删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于MP-PIC方法改进EMMS/DP曳力模型

本站小编 Free考研考试/2022-01-01

王晓赞1,2, 姜 勇1,2, 李 飞1*, 王 维1,2
1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 1001902. 中国科学院大学化工学院,北京 100049
收稿日期:2018-01-15修回日期:2018-03-29出版日期:2018-12-22发布日期:2018-12-19
通讯作者:李飞

基金资助:国家重点研发计划;国家自然科学基金资助项目;国家自然科学基金资助项目

Improvement of EMMS/DP drag model based on MP-PIC method

Xiaozan WANG1,2, Yong JIANG1,2, Fei LI1*, Wei WANG1,2
1. State Key Laboratory of Multiphase Complicated Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2018-01-15Revised:2018-03-29Online:2018-12-22Published:2018-12-19


Supported by:;The National Natural Science Foundation of China;The National Natural Science Foundation of China




摘要/Abstract


摘要: 改进了面向离散粒子法的能量最小多尺度曳力模型(EMMS/DP)的颗粒参数生成方式,并将非均匀因子(HD)与固相浓度和滑移速度关联以考虑介尺度结构动态效应的影响,用改进的EMMS/DP模型与多相流质点网格模型(MP-PIC)耦合模拟气固两相流提升管系统,模拟结果与实验值吻合很好,考察了MP-PIC方法的网格无关性和粗粒化模型参数.

引用本文



王晓赞 姜勇 李飞 王维. 基于MP-PIC方法改进EMMS/DP曳力模型[J]. 过程工程学报, 2018, 18(6): 1187-1197.
Xiaozan WANG Yong JIANG Fei LI Wei WANG. Improvement of EMMS/DP drag model based on MP-PIC method[J]. Chin. J. Process Eng., 2018, 18(6): 1187-1197.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218115
http://www.jproeng.com/CN/Y2018/V18/I6/1187







