1. 中国石化青岛安全工程研究院
2. 中国科学院青岛生物能源与过程研究所
收稿日期:
2017-12-12修回日期:
2018-01-19出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
蒋夫花基金资助:
波纹板阻火器微通道火焰淬熄精准数学模型的研究;气泡群介尺度曳力的实验研究及基于介尺度理论的气-液两流体模型研究;光生物反应器内流动、辐射和光生化反应协同机理的研究;高性能阻爆轰波纹板阻火器的开发及应用;高效反应结晶器的组装及自动测控系统的研制Advance in the research of flame propagation in the microchannels
Zheng WANG1, 2, Xiangdi ZHAO1, Guoxin CHEN1, Shuai YANG1, Qingshan HUANG2, Fuhua JIANG2*1. State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong
266071, China
2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
Received:
2017-12-12Revised:
2018-01-19Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 微燃烧器与阻火器淬火单元均为可燃气体燃烧的微通道,目前对微燃烧器的研究较充分,而对阻火器淬火单元的研究较少. 本工作概述了影响火焰在微通道内传播的因素,指出对各因素的研究还需深入,有利于澄清争议;简述了火焰在微通道内传播的数学模型的研究进展,提出微通道内流体流动流型的判定亟需完善;确定在高速爆轰条件下,阻火器内的流动为湍流;推荐将雷诺应力湍流模型与层流有限速率模型结合进行阻火器内高速爆轰火焰传播的数值模拟,推荐采用以密度为基础的算法进行求解;指出了微通道内火焰传播研究的成果与不足,展望了其发展方向.
引用本文
王正 赵祥迪 陈国鑫 杨帅 黄青山 蒋夫花. 微通道内火焰传播的研究进展[J]. 过程工程学报, 2018, 18(4): 669-679.
Zheng WANG Xiangdi ZHAO Guoxin CHEN Shuai YANG Qingshan HUANG Fuhua JIANG. Advance in the research of flame propagation in the microchannels[J]. Chin. J. Process Eng., 2018, 18(4): 669-679.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217416
http://www.jproeng.com/CN/Y2018/V18/I4/669
参考文献
[1]陶然, 权晓波, 徐建中.微尺度流动研究中的几个问题[J].工程热物理学报, 2001, 22(05):575-577 [2]DENG W, KLEMIC J F, LI X, et al.Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J].Proceedings of the Combustion Institute, 2007, 31(2):2239-2246 [3]FERNANDEZ-PELLO A C.Micropower generation using combustion: Issues and approaches[J].Proceedings of the Combustion Institute, 2002, 29(1):883-899 [4]SAHOTA G P S, KHANDELWAL B, KUMAR S.Experimental investigations on a new active swirl based microcombustor for an integrated micro-reformer system[J].Energy Conversion and Management, 2011, 52(10):3206-3213 [5]孙冰, 朱红伟, 姜杰, 等.微混合与微反应技术在提升化工安全中的应用[J].化工进展, 2017, 36(08):2756-2763 [6]WANG L, MA H, SHEN Z.The quenching of propane deflagrations by crimped ribbon flame arrestors[J].Journal of Loss Prevention in the Process Industries, 2016, 43:567-574 [7]CAPP B.Temperature rise of a rigid element flame arrester in endurance burning with propane[J].Journal of Loss Prevention in the Process Industries, 1992, 5(4):215-218 [8]HOWARD W B.Flame arresters and flashback preventers[J].PlantOperations Progress, 1982, 1(4):203-208 [9]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.石油气体管道阻火器 GB/T 13347-2010[S]. 北京: 中国标准出版社, 2011. [10]WU M H, KUO W C.Accelerative expansion and DDT of stoichiometric ethyleneoxygen flame rings in micro-gaps[J].Proceedings of the Combustion Institute, 2013, 34(2):2017-2024 [11]邓博, 胡宗民, 滕宏辉, 等.变截面管道中爆轰胞格演变机制的数值模拟研究[J].中国科学辑物理学力学天文学, 2008, 38(02):206-216 [12]TONG Y, LI M, THERN M, et al.Experimental investigation on effects of central air jet on the bluff-body stabilized premixed methane-air flame[J].Energy Procedia, 2017, 107:23-32 [13]DOROFEEV S B.Hydrogen flames in tubes: Critical run-up distances[J].International Journal of Hydrogen Energy, 2009, 34(14):5832-5837 [14]GUO J, SUN X, RUI S, et al.Effect of ignition position on vented hydrogen–air explosions[J].International Journal of Hydrogen Energy, 2015, 40(45):15780-15788 [15]BROUSTAIL G, SEERS P, HALTER F, et al.Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends[J].Fuel, 2011, 90(1):1-6 [16]MIAO H, JIAO Q, HUANG Z, et al.Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas[J].International Journal of Hydrogen Energy, 2008, 33(14):3876-3885 [17]PEKALSKI A A, ZEVENBERGEN J F, LEMKOWITZ S M, et al.A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations[J].Process Safety and Environmental Protection, 2005, 83(1):1-17 [18]GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al.Effect of initial temperature on the explosion pressure of various liquid fuels and their blends[J].Journal of Loss Prevention in the Process Industries, 2016, 44:775-779 [19]李传家, 王伯良, 黄菊, 等.爆炸形成过程中火焰加速的试验研究[J].中国安全科学学报, 2011, 21(10):76-81 [20]年志远.平板狭缝间碳氢燃料微小火焰特性的实验研究[D]. 郑州: 郑州大学, 2016: 17. [21]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.爆炸性环境 第11部分:由隔爆外壳" d" 保护的设备最大试验安全间隙测定方法: GB 3836.11-2008/IEC 60079-1-1:2002[S]. 北京: 中国标准出版社, 2008. [22]STREHLOW R A, NICHOLLS J A, MAGISON E C, et al.An investigation of the maximum experimental safe gap anomaly[J].Journal of Hazardous Materials, 1979, 3(1):1-15 [23]PHILLIPS H.Differences between determinations of maximum experimental safe gap in Europe and US.A[J].Journal of Hazardous Materials, 1981, 4(3):245-256 [24]LUNN G A.An apparatus for the measurement of maximum experimental safe gaps at standard and elevated temperatures[J].Journal of Hazardous Materials, 1982, 6(4):329-340 [25]CAPP B.The maximum experimental safe gap for a spray of higher flash point liquid[J].Journal of Hazardous Materials, 1988, 18(1):91-97 [26]BOULAL S, VIDAL P, ZITOUN R.Experimental investigation of detonation quenching in non-uniform compositions[J].Combustion and Flame, 2016, 172:222-233 [27]WU M H, KUO W C.Accelerative expansion and DDT of stoichiometric ethyleneoxygen flame rings in micro-gaps[J].Proceedings of the Combustion Institute, 2013, 34(2):2017-2024 [28]BAUER P.Experimental investigation on flame and detonation quenching: Applicability of static flame arresters[J].Journal of Loss Prevention in the Process Industries, 2005, 18(2):63-68 [29]WEI H, ZHAO J, ZHOU L, et al.Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space[J].Combustion and Flame, 2017, 186:247-262 [30]SANCHEZ–SANZ M, FERNANDEZ-GALISTEO D, KURDYUMOV V N.Effect of the equivalence ratio,Damk?hler number,Lewis number and heat release on the stability of laminar premixed flames in microchannels[J].Combustion and Flame, 2014, 161(5):1282-1293 [31]WANG T, ZHANG X, ZHANG J, et al.Numerical analysis of the influence of the fuel injection timing and ignition position in a direct-injection natural gas engine[J].Energy Conversion and Management, 2017, 149:748-759 [32]WANG Y, WANG J.Effect of equivalence ratio on the velocity of rotating detonation[J].International Journal of Hydrogen Energy, 2015, 40(25):7949-7955 [33]WANG Z, MOTHEAU E, ABRAHAM J.Effects of equivalence ratio variations on turbulent flame speed in lean methaneair mixtures under lean-burn natural gas engine operating conditions[J].Proceedings of the Combustion Institute, 2017, 36(3):3423-3430 [34]LV X, ZHENG L, ZHANG Y, et al.Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion[J].International Journal of Hydrogen Energy, 2016, 41(39):17740-17749 [35]LAPP K, WERNEBURG H.Detonation flame arrester qualifying application parameter for explosion prevention in vapor handling systems[J].Process Safety Progress, 1995, 14(2):139-146 [36]何学超.丙烷空气预混火焰在90°弯曲管道内传播特性的实验和模拟研究[D]. 合肥: 中国科学技术大学, 2010: 40. [37]蒋利桥.微尺度火焰及微燃烧器的稳燃强化技术研究[D]. 合肥: 中国科学技术大学, 2008: 38. [38]WU M H, KUO W C.Transmission of near-limit detonation wave through a planar sudden expansion in a narrow channel[J].Combustion and Flame, 2012, 159(11):3414-3422 [39]WU M H, WANG C Y.Reaction propagation modes in millimeter-scale tubes for ethyleneoxygen mixtures[J].Proceedings of the Combustion Institute, 2011, 33(2):2287-2293 [40]KIM N I, KATO S, KATAOKA T, et al.Flame stabilization and emission of small swiss-roll combustors as heaters[J].Combustion and Flame, 2005, 141(3):229-240 [41]IL KIM N, AIZUMI S, YOKOMORI T, et al.Development and scale effects of small swiss-roll combustors[J].Proceedings of the Combustion Institute, 2007, 31(2):3243-3250 [42]ZHONG B J, WANG J H.Experimental study on premixed CH4air mixture combustion in micro swiss-roll combustors[J].Combustion and Flame, 2010, 157(12):2222-2229 [43]KASHIR B, TABEJAMAAT S, JALALATIAN N.The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames[J].Energy Conversion and Management, 2015, 103:1-13 [44]JEONG C, BAE J, KIM T, et al.Investigation of flashback characteristics coupled with combustion instability in turbulent premixed bluff body flames using high-speed OH-PLIF and PIV[J].Proceedings of the Combustion Institute, 2017, 36(2):1861-1868 [45]FAN A, ZHANG H, WAN J.Numerical investigation on flame blow-off limit of a novel microscale swiss-roll combustor with a bluff-body[J].Energy, 2017, 123:252-259 [46]YAN Y, WANG H, PAN W, et al.Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor[J].Energy Conversion and Management, 2016, 118:474-484 [47]YAN Y, HUANG W, TANG W, et al.Numerical study on catalytic combustion and extinction characteristics of pre-mixed methane–air in micro flatbed channel under different parameters of operation and wall[J].Fuel, 2016, 180:659-667 [48]OKAWA Y, YOUN C, KAGAWA T.A study of the characteristics of flow rate and extinction in a flame arrester with radial slit structure[J].Journal of Loss Prevention in the Process Industries, 2012, 25(2):242-249 [49]LIETZE D.Crimped metal ribbon flame arrestors for the protection of gas measurement systems[J].Journal of Loss Prevention in the Process Industries, 2002, 15(1):29-35 [50]YENERDAG B, MINAMOTO Y, NAKA Y, et al.Flame propagation and heat transfer characteristics of a hydrogen–air premixed flame in a constant volume vessel[J].International Journal of Hydrogen Energy, 2016, 41(22):9679-9689 [51]CHIA L C, FENG B.The development of a micropower (micro-thermophotovoltaic) device[J].Journal of Power Sources, 2007, 165(1):455-480 [52]YUASA S, OSHIMI K, NOSE H, et al.Concept and combustion characteristics of ultra-micro combustors with premixed flame[J].Proceedings of the Combustion Institute, 2005, 30(2):2455-2462 [53]WAN J, FAN A.Effect of solid material on the blow-off limit of CH4/air flames in a micro combustor with a plate flame holder and preheating channels[J].Energy Conversion and Management, 2015, 101:552-560 [54]KIM K T, LEE D H, KWON S.Effects of thermal and chemical surface–flame interaction on flame quenching[J].Combustion and Flame, 2006, 146(1):19-28 [55]冯耀勋, 杨浩林, 赵黛青.