electrolytes and Interphases in Li-Ion Batteries and Beyond[J].Chem. Rev., 2014, 114(23):11503-11618 [27]MacFarlane D R, Tachikawa N, Forsyth M, et al.Energy Applications of Ionic Liquids[J].Energy Environ. Sci., 2014, 7(1):232-250 [28]Lewandowski A, Swiderska-Mocek A.Ionic Liquids as Electrolytes for Li-ion Batteries-An Overview of Electrochemical Studies[J].J. Power Sources, 2009, 194(2):601-609 [29]Ishikawa M, Sugimoto T, Kikuta M, et al.Pure Ionic Liquid Electrolytes Compatible with a Graphitized Carbon Negative Electrode in Rechargeable Lithium-ion Batteries[J].J. Power Sources, 2006, 162(1):658-662 [30]Liao C, Shao N, Han KS, et al.Physicochemical Properties of Imidazolium-derived Ionic Liquids with Different C-2 Substitutions[J].Phys. Chem. Chem. Phys., 2011, 13(48):21503-21510 [31]Srour H, Rouault H, Santini C, et al.Imidazolium Based Ionic Liquid Electrolytes for Li-Ion Secondary Batteries Based on Graphite and LiFePO4[J].J. Electrochem. Soc., 2013, 160(1):A66-A69 [32]Schmitz P, Jakelski R, Pyschik M, et al.Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal[J].Chemsuschem, 2017, 10(5):876-883 [33]Cao X, He X, Wang J, et al.High Voltage LiNi05Mn1.5O4Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate-versus Ionic Liquid-Based Electrolytes[J].Acs. Appl. Mater. Inter., 2016, 8(39):25971-25978 [34]Haregewoin A M, Wotango A S, Hwang B J.Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives[J].Energy Environ. Sci., 2016, 9(6):1955-1988 [35]Gao H, Maglia P, Lamp P, et al.Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries[J].Acs. Appl. Mater. Inter., 2017, 9(51):44542-44549 [36]Birrozzi A, Laszczynski N, Hekmatfar M, et al.Beneficial Effect of Propane Sultone and Tris(trimethylsilyl) Borate as Electrolyte Additives on the Cycling Stability of the Lithium Rich Nickel Manganese Cobalt (NMC) Oxide[J].J. Power Sources, 2016, 325(查不到期号):525-533 [37]Dalavi S, Xu M Q, Knight B, et al.Effect of Added LiBOB on High Voltage (LiNi05Mn1.5O4) Spinel Cathodes[J].Electrochem. Solid State Lett., 2012, 15(2):A28-A31 [38]Aravindan V, Cheah Y L, Ling W C, et al.Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4[J].J. Electrochem. Soc., 2012, 159(9):A1435-A1439 [39]Xu M Q, Zhou L, Dong Y N, et al.Improving the Performance of Graphite LiNi05Mn1.5O4 Cells at High Voltage and Elevated Temperature with Added Lithium Bis(oxalato) Borate (LiBOB)[J].J. Electrochem. Soc., 2013, 160(11):A2005-A2013 [40]Cha J, Han J G, Hwang J, et al.Mechanisms for Electrochemical Performance Enhancement by the Salt-type Electrolyte Additive,Lithium Difluoro(oxalato)borate,in High-voltage Lithium-ion Batteries[J].J. Power Sources, 2017, 357(查不到期号):97-106 [41]Bian X F, Ge S X, Pang Q, et al.A Novel Lithium Difluoro(oxalate) Borate and Lithium Hexafluoride Phosphate Dual-salt Electrolyte for Li-excess Layered Cathode Material[J].J. Alloys Compd., 2018, 736(查不到期号):136-142 [42]Wang L, Ma Y L, Wang P P, et al.Interface Modifications by Tris( 2,2,2-trifluoroethyl) Borate for Improving the High-Voltage Performance of LiNi13Co13Mn13O2 Cathode[J].J. Electrochem. Soc., 2017, 164(9):A1924-A1932 [43]Lee H, Han T, Cho K Y, et al.Dopamine as a Novel Electrolyte Additive for High-Voltage Lithium-Ion Batteries[J].Acs. Appl. Mater. Inter., 2016, 8(33):21366-21372 [44]Huang W N, Xing L D, Wang Y T, et al.Trifluoromethyl)-benzonitrile: A Novel Electrolyte Additive for Lithium Nickel Manganese Oxide Cathode of High Voltage Lithium Ion Battery[J].J. Power Sources, 2014, 267(查不到期号):560-565 [45]Wang X S, Liao X L, Huang W N, et al.Improved Cyclic Stability of Layered Lithium Cobalt Oxide at High Potential Via Cathode Electrolyte Interphase Formed by 4-(trifluoromethyl) Benzonitrile[J].Electrochim. Acta, 2015, 184(查不到期号):94-101 [46]Wang L, Ma Y L, Li Q, et al.Improved High-Voltage Performance of LiNi13Co13Mn13O2 Cathode with Tris(2,2,2-trifluoroethyl) phosphite as Electrolyte Additive[J].Electrochim. Acta, 2017, 2433(查不到期号):72-81 [47]Zhang J, Wang J L, Yang J, et al.Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl)phosphate Additive for Lithium Rich Cathode Materials[J].Electrochim. Acta, 2014, 117(查不到期号):99-104 [48]Hong P B, Xu M Q, Zheng X W, et al.Effect of Ethylene Glycol Bis (propionitrile) Ether (EGBE) on the Performance and Interfacial Chemistry of Lithium-rich Layered Oxide Cathode[J].J. Power Sources, 2016, 329(查不到期号):216-224 [49]Zheng X Z, Huang T, Pan Y, et al.High-voltage Performance of LiNi13Co13Mn13O2graphite Batteries with Di(methylsulfonyl) Methane as a New Sulfone-based Electrolyte Additive[J].J. Power Sources, 2015, 293(查不到期号):196-202 [50]Tu W Q, Ye C C, Yang X R, et al.Trimethylsilylcyclopentadiene as a Novel Electrolyte Additive for High Temperature Application of Lithium Nickel Manganese Oxide Cathode[J].J. Power Sources, 2017, 364(查不到期号):23-32 [51]Wang Z N, Cai Y J, Wang Z H, et al.Vinyl-functionalized Imidazolium Ionic Liquids as New Electrolyte Additives for High-voltage Li-ion Batteries[J].J. Solid State Electrochem., 2013, 17(11):2839-2848 [52]Suo L M, Borodin O, Gao T, et al.quot;Water-in-salt" Electrolyte Enables High-voltage Aqueous Lithium-ion Chemistries[J].Science, 2015, 350(6263):938-943 [53]Yoshida K, Nakamura M, Kazue Y, et al.Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme-Lithium Salt Equimolar Complexes[J].J. Am. Chem. Soc., 2011, 133(33):13121-13129 [54]Doi T, Masuhara R, Hashinokuch M, et al.Concentrated LiPF6PC Electrolyte Solutions for 5-V LiNi05Mn1.5O4 Positive Electrode in Lithium-ion Batteries[J].Electrochim. Acta, 2016, 209(查不到期号):219-224 [55]Yamada Y, Furukawa K, Sodeyama K, et al.Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries[J].J. Am. Chem. Soc., 2014, 136(13):5039-5046 [56]Yamada Y, Yamada A.Superconcentrated Electrolytes to Create New Interfacial Chemistry in Non-aqueous and Aqueous Rechargeable Batteries[J].Chem. Lett., 2017, 46(8):1056-1064 [57]Wang J H, Yamada Y, Sodeyama K, et al.Superconcentrated Electrolytes for a High-voltage Lithium-ion Battery[J].Nat. Commun., 2016, 7(查不到期号):12032-12040 [58] Yamada Y, Chiang C H, Sodeyama K, et al.Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes [J]. ChemElectroChem, 20[J].ChemElectroChem, 2015, 2(11):1687-1694 |
相关文章 15
[1] | 张贺杰 陈兴 邹兴 刘文科 郑诗礼 张懿 李平. 废旧锂离子电池正极材料除铝技术研究进展[J]. 过程工程学报, 2020, 20(5): 503-509. |
[2] | 徐平 陈钦 张西华 曹宏斌 王景伟 张懿 孙峙. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864. |
[3] | 刘鲁静 贾志军 郭强 王毅 齐涛. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909. |
[4] | 董虎林 包海萍 汪浩 彭建洪. 磷酸钒锂正极材料掺杂改性研究进展[J]. 过程工程学报, 2019, 19(3): 483-491. |
[5] | 邢献军 刘建华 王文泉 陈泽宇 付一轩. 磷掺杂葵花盘基活性炭在锂离子电池负极材料中的应用[J]. 过程工程学报, 2019, 19(2): 434-439. |
[6] | 赵永锋 张海涛. 高纯六氟磷酸锂晶体产业化制备工艺研究进展[J]. 过程工程学报, 2018, 18(6): 1160-1166. |
[7] | 张亮 张兰 陈仕谋 王轶博 吕兴梅. 含LiDFOB的FEC/PC/DMC基电解液的高电压电化学性能[J]. 过程工程学报, 2018, 18(3): 605-611. |
[8] | 郑双双 刘艳侠 马立彬. 高能量密度锂离子电池LiNi0.8Co0.15Al0.05O2正极材料改性的研究进展[J]. 过程工程学报, 2018, 18(2): 225-231. |
[9] | 李妍 汪小平 张维民 何雨石 马紫峰. 铷掺杂三元正极材料Li1-xRbxNi0.4Co0.2Mn0.4O2的制备及其电化学性能[J]. 过程工程学报, 2018, 18(2): 422-426. |
[10] | 王亚蕾张立新. 中空ZnFe2O4微球的合成及其电化学性能[J]. , 2015, 15(1): 169-173. |
[11] | 常龙娇罗绍华郭克石吕方齐西伟汪应玲翟玉春. LiNO3-TiO2-尿素体系燃烧合成锂离子电池负极材料Li4Ti5O12及电化学性能[J]. , 2014, 14(5): 886-890. |
[12] | 章守权陈春华. 微波水热法合成Li4Ti5O12及其性能[J]. , 2013, 13(5): 889-892. |
[13] | 朱小奕王艳红陈晗夏临华苏发兵. 锂离子电池多孔硅基复合负极材料的研究进展[J]. , 2012, 12(6): 1062-1072. |
[14] | 王茜贾梦秋. 化学镀铜法制备硅铜复合材料及其在锂离子电池中的应用[J]. , 2011, 11(4): 689-694. |
[15] | 揭晓武王成彦李敦钫尹飞陈永强杨永强. 失效锂离子电池焙烧及其有价金属浸出[J]. , 2011, 11(2): 249-253. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3193