[1]杨宁, 李静海.化学工程中的介尺度科学与虚拟过程工程:分析与展望[J].化工学报, 2014, 65(7):2403-9 [2]Yang N, Li J H.Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J].CIESC Journal, 2014, 65(7):2403-9 [3]Anderson T B, Jackson R.Fluid Mechanical Description of Fluidized BedsComparison of Theory and Experiment[J].Industrial & Engineering Chemistry Fundamentals, 1967, 6(1):137-44 [4]Tsuji Y, Kawaguchi T, Tanaka T.Discrete particle simulation of two-dimensional fluidized bed[J].Powder Technology, 1993, 77(1):79-87 [5]Tsuji Y, Tanaka T, Yonemura S.Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J].Powder Technology, 1998, 95(3):254-64 [6]Scardovelli R, Zaleski S.Direct Numerical Simulation of Free-Surface and Interfacial Flow[J].Annual Review of Fluid Mechanics, 2003, 31(1):567-603 [7]Li J, Cheng C, Zhang Z, et al.The EMMS model — its application,development and updated concepts[J].Chemical Engineering Science, 1999, 54(22):5409-25 [8]Wen C Y, Yu Y H.Mechanics of Fluidization[J].Chemengng Progsympser, 1966, 62(1):100-111 [9]Ergun S.Fluid flow through packed columns[J].Chemengprog, 1952, 48(2):89-94 [10]李静海.颗粒流体复杂系统的多尺度模拟 [M]. 科学出版社, 2005:88-101. [11]Li J H.Multi-Scale Simulation of Particle-Fluid Complex Systems [M]. Science Press, 2005:88-101. [12]肖海涛, 祁海鹰, 由长福, 等.一个气固两相流动阻力的新模型[J].化工学报, 2003, 54(3):311-5 [13]Xiao H T, Qi H Y, You C F.Theoretical Model of Drag Between Gas and Solid Phase[J].Journal of Chemical Industry and Engineering, 2003, 54(3):311-5 [14]Wei G, Li J.Physical mapping of fluidization regimes—the EMMS approach[J].Chemical Engineering Science, 2002, 57(18):3993-4004 [15]Ning Y, Wei W, Wei G, et al.Simulation of Heterogeneous Structure in a Circulating Fluidized-Bed Riser by Combining the Two-Fluid Model with the EMMS Approach[J].Industrial & Engineering Chemistry Research, 2004, 43(18):5548-61 [16]Wang W, Li J.Simulation of gas–solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1-2):208-31 [17]Lu B, Wang W, Li J.Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows[J].Chemical Engineering Science, 2009, 64(15):3437-47 [18]Li F, Song F, Benyahia S, et al.MP-PIC simulation of CFB riser with EMMS-based drag model(-13.[J].Chemical Engineering Science, 2012, 82(1):104-113 [19]Xu M, Ge W, Li J.A discrete particle model for particle–fluid flow with considerations of sub-grid structures[J].Chemical Engineering Science, 2007, 62(8):2302-8 [20]Gingold R A, Monaghan J J.Smoothed particle hydrodynamics: theory and application to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society, 1977, 181(3):375-89 [21]Lucy L B.Numerical approach to testing of fission hypothesis.[J].Astronomical Journal, 1977, 82(1):1013-1024 [22]宋飞飞.基于介尺度结构的颗粒流体两相流离散模拟方法[D]. 北京:中国科学院大学过程工程研究所, 2014:31-38. [23]Song F F.Towards Meso-Scale Structure Based Discrete Particle Method for Particle-Fluid Two-Phase Flow [D], Beijing: Institute of Process Engineering, University of Chinese Academy of Sciences, 2014:31-38. [24]Andrews M J, O' Rourke P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].International Journal of Multiphase Flow, 1996, 22(2):379-402 [25]Snider D M.An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows[J].Journal of Computational Physics, 2001, 170(2):523-49 [26]Benyahia S, Sundaresan S.Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?[J].Powder Technology, 2012, 220(11):2-6 [27]Auzerais F M, Jackson R, Russel W B.The resolution of shocks and the effects of compressible sediments in transient settling[J].Journal of Fluid Mechanics, 2006, 195(195):437-62 [28]Morris J P, Fox P J, Zhu Y.Modeling low Reynolds number incompressible flows using SPH[J].Journal of Computational Physics, 1997, 136(1):214-26 [29]Zou B, Li H, Xia Y, et al.Cluster structure in a circulating fluidized bed[J].Powder Technology, 1994, 78(2):173-8 [30]Wang J, Ge W, Li J.Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J].Chemical Engineering Science, 2008, 63(6):1553-71 [31]Horio M, Morishita K, Tachibana O, et al.Solid Distribution and Movement in Circulating Fluidized Beds, F, 1988 [C]. [32]Li J, Ge W, Zhang J, et al.Multi-Scale Compromise and Multi-Level Correlation in Complex Systems[J].Chemical Engineering Research and Design, 2005, 83(6):574-82 [33]Wang W, Lu B, Zhang N, et al.A review of multiscale CFD for gas–solid CFB modeling[J].International Journal of Multiphase Flow, 2010, 36(2):109-18 [34]Milioli C C, Milioli F E, Holloway W, et al.Filtered two-fluid models of fluidized gas-particle flows: New constitutive relations[J].AIChE Journal, 2013, 59(9):3265-75 [35]Weller H G, Tabor G, Jasak H, et al.A tensorial approach to computational continuum mechanics using object-oriented techniques[J].Computers in Physics, 1998, 12(6):620-31




