南昌大学机电工程学院,江西 南昌 330031
收稿日期:
2017-10-09修回日期:
2018-01-05出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
张莹基金资助:
毛细管内脉动两相流动的演化规律和机理研究;基于分形原理的双连续相复合材料成形过程传热传质机理研究Thermocapillary migration of heterogeneous droplets with unidirectional temperature gradient
Yuan ZHONG, Haicun DU, Ying ZHANG*, Huiying PENGCollege of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
Received:
2017-10-09Revised:
2018-01-05Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 石蜡油与去离子水按多种比例混合形成异质液滴,放置在金属基板表面,在外加不均匀温度场作用下进行热毛细迁移,采用高速摄像机记录温度梯度驱动液滴从高温区迁移至低温区过程中液滴的形态,建立了理论模型. 结果表明,异质液滴的接触角随温度升高而减小,润湿性增强;异质液滴的迁移速度随粘度增加而减小,随温度梯度增加而增加,不同粘度下的速度差随温度梯度增大而增大,迁移速度随时间增加迅速降低,后缓慢减小到趋于0. 推导了迁移速度与Marangoni数Ma的关系式并进行了实验验证,迁移速度随Ma增加而显著增加,Ma越大,实验结果与模拟结果的匹配程度越高.
引用本文
钟源 杜海存 张莹 彭慧颖. 单向温度梯度下异质液滴的热毛细迁移[J]. 过程工程学报, 2018, 18(4): 697-703.
Yuan ZHONG Haicun DU Ying ZHANG Huiying PENG. Thermocapillary migration of heterogeneous droplets with unidirectional temperature gradient[J]. Chin. J. Process Eng., 2018, 18(4): 697-703.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217349
http://www.jproeng.com/CN/Y2018/V18/I4/697
参考文献
[1] 高鹏,尹兆华,胡文瑞. 液滴热毛细迁移问题的研究进展[J]. 力学进展,2008,(03):329-338. GAO P,YIN Z H,HU W R. The progresses of drop thermocapillary migration research[J]. Advances in Mechanics,2008,(03):329-338. [2] 武作兵. 大Marangoni数下液滴热毛细迁移实验的物理机制[C]. 全国实验流体力学学术会议,2013:4. WU Z B. Physical mechanism of thermocapillary migration experiment of droplet at large Marangoni numbers[C]. National Conference on Experimental Fluid Mechanics,2013:4. [3] 武作兵. 液滴热毛细迁移研究进展[C]. 中国计算力学大会,2012:5. WU Z B. Advances in thermocapillary droplet migration[C]. Chinese Conference on Computational Mechanics,2012:5. [4] 黄聪,胡良,康琦. 双液滴热毛细迁移的实验研究[J]. 力学学报,2005,37(2):232-237. HUANG C,HU L,KANG Q. Experimental Investigation of thermocapillary migration of two drops[J]. Acta Mechanica Sinica,2005,37(2):232-237. [5] 张朔婷,胡良,段俐,等. 多液滴热毛细迁移的研究[J]. 力学学报,2014,46(5):802-806. ZHANG S T,HU L,DUAN L,et al. Droplet interactions in thermocapillary migration[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(5):802-806. [6] 郭子成,罗青枝,荣杰. 润湿现象和毛细现象的热力学描述[J]. 大学物理,2000,19(6):19-21. GUO Z C,LUO Q Z,RONG J. Thermodynamic description of wetting phenomena and capillarity[J]. College Physics,2000,19(6):19-21. [7] 高安然,李铁,刘翔,等. 基于温度梯度驱动的液滴传输行为研究[J]. 测试技术学报,2010,24(5):377-380. GAO A R,LI T,LIU X,et al. Study on transportation behavior of droplet driven by thermal gradient[J]. Journal of Test and Measurement Technology,2010,24(5):377-380. [8] PRADHAN T K,PANIGRAHI P K. Thermocapillary convection inside a stationary sessile water droplet on a horizontal surface with an imposed temperature gradient[J]. Experiments in Fluids,2015,56(9):178. [9] DAI Q W,KHONSARI M M,SHEN C,et al. Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient[J]. Langmuir the Acs Journal of Surfaces & Colloids,2016,32(30):7485. [10] DAI Q W,HUANG W,WANG X L. Surface roughness and orientation effects on the thermo-capillary migration of a droplet of paraffin oil[J]. Experimental Thermal & Fluid Science,2014,57(2 Suppl):200-206. [11] DAI Q W,HUANG W,WANG X L. A surface texture design to obstruct the liquid migration Induced by omnidirectional thermal gradients. Langmuir 2015,31(37):10154-10160. [12] JIAO Z J,HUANG X Y,NGUYEN N T,et al. Thermocapillary actuation of droplet in a planar microchannel[J]. Microfluidics & Nanofluidics,2008,5(2):205-214. [13] ALHENDAL Y,TURAN A,KALENDAR A. Thermocapillary migration of an isolated droplet and interaction of two droplets in zero gravity[J]. Acta Astronautica,2016,126:265-274. [14] YIN Z H,CHANG L,HU W R,et al. Thermocapillary migration and interaction of two nondeformable drops[J]. Applied Mathematics and Mechanics(English Edition),2011,32(7):811-824. [15] 高鹏,尹兆华,胡文瑞. 