删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微通道内火焰传播的研究进展

本站小编 Free考研考试/2022-01-01

王 正1,2, 赵祥迪1, 陈国鑫1, 杨 帅1, 黄青山2, 蒋夫花2*
1. 中国石化青岛安全工程研究院
2. 中国科学院青岛生物能源与过程研究所
收稿日期:2017-12-12修回日期:2018-01-19出版日期:2018-08-22发布日期:2018-08-15
通讯作者:蒋夫花

基金资助:波纹板阻火器微通道火焰淬熄精准数学模型的研究;气泡群介尺度曳力的实验研究及基于介尺度理论的气-液两流体模型研究;光生物反应器内流动、辐射和光生化反应协同机理的研究;高性能阻爆轰波纹板阻火器的开发及应用;高效反应结晶器的组装及自动测控系统的研制

Advance in the research of flame propagation in the microchannels

Zheng WANG1, 2, Xiangdi ZHAO1, Guoxin CHEN1, Shuai YANG1, Qingshan HUANG2, Fuhua JIANG2*
1. State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong
266071, China
2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
Received:2017-12-12Revised:2018-01-19Online:2018-08-22Published:2018-08-15







摘要/Abstract


摘要: 微燃烧器与阻火器淬火单元均为可燃气体燃烧的微通道,目前对微燃烧器的研究较充分,而对阻火器淬火单元的研究较少. 本工作概述了影响火焰在微通道内传播的因素,指出对各因素的研究还需深入,有利于澄清争议;简述了火焰在微通道内传播的数学模型的研究进展,提出微通道内流体流动流型的判定亟需完善;确定在高速爆轰条件下,阻火器内的流动为湍流;推荐将雷诺应力湍流模型与层流有限速率模型结合进行阻火器内高速爆轰火焰传播的数值模拟,推荐采用以密度为基础的算法进行求解;指出了微通道内火焰传播研究的成果与不足,展望了其发展方向.

引用本文



王正 赵祥迪 陈国鑫 杨帅 黄青山 蒋夫花. 微通道内火焰传播的研究进展[J]. 过程工程学报, 2018, 18(4): 669-679.
Zheng WANG Xiangdi ZHAO Guoxin CHEN Shuai YANG Qingshan HUANG Fuhua JIANG. Advance in the research of flame propagation in the microchannels[J]. Chin. J. Process Eng., 2018, 18(4): 669-679.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217416
http://www.jproeng.com/CN/Y2018/V18/I4/669