壁面材料对微火焰熄火影响的实验研究[J].热能动力工程, 2013, 28(01):61-67 [56]FAN Y, SUZUKI Y, KASAGI N.Experimental study of micro-scale premixed flame in quartz channels[J].Proceedings of the Combustion Institute, 2009, 32(2):3083-3090 [57]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州: 浙江大学, 2004: 20. [58]MIESSE C M, MASEL R I, JENSEN C D, et al.Submillimeter-scale combustion[J].AIChE Journal, 2004, 50(12):3206-3214 [59]LIETZE D.Limit of safety against flame transmission for sintered metal flame arrester elements in the case of flashback in fuel gasoxygen mixtures[J].Journal of Loss Prevention in the Process Industries, 1995, 8(6):325-329 [60]PAYMAN W, WHEELER R V.The propagation of flame through tubes of small diameter[J].Journal of the Chemical Society, Transactions, 1918, 113(0):656-666 [61]喻健良.预混火焰在微小通道中传播和淬熄的研究[D]. 大连: 大连理工大学, 2008: 9. [62]RAIMONDEAU S, NORTON D, VLACHOS D G, et al.Modeling of high-temperature microburners[J].Proceedings of the Combustion Institute, 2002, 29(1):901-907 [63]BAI B, CHEN Z, ZHANG H, et al.Flame propagation in a tube with wall quenching of radicals[J].Combustion and Flame, 2013, 160(12):2810-2819 [64]SAIKI Y, SUZUKI Y.Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials[J].Proceedings of the Combustion Institute, 2013, 34(2):3395-3402 [65]张立志, 赵黛青, 冯耀勋, 等.壁面反应对微小通道内燃烧影响的数值模拟[J].工程热物理学报, 2011, 32(11):1973-1978 [66]SAIKI Y, FAN Y, SUZUKI Y.Radical quenching of metal wall surface in a methane-air premixed flame[J].Combustion and Flame, 2015, 162(10):4036-4045 [67]CICORIA D, CHAN C K.Large eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers[J].International Journal of Hydrogen Energy, 2016, 41(47):22479-22496 [68]FAN A, WAN J, LIU Y, et al.Effect of bluff body shape on the blow-off limit of hydrogenair flame in a planar micro-combustor[J].Applied Thermal Engineering, 2014, 62(1):13-19 [69]GIOVANNONI V, SHARMA R N, RAINE R R.Premixed combustion of methane–air mixture stabilized over porous medium: A 2D numerical study[J].Chemical Engineering Science, 2016, 152:591-605 [70]LI J, CHOU S K, YANG W M, et al.A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size,geometry and boundary conditions on flame temperature[J].Chemical Engineering Journal, 2009, 150(1):213-222 [71]LI X, ZHANG J, YANG H, et al.Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube[J].Applied Thermal Engineering, 2017, 112:296-303 [72]KONAKOV S A, DZYUBANENKO S V, KRZHIZHANOVSKAYA V V.Computer simulation approach in development of propane-air combustor microreactor[J].Procedia Computer Science, 2016, 101:76-85 [73]张义贵.微尺度多孔介质中燃烧的电容层析成像应用研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2008: 47. [74]BEAR J.Dynamics of fluids in porous media[M]. American Elsevier Publishing Company, 1972: 177. [75]HIATT J P, HALL M J.Pore scale turbulence in porous ceramic burners[J].Proceedings of the Central States Section Meeting of Combustion Institute, 1994, :49-54 [76]陈作义.交叉三角形波纹板流道传热与流动特性的研究[D]. 