[1]何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409.
[2]周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419.
[3]郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285.
[4]王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250.
[5]史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26.
[6]杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45.
[7]岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958.
[8]王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744.
[9]王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520.
[10]王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539.
[11]张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284.
[12]王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157.
[13]吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423.
[14]卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438.
[15]南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3176
相关话题/过程 工程 系统 北京 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 酯交换法制备碳酸二甲酯过程模拟与系统火用分析
    陈嵩嵩1,2,董丽1,张军平1,2,成卫国1*,华炜31.中国科学院过程工程研究所绿色过程与工程重点实验室,北京1001902.中国科学院大学化学化工学院,北京1000493.中石化北京燕山分公司,北京102500收稿日期:2018-02-19修回日期:2018-04-02出版日期:2018-12- ...
    本站小编 Free考研考试 2022-01-01
  • 液相氧化反应失控过程的动态流程模拟
    张帆1*,陈萌萌2,邹晋21.化学品安全控制国家重点实验室,山东青岛2660712.青岛科技大学环境与安全工程学院,山东青岛266042收稿日期:2018-03-19修回日期:2018-09-21出版日期:2018-11-22发布日期:2018-11-19通讯作者:张帆基金资助:典型危险化学品爆炸机 ...
    本站小编 Free考研考试 2022-01-01
  • 文丘里洗涤器内硫化氢气体碱液吸收过程的CFD模拟
    杨帅1,赵祥迪1,徐银谋1,2,王正1,袁纪武1,孙万付1*1.中国石化青岛安全工程研究院化学品安全控制国家重点实验室,山东青岛2660712.青岛科技大学机电工程学院,山东青岛266042收稿日期:2018-03-29修回日期:2018-07-24出版日期:2018-11-22发布日期:2018- ...
    本站小编 Free考研考试 2022-01-01
  • 低阶煤热解多联产与混合发电系统
    宋文立1,2*,李松庚1,2,都林1,林伟刚1,2,崔丽杰2,姚建中11.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001902.中国科学院大学,北京100049收稿日期:2018-05-30修回日期:2018-06-26出版日期:2018-10-22发布日期:2018-10-12通 ...
    本站小编 Free考研考试 2022-01-01
  • 高固多相生物反应工程
    王岚1,刘阳1,2,陈洪章1?1.中国科学院过程工程研究所生物质炼制工程北京市重点实验室,北京1001902.中国科学院大学化学工程学院,北京100190收稿日期:2018-06-12修回日期:2018-07-25出版日期:2018-10-22发布日期:2018-10-12通讯作者:陈洪章基金资助: ...
    本站小编 Free考研考试 2022-01-01
  • 轴向旋流式微气泡发生器的结构设计与数值模拟
    丁国栋1,3,陈家庆1,3*,王春升2,尚超2,刘美丽1,3,蔡小垒1,3,姬宜朋1,31.北京石油化工学院机械工程学院,北京1026172.中海油研究总院技术研发中心,北京1000273.深水油气管线关键技术与装备北京市重点实验室,北京102617收稿日期:2017-12-07修回日期:2018- ...
    本站小编 Free考研考试 2022-01-01
  • 耦合相变储热的金属氢化物反应器吸氢过程模拟
    尧兢,朱鹏飞,任佳伟,吴震*西安交通大学化学工程与技术学院,陕西西安710049收稿日期:2017-12-22修回日期:2018-02-07出版日期:2018-10-22发布日期:2018-10-12通讯作者:吴震基金资助:国家自然科学基金资助项目;陕西省自然科学基金;中国博士后科学基金Simula ...
    本站小编 Free考研考试 2022-01-01
  • 过程所与流态化-庆祝过程工程研究所建所60周年
    李洪钟中国科学院过程工程研究所多相复杂系统国家重点实验室,北京100190收稿日期:2018-04-27修回日期:2018-08-07出版日期:2018-08-22发布日期:2018-08-15Fluidizationscienceandtechnologyatinstituteofprocesse ...
    本站小编 Free考研考试 2022-01-01
  • Si/F/K/Na杂质对硫酸钙结晶过程的影响
    李绪1,2,朱干宇3,宫小康1,李少鹏3,刘兵兵1,李会泉3,4*1.宜都兴发化工有限公司,湖北宜都4433112.湖北兴发化工集团股份有限公司,湖北宜昌4430073.中国科学院过程工程研究所绿色过程工程实验室,湿法冶金清洁生产技术国家工程实验室,北京1001904.中国科学院大学化学院,北京10 ...
    本站小编 Free考研考试 2022-01-01
  • 普鲁士蓝钠离子电池正极材料高收率合成过程及性能
    孙李琪1,2,严小敏1,2,唐婉1,2,何雨石1,2,马紫峰1,2,廖小珍1,2*1.上海交通大学化学工程系,上海2002402.上海电化学能源器件工程技术研究中心,上海200240收稿日期:2017-11-29修回日期:2018-01-19出版日期:2018-08-22发布日期:2018-08-1 ...
    本站小编 Free考研考试 2022-01-01