[1]陶然, 权晓波, 徐建中.微尺度流动研究中的几个问题[J].工程热物理学报, 2001, 22(05):575-577
[2]DENG W, KLEMIC J F, LI X, et al.Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J].Proceedings of the Combustion Institute, 2007, 31(2):2239-2246
[3]FERNANDEZ-PELLO A C.Micropower generation using combustion: Issues and approaches[J].Proceedings of the Combustion Institute, 2002, 29(1):883-899
[4]SAHOTA G P S, KHANDELWAL B, KUMAR S.Experimental investigations on a new active swirl based microcombustor for an integrated micro-reformer system[J].Energy Conversion and Management, 2011, 52(10):3206-3213
[5]孙冰, 朱红伟, 姜杰, 等.微混合与微反应技术在提升化工安全中的应用[J].化工进展, 2017, 36(08):2756-2763
[6]WANG L, MA H, SHEN Z.The quenching of propane deflagrations by crimped ribbon flame arrestors[J].Journal of Loss Prevention in the Process Industries, 2016, 43:567-574
[7]CAPP B.Temperature rise of a rigid element flame arrester in endurance burning with propane[J].Journal of Loss Prevention in the Process Industries, 1992, 5(4):215-218
[8]HOWARD W B.Flame arresters and flashback preventers[J].PlantOperations Progress, 1982, 1(4):203-208
[9]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.石油气体管道阻火器 GB/T 13347-2010[S]. 北京: 中国标准出版社, 2011.
[10]WU M H, KUO W C.Accelerative expansion and DDT of stoichiometric ethyleneoxygen flame rings in micro-gaps[J].Proceedings of the Combustion Institute, 2013, 34(2):2017-2024
[11]邓博, 胡宗民, 滕宏辉, 等.变截面管道中爆轰胞格演变机制的数值模拟研究[J].中国科学辑物理学力学天文学, 2008, 38(02):206-216
[12]TONG Y, LI M, THERN M, et al.Experimental investigation on effects of central air jet on the bluff-body stabilized premixed methane-air flame[J].Energy Procedia, 2017, 107:23-32
[13]DOROFEEV S B.Hydrogen flames in tubes: Critical run-up distances[J].International Journal of Hydrogen Energy, 2009, 34(14):5832-5837
[14]GUO J, SUN X, RUI S, et al.Effect of ignition position on vented hydrogen–air explosions[J].International Journal of Hydrogen Energy, 2015, 40(45):15780-15788
[15]BROUSTAIL G, SEERS P, HALTER F, et al.Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends[J].Fuel, 2011, 90(1):1-6
[16]MIAO H, JIAO Q, HUANG Z, et al.Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas[J].International Journal of Hydrogen Energy, 2008, 33(14):3876-3885
[17]PEKALSKI A A, ZEVENBERGEN J F, LEMKOWITZ S M, et al.A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations[J].Process Safety and Environmental Protection, 2005, 83(1):1-17
[18]GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al.Effect of initial temperature on the explosion pressure of various liquid fuels and their blends[J].Journal of Loss Prevention in the Process Industries, 2016, 44:775-779
[19]李传家, 王伯良, 黄菊, 等.爆炸形成过程中火焰加速的试验研究[J].中国安全科学学报, 2011, 21(10):76-81
[20]年志远.平板狭缝间碳氢燃料微小火焰特性的实验研究[D]. 郑州: 郑州大学, 2016: 17.
[21]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.爆炸性环境 第11部分:由隔爆外壳" d" 保护的设备最大试验安全间隙测定方法: GB 3836.11-2008/IEC 60079-1-1:2002[S]. 北京: 中国标准出版社, 2008.
[22]STREHLOW R A, NICHOLLS J A, MAGISON E C, et al.An investigation of the maximum experimental safe gap anomaly[J].Journal of Hazardous Materials, 1979, 3(1):1-15
[23]PHILLIPS H.Differences between determinations of maximum experimental safe gap in Europe and US.A[J].Journal of Hazardous Materials, 1981, 4(3):245-256
[24]LUNN G A.An apparatus for the measurement of maximum experimental safe gaps at standard and elevated temperatures[J].Journal of Hazardous Materials, 1982, 6(4):329-340