广州: 华南理工大学, 2012: 48. [77]KUO C H, RONNEY P D.Numerical modeling of non-adiabatic heat-recirculating combustors[J].Proceedings of the Combustion Institute, 2007, 31(2):3277-3284 [78]林瑞泰.多孔介质传热传质引论[M]. 科学出版社, 1995: 57. [79]黄青山.多相环流反应器的传递和反应性能数值模拟[D]. 北京: 中国科学院大学, 2008: 43. [80]MOUKALLED F, DARWISH M.A high-resolution pressure-based algorithm for fluid flow at all speeds[J].Journal of Computational Physics, 2001, 168(1):101-130 [81]MIETTINEN A, SIIKONEN T.Application of pressure‐ and density‐based methods for different flow speeds[J].International Journal for Numerical Methods in Fluids, 2015, 79(5):243-267 [82]杨越, 陈正, 周豪, 等.高雷诺数预混湍流火焰的数值模拟与结构表征[J].中国科学:物理学 力学 天文学, 2017, 47(07):46-61 [83]MIYATA E, FUKUSHIMA N, NAKA Y, et al.Direct numerical simulation of micro combustion in a narrow circular channel with a detailed kinetic mechanism[J].Proceedings of the Combustion Institute, 2015, 35(3):3421-3427 [84]VENDRA C M R, WEN J X, TAM V H Y.Numerical simulation of turbulent flame–wall quenching using a coherent flame model[J].Journal of Loss Prevention in the Process Industries, 2013, 26(2):363-368 [85]BENIM A C, IQBAL S, MEIER W, et al.Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor[J].Applied Thermal Engineering, 2017, 110:202-212 [86]GAO Z, JIANG C, LEE C H.On the laminar finite rate model and flamelet model for supersonic turbulent combustion flows[J].International Journal of Hydrogen Energy, 2016, 41(30):13238-13253 [87]熊模友, 乐嘉陵, 黄渊, 等.采用火焰面反应进度变量方法模拟湍流燃烧[J].航空动力学报, 2016, 31(11):2604-2612 [88]曾卓雄, 郭帅帅, 陈超杰, 等.可控涡结构的三维湍流燃烧特性的数值分析[J].热能动力工程, 2016, 31(06):42-47 [89]GHAREBAGHI M, IRONS R M A, MA L, et al.Large eddy simulation of oxy-coal combustion in an industrial combustion test facility[J].International Journal of Greenhouse Gas Control, 2011, 5:S100-S110 [90]DAVANI A A, RONNEY P D.A jet-stirred chamber for turbulent combustion experiments[J].Combustion and Flame, 2017, 185:117-128 [91]ZHANG K, GHOBADIAN A, NOURI J M.Comparative study of non-premixed and partially-premixed combustion simulations in a realistic tay model combustor[J].Applied Thermal Engineering, 2017, 110:910-920 |
相关文章 15
[1] | 刘建武 蒋晗 严生虎 张跃 沈介发 陈代祥. 微通道反应器中乙酰乙酸甲酯的连续流合成工艺[J]. 过程工程学报, 2020, 20(9): 1082-1088. |
[2] | 王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301. |
[3] | 鲁进利 刘亚进 韩亚芳 池帮杰 钱付平. 柜式空调微通道蒸发器换热性能测试[J]. 过程工程学报, 2019, 19(4): 661-667. |
[4] | 李培生 连小龙 张莹 赵万东 刘强 卢敏 杜鹏. 液滴滴浸微通道入口段的动力学特性分析[J]. 过程工程学报, 2019, 19(1): 102-109. |
[5] | 杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688. |
[6] | 沈颖峰薛庆国王广佘雪峰王静松. 硼铁精矿含碳球团还原过程数学模型[J]. , 2015, 15(2): 252-258. |
[7] | 卢永生李育敏俞云良刘学军计建炳. 折流式旋转床持液量的研究[J]. , 2014, 14(4): 568-572. |
[8] | 徐东祭程唐正友朱苗勇. SCM435钢贝氏体中碳原子的扩散行为[J]. , 2013, 13(1): 17-22. |
[9] | 杨涛唐晓津张占柱. 费托合成浆态床反应器模型研究进展[J]. , 2012, 12(6): 1073-1080. |
[10] | 彭莉李洪钟朱庆山. U型阀结构下颗粒流态化排料的数学模型[J]. , 2012, 12(3): 382-387. |
[11] | 郑博唐晓津张占柱宗保宁. 用于浆态床费托合成的错流过滤数学模型的研究进展[J]. , 2011, 11(5): 894-900. |
[12] | 王宇马宏方应卫勇房鼎业. 合成气制二甲醚管壳型反应器的二维数学模型与分析[J]. , 2010, 10(5): 933-938. |
[13] | 郭永学修志龙. 丹参饮片的微波干燥及丹酚酸B的溶出特性[J]. , 2010, 10(3): 603-607. |
[14] | 胡雪;魏炜;雷建都;马光辉;苏志国;王化军. T型微通道装置制备尺寸均一壳聚糖微球[J]. , 2008, 8(1): 130-134. |
[15] | 肖国俊;丁学俊;陈汉平;程尚清;骆名文;熊用. 石油焦煅烧回转窑综合传热过程数值模拟[J]. , 2007, 7(5): 883-888. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3106