大Marangoni数下液滴热毛细迁移的数值研究[J]. 中国科学,2007,37(9):1232-1234. GAO P,YIN Z H,HU W R. Numerical investigation of thermocapillary migration of droplet at large Marangoni numbers[J]. Science in China Series E,2007,37(9):1232-1234. [16] 张昌艳. 油水混合物的转相及转相前后的粘度计算[J]. 科技创新导报,2010(1):50-50. ZHANG C Y. Calculation of viscosity of oil-water mixtures before and after phase transformation[J]. Science and Technology Innovation Herald,2010(1):50-50. [17] WU Z B. Terminal states of thermocapillary migration of a planar droplet at moderate and large Marangoni numbers[J]. International Journal of Heat & Mass Transfer,2017,105:704-711. [18] HUANG W,WANG X L. No migration of ionic liquid under temperature gradient[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016,497:167-170. [19] METTU S,CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir the Acs Journal of Surfaces & Colloids,2008,24(19):10833-10837. [20] TADMOR R. Line energy and the relation between advancing,receding,and young contact angles[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004,20(18):7659-7664. [21] SEETON C J. Viscosity-temperature correlation for liquids[J]. Tribology Letters,2006,22(1):67-78. [22] 武作兵. 大Marangoni数下液滴热毛细迁移实验的物理机制[C]. 全国实验流体力学学术会议,2013:2. WU Z B. Physical mechanism of thermocapillary migration experiment of droplet at large Marangoni numbers[C]. National Conference on Experimental Fluid Mechanics,2013:2. [23] RICHARDSON E G. The flow of emulsions. II[J]. Journal of Colloid Science,1953,8(3):367-373. [24] 刘德生,宫敬,吴海浩,等. 三相流动条件下的油水混合物粘度[J]. 油气储运,2011,30(2):107-110. LIU D S,GONG J,WU H H,et al. Viscosity of oil-water mixtures in three-phase flow[J]. Oil & Gas Storage and Transportation,2011,30(2):107-110. [25] PRATAP V,MOUMEN N,SUBRAMANIAN R S. Thermocapillary motion of a liquid drop on a horizontal solid surface[J]. Langmuir the Acs Journal of Surfaces & Colloids,2008,24(9):5185-5193. [26] BALASUBRAMANIAM R,SUBRAMANIAN R S. The migration of a drop in a uniform temperature gradient at large Marangoni numbers[J]. Physics of Fluids,2000,12(4):733-743. |
相关文章 15
[1] | 代国强 汤晶 刘雯 谭淑君 刘斌 王文庆 刘天中 苏革. 环氧树脂涂层表面亲水性对微藻黏附性能的影响[J]. 过程工程学报, 2020, 20(7): 832-842. |
[2] | 戴广平 石瑀 周世伟 李博 魏永刚. 铜熔渣喷吹地沟油还原贫化[J]. 过程工程学报, 2019, 19(4): 759-766. |
[3] | 石瑀 李博 戴广平 周世伟 王华 魏永刚. 硼酸钙对铜渣中夹杂铜沉降效果的影响[J]. 过程工程学报, 2019, 19(3): 553-559. |
[4] | 郑贺 李博 周浩 魏永刚 王华. 橡胶籽油还原作用下铜渣的贫化[J]. 过程工程学报, 2019, 19(3): 589-596. |
[5] | 李培生 连小龙 张莹 赵万东 刘强 卢敏 杜鹏. 液滴滴浸微通道入口段的动力学特性分析[J]. 过程工程学报, 2019, 19(1): 102-109. |
[6] | 杨双平 魏起书 王琛 杨波 庞锦琨. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J]. 过程工程学报, 2018, 18(5): 1013-1019. |
[7] | 黄建 沈鉴彪 王立 . 乙醇对不抽真空重力回路热虹吸管凝结换热影响的实验研究[J]. 过程工程学报, 2016, 16(4): 622-628. |
[8] | 佟志芳乔家龙陈涛. 炉渣组分对CaO-Al2O3-SiO2-TiO2-MgO-Na2O渣系粘度的影响[J]. 过程工程学报, 2016, 16(2): 189-196. |
[9] | 沈鉴彪王立. 相间传质对气泡聚并过程影响的实验研究[J]. 过程工程学报, 2016, 16(2): 204-209. |
[10] | 杜冰王志孙丽媛马文会葛治陈杭. 复合熔析精炼去除工业硅中的非金属杂质硼[J]. 过程工程学报, 2015, 15(3): 393-399. |
[11] | 梁珂艳陶秀祥惠鹏岳. 用落球法研究气固浓相流化床表观粘度[J]. , 2014, 14(6): 901-906. |
[12] | 张旭升吕庆刘小杰郄亚娜. 添加剂对中钛炉渣性能的影响[J]. , 2014, 14(5): 809-815. |
[13] | 袁骧张建良毛瑞刘征建朱广跃. 高炉低钛渣粘度和熔化性能[J]. , 2014, 14(4): 664-670. |
[14] | 高永建于得江韩伟张光晋. 长碳链二元酸酯的合成及其物化性能[J]. , 2013, 13(5): 831-835. |
[15] | 黄娟鲍杰戴干策. 螺带型搅拌槽内异物性液体的混合性能[J]. , 2013, 13(4): 548-554. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3095