[25]CAPP B.The maximum experimental safe gap for a spray of higher flash point liquid[J].Journal of Hazardous Materials, 1988, 18(1):91-97
[26]BOULAL S, VIDAL P, ZITOUN R.Experimental investigation of detonation quenching in non-uniform compositions[J].Combustion and Flame, 2016, 172:222-233
[27]WU M H, KUO W C.Accelerative expansion and DDT of stoichiometric ethyleneoxygen flame rings in micro-gaps[J].Proceedings of the Combustion Institute, 2013, 34(2):2017-2024
[28]BAUER P.Experimental investigation on flame and detonation quenching: Applicability of static flame arresters[J].Journal of Loss Prevention in the Process Industries, 2005, 18(2):63-68
[29]WEI H, ZHAO J, ZHOU L, et al.Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space[J].Combustion and Flame, 2017, 186:247-262
[30]SANCHEZ–SANZ M, FERNANDEZ-GALISTEO D, KURDYUMOV V N.Effect of the equivalence ratio,Damk?hler number,Lewis number and heat release on the stability of laminar premixed flames in microchannels[J].Combustion and Flame, 2014, 161(5):1282-1293
[31]WANG T, ZHANG X, ZHANG J, et al.Numerical analysis of the influence of the fuel injection timing and ignition position in a direct-injection natural gas engine[J].Energy Conversion and Management, 2017, 149:748-759
[32]WANG Y, WANG J.Effect of equivalence ratio on the velocity of rotating detonation[J].International Journal of Hydrogen Energy, 2015, 40(25):7949-7955
[33]WANG Z, MOTHEAU E, ABRAHAM J.Effects of equivalence ratio variations on turbulent flame speed in lean methaneair mixtures under lean-burn natural gas engine operating conditions[J].Proceedings of the Combustion Institute, 2017, 36(3):3423-3430
[34]LV X, ZHENG L, ZHANG Y, et al.Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion[J].International Journal of Hydrogen Energy, 2016, 41(39):17740-17749
[35]LAPP K, WERNEBURG H.Detonation flame arrester qualifying application parameter for explosion prevention in vapor handling systems[J].Process Safety Progress, 1995, 14(2):139-146
[36]何学超.丙烷空气预混火焰在90°弯曲管道内传播特性的实验和模拟研究[D]. 合肥: 中国科学技术大学, 2010: 40.
[37]蒋利桥.微尺度火焰及微燃烧器的稳燃强化技术研究[D]. 合肥: 中国科学技术大学, 2008: 38.
[38]WU M H, KUO W C.Transmission of near-limit detonation wave through a planar sudden expansion in a narrow channel[J].Combustion and Flame, 2012, 159(11):3414-3422
[39]WU M H, WANG C Y.Reaction propagation modes in millimeter-scale tubes for ethyleneoxygen mixtures[J].Proceedings of the Combustion Institute, 2011, 33(2):2287-2293
[40]KIM N I, KATO S, KATAOKA T, et al.Flame stabilization and emission of small swiss-roll combustors as heaters[J].Combustion and Flame, 2005, 141(3):229-240
[41]IL KIM N, AIZUMI S, YOKOMORI T, et al.Development and scale effects of small swiss-roll combustors[J].Proceedings of the Combustion Institute, 2007, 31(2):3243-3250
[42]ZHONG B J, WANG J H.Experimental study on premixed CH4air mixture combustion in micro swiss-roll combustors[J].Combustion and Flame, 2010, 157(12):2222-2229
[43]KASHIR B, TABEJAMAAT S, JALALATIAN N.The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames[J].Energy Conversion and Management, 2015, 103:1-13
[44]JEONG C, BAE J, KIM T, et al.Investigation of flashback characteristics coupled with combustion instability in turbulent premixed bluff body flames using high-speed OH-PLIF and PIV[J].Proceedings of the Combustion Institute, 2017, 36(2):1861-1868
[45]FAN A, ZHANG H, WAN J.Numerical investigation on flame blow-off limit of a novel microscale swiss-roll combustor with a bluff-body[J].Energy, 2017, 123:252-259
[46]YAN Y, WANG H, PAN W, et al.Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor[J].Energy Conversion and Management, 2016, 118:474-484
[47]YAN Y, HUANG W, TANG W, et al.Numerical study on catalytic combustion and extinction characteristics of pre-mixed methane–air in micro flatbed channel under different parameters of operation and wall[J].Fuel, 2016, 180:659-667
[48]OKAWA Y, YOUN C, KAGAWA T.A study of the characteristics of flow rate and extinction in a flame arrester with radial slit structure[J].Journal of Loss Prevention in the Process Industries, 2012, 25(2):242-249
[49]LIETZE D.Crimped metal ribbon flame arrestors for the protection of gas measurement systems[J].Journal of Loss Prevention in the Process Industries, 2002, 15(1):29-35
[50]YENERDAG B, MINAMOTO Y, NAKA Y, et al.Flame propagation and heat transfer characteristics of a hydrogen–air premixed flame in a constant volume vessel[J].International Journal of Hydrogen Energy, 2016, 41(22):9679-9689
[51]CHIA L C, FENG B.The development of a micropower (micro-thermophotovoltaic) device[J].Journal of Power Sources, 2007, 165(1):455-480
[52]YUASA S, OSHIMI K, NOSE H, et al.Concept and combustion characteristics of ultra-micro combustors with premixed flame[J].Proceedings of the Combustion Institute, 2005, 30(2):2455-2462
[53]WAN J, FAN A.Effect of solid material on the blow-off limit of CH4/air flames in a micro combustor with a plate flame holder and preheating channels[J].Energy Conversion and Management, 2015, 101:552-560
[54]KIM K T, LEE D H, KWON S.Effects of thermal and chemical surface–flame interaction on flame quenching[J].Combustion and Flame, 2006, 146(1):19-28
[55]冯耀勋, 杨浩林, 赵黛青.壁面材料对微火焰熄火影响的实验研究[J].热能动力工程, 2013, 28(01):61-67
[56]FAN Y, SUZUKI Y, KASAGI N.Experimental study of micro-scale premixed flame in quartz channels[J].Proceedings of the Combustion Institute, 2009, 32(2):3083-3090
[57]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州: 浙江大学, 2004: 20.
[58]MIESSE C M, MASEL R I, JENSEN C D, et al.Submillimeter-scale combustion[J].AIChE Journal, 2004, 50(12):3206-3214
[59]LIETZE D.Limit of safety against flame transmission for sintered metal flame arrester elements in the case of flashback in fuel gasoxygen mixtures[J].Journal of Loss Prevention in the Process Industries, 1995, 8(6):325-329
[60]PAYMAN W, WHEELER R V.The propagation of flame through tubes of small diameter[J].Journal of the Chemical Society, Transactions, 1918, 113(0):656-666
[61]喻健良.预混火焰在微小通道中传播和淬熄的研究[D]. 大连: 大连理工大学, 2008: 9.
[62]RAIMONDEAU S, NORTON D, VLACHOS D G, et al.Modeling of high-temperature microburners[J].Proceedings of the Combustion Institute, 2002, 29(1):901-907
[63]BAI B, CHEN Z, ZHANG H, et al.Flame propagation in a tube with wall quenching of radicals[J].Combustion and Flame, 2013, 160(12):2810-2819
[64]SAIKI Y, SUZUKI Y.Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials[J].Proceedings of the Combustion Institute, 2013, 34(2):3395-3402
[65]张立志, 赵黛青, 冯耀勋, 等.壁面反应对微小通道内燃烧影响的数值模拟[J].工程热物理学报, 2011, 32(11):1973-1978
[66]SAIKI Y, FAN Y, SUZUKI Y.Radical quenching of metal wall surface in a methane-air premixed flame[J].Combustion and Flame, 2015, 162(10):4036-4045
[67]CICORIA D, CHAN C K.Large eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers[J].International Journal of Hydrogen Energy, 2016, 41(47):22479-22496
[68]FAN A, WAN J, LIU Y, et al.Effect of bluff body shape on the blow-off limit of hydrogenair flame in a planar micro-combustor[J].Applied Thermal Engineering, 2014, 62(1):13-19
[69]GIOVANNONI V, SHARMA R N, RAINE R R.Premixed combustion of methane–air mixture stabilized over porous medium: A 2D numerical study[J].Chemical Engineering Science, 2016, 152:591-605
[70]LI J, CHOU S K, YANG W M, et al.A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size,geometry and boundary conditions on flame temperature[J].Chemical Engineering Journal, 2009, 150(1):213-222
[71]LI X, ZHANG J, YANG H, et al.Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube[J].Applied Thermal Engineering, 2017, 112:296-303
[72]KONAKOV S A, DZYUBANENKO S V, KRZHIZHANOVSKAYA V V.Computer simulation approach in development of propane-air combustor microreactor[J].Procedia Computer Science, 2016, 101:76-85
[73]张义贵.微尺度多孔介质中燃烧的电容层析成像应用研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2008: 47.
[74]BEAR J.Dynamics of fluids in porous media[M]. American Elsevier Publishing Company, 1972: 177.
[75]HIATT J P, HALL M J.Pore scale turbulence in porous ceramic burners[J].Proceedings of the Central States Section Meeting of Combustion Institute, 1994, :49-54
[76]陈作义.交叉三角形波纹板流道传热与流动特性的研究[D]. 广州: 华南理工大学, 2012: 48.
[77]KUO C H, RONNEY P D.Numerical modeling of non-adiabatic heat-recirculating combustors[J].Proceedings of the Combustion Institute, 2007, 31(2):3277-3284
[78]林瑞泰.多孔介质传热传质引论[M]. 科学出版社, 1995: 57.
[79]黄青山.多相环流反应器的传递和反应性能数值模拟[D]. 北京: 中国科学院大学, 2008: 43.
[80]MOUKALLED F, DARWISH M.A high-resolution pressure-based algorithm for fluid flow at all speeds[J].Journal of Computational Physics, 2001, 168(1):101-130
[81]MIETTINEN A, SIIKONEN T.Application of pressure‐ and density‐based methods for different flow speeds[J].International Journal for Numerical Methods in Fluids, 2015, 79(5):243-267
[82]杨越, 陈正, 周豪, 等.高雷诺数预混湍流火焰的数值模拟与结构表征[J].中国科学:物理学 力学 天文学, 2017, 47(07):46-61
[83]MIYATA E, FUKUSHIMA N, NAKA Y, et al.Direct numerical simulation of micro combustion in a narrow circular channel with a detailed kinetic mechanism[J].Proceedings of the Combustion Institute, 2015, 35(3):3421-3427
[84]VENDRA C M R, WEN J X, TAM V H Y.Numerical simulation of turbulent flame–wall quenching using a coherent flame model[J].Journal of Loss Prevention in the Process Industries, 2013, 26(2):363-368
[85]BENIM A C, IQBAL S, MEIER W, et al.Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor[J].Applied Thermal Engineering, 2017, 110:202-212
[86]GAO Z, JIANG C, LEE C H.On the laminar finite rate model and flamelet model for supersonic turbulent combustion flows[J].International Journal of Hydrogen Energy, 2016, 41(30):13238-13253
[87]熊模友, 乐嘉陵, 黄渊, 等.采用火焰面反应进度变量方法模拟湍流燃烧[J].航空动力学报, 2016, 31(11):2604-2612
[88]曾卓雄, 郭帅帅, 陈超杰, 等.可控涡结构的三维湍流燃烧特性的数值分析[J].热能动力工程, 2016, 31(06):42-47
[89]GHAREBAGHI M, IRONS R M A, MA L, et al.Large eddy simulation of oxy-coal combustion in an industrial combustion test facility[J].International Journal of Greenhouse Gas Control, 2011, 5:S100-S110
[90]DAVANI A A, RONNEY P D.A jet-stirred chamber for turbulent combustion experiments[J].Combustion and Flame, 2017, 185:117-128
[91]ZHANG K, GHOBADIAN A, NOURI J M.Comparative study of non-premixed and partially-premixed combustion simulations in a realistic tay model combustor[J].Applied Thermal Engineering, 2017, 110:910-920




[1]刘建武 蒋晗 严生虎 张跃 沈介发 陈代祥. 微通道反应器中乙酰乙酸甲酯的连续流合成工艺[J]. 过程工程学报, 2020, 20(9): 1082-1088.
[2]王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301.
[3]鲁进利 刘亚进 韩亚芳 池帮杰 钱付平. 柜式空调微通道蒸发器换热性能测试[J]. 过程工程学报, 2019, 19(4): 661-667.
[4]李培生 连小龙 张莹 赵万东 刘强 卢敏 杜鹏. 液滴滴浸微通道入口段的动力学特性分析[J]. 过程工程学报, 2019, 19(1): 102-109.
[5]杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688.
[6]沈颖峰薛庆国王广佘雪峰王静松. 硼铁精矿含碳球团还原过程数学模型[J]. , 2015, 15(2): 252-258.
[7]卢永生李育敏俞云良刘学军计建炳. 折流式旋转床持液量的研究[J]. , 2014, 14(4): 568-572.
[8]徐东祭程唐正友朱苗勇. SCM435钢贝氏体中碳原子的扩散行为[J]. , 2013, 13(1): 17-22.
[9]杨涛唐晓津张占柱. 费托合成浆态床反应器模型研究进展[J]. , 2012, 12(6): 1073-1080.
[10]彭莉李洪钟朱庆山. U型阀结构下颗粒流态化排料的数学模型[J]. , 2012, 12(3): 382-387.
[11]郑博唐晓津张占柱宗保宁. 用于浆态床费托合成的错流过滤数学模型的研究进展[J]. , 2011, 11(5): 894-900.
[12]王宇马宏方应卫勇房鼎业. 合成气制二甲醚管壳型反应器的二维数学模型与分析[J]. , 2010, 10(5): 933-938.
[13]郭永学修志龙. 丹参饮片的微波干燥及丹酚酸B的溶出特性[J]. , 2010, 10(3): 603-607.
[14]胡雪;魏炜;雷建都;马光辉;苏志国;王化军. T型微通道装置制备尺寸均一壳聚糖微球[J]. , 2008, 8(1): 130-134.
[15]肖国俊;丁学俊;陈汉平;程尚清;骆名文;熊用. 石油焦煅烧回转窑综合传热过程数值模拟[J]. , 2007, 7(5): 883-888.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3106
相关话题/过程 工程 传播 北京 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • Si/F/K/Na杂质对硫酸钙结晶过程的影响
    李绪1,2,朱干宇3,宫小康1,李少鹏3,刘兵兵1,李会泉3,4*1.宜都兴发化工有限公司,湖北宜都4433112.湖北兴发化工集团股份有限公司,湖北宜昌4430073.中国科学院过程工程研究所绿色过程工程实验室,湿法冶金清洁生产技术国家工程实验室,北京1001904.中国科学院大学化学院,北京10 ...
    本站小编 Free考研考试 2022-01-01
  • 普鲁士蓝钠离子电池正极材料高收率合成过程及性能
    孙李琪1,2,严小敏1,2,唐婉1,2,何雨石1,2,马紫峰1,2,廖小珍1,2*1.上海交通大学化学工程系,上海2002402.上海电化学能源器件工程技术研究中心,上海200240收稿日期:2017-11-29修回日期:2018-01-19出版日期:2018-08-22发布日期:2018-08-1 ...
    本站小编 Free考研考试 2022-01-01
  • 玉米芯炭质燃料的理化性能及热解过程分析
    杨兴卫1,杨茂立1,安海1,陈海生1,2*,张少朋1,梁志松11.国家能源大规模物理储能技术(毕节)研发中心,贵州毕节5517002.中国科学院工程热物理研究所,北京100190收稿日期:2017-10-20修回日期:2017-12-30出版日期:2018-08-22发布日期:2018-08-15通 ...
    本站小编 Free考研考试 2022-01-01
  • 基于VAE-DBN的故障分类方法在化工过程中的应用
    张祥,崔哲,董玉玺,田文德*青岛科技大学化工学院,山东青岛266042收稿日期:2017-09-29修回日期:2017-11-24出版日期:2018-06-22发布日期:2018-06-06通讯作者:田文德基金资助:基于非线性动态模型的精馏过程安全智能预测方法与预警策略研究Applicationof ...
    本站小编 Free考研考试 2022-01-01
  • 钒渣钙化焙烧熟料的浸出过程
    罗富怀1,2,付念新1,2*,张林3,刘武汉3,涂赣峰1,21.东北大学冶金学院,辽宁沈阳110819;2.东北大学多金属共生矿生态化利用教育部重点实验室,辽宁沈阳110819;3.攀钢集团西昌钢钒有限公司,四川西昌615012收稿日期:2017-10-09修回日期:2017-11-27出版日期:2 ...
    本站小编 Free考研考试 2022-01-01
  • 液态二氧化碳置换整形甲烷水合物过程特性
    张凤琦,陈国兴,郭开华*,杜奥涵中山大学工学院,广东广州510006收稿日期:2017-08-21修回日期:2017-10-19出版日期:2018-06-22发布日期:2018-06-06通讯作者:郭开华基金资助:国家自然科学基金资助项目ProcessCharacteristicsonReplace ...
    本站小编 Free考研考试 2022-01-01
  • 桉树人工林土壤微生物群落结构及功能对连栽模式的响应研究取得新进展
    4个不同代次尾巨桉人工林土壤细菌-真菌共现性网络分析桉树作为世界公认的速生树种之一,在中国南方被广泛种植。然而,近60%的桉树林地选择多代连栽经营模式,致使人工林地面临养分流失、甚至地力衰退的风险。目前,针对桉树人工林连栽模式的研究主要集中在土壤质量变化或土壤微生物群落组成变化,而连栽经营模式对土壤 ...
    本站小编 Free考研考试 2022-01-01
  • 白洋淀流域水文过程演变及归因分析研究取得新进展
    图1. 白洋淀流域1998-2017年植被特征值NDVI变化 图2. 流域水文过程演变的敏感性的区域差异性规律近50年来中国河川径流量减少现象已引起政府决策部门和公众的广泛关注,水资源短缺以及由此引发的水生态安全问题已严重威胁了我国社会经济的可持续发展。水资源是受气候及下垫面变化影响最直接和最重要的 ...
    本站小编 Free考研考试 2022-01-01
  • 森环森保所专家发表华北落叶松人工林林分结构影响固碳功能及碳库组分研究成果
    增加森林面积和改善林分结构是提高森林碳汇功能的两个主要途径。随着主动缓解气候变化的意识提高和需求增强,人们越来越重视人工林碳汇功能管理。以往对基于人工林生物量的固碳功能和碳汇功能空间差异研究很多,但对不同生态系统组分(乔木层、林下植被层、枯落物层、土壤根系层)的碳库大小和受林分结构影响还研究不多,限 ...
    本站小编 Free考研考试 2022-01-01
  • 森环森保所在天山重齿小蠹单萜类化学信号结构鉴定方面的研究取得新进展
    (a)不同状态下天山重齿小蠹雌雄成虫后肠单萜类挥发物的总离子流图;(b)不同状态下天山重齿小蠹雌雄成虫单萜类化学信号生物合成基因的表达森环森保所昆虫生态与害虫管理学科组在Journal of Experimental Biology发表“Monoterpenoid signals and their ...
    本站小编 Free考研考试 2022-01-01