1. 北京科技大学能源与环境工程学院热科学与能源工程系,北京 100083
2. 北京燃气集团有限公司,北京 100035
3. 北京科技大学冶金工业节能减排北京市重点实验室,北京 100083
收稿日期:
2017-11-29修回日期:
2018-01-08出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
苏庆泉基金资助:
北京市科技基金资助项目Effect of pressure on the reduction performance of the mixture of Ni-based oxygen carrier and Cu?Fe-based oxygen carrier
Qiang TIAN1, Lixin CHE2, Bin DING2, Shuqiang SHI2, Qingquan SU1,3?1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Beijing Gas Group Co., Ltd., Beijing 100035, China
3. Beijing Key Laboratory of Energy Saving and Emission Reduction in Metallurgical Industry, University of Science and Technology
Beijing, Beijing 100083, China
Received:
2017-11-29Revised:
2018-01-08Online:
2018-08-22Published:
2018-08-15Contact:
SU Qing-quan 摘要/Abstract
摘要: 提出将CH4重整融入载氧体还原反应过程的固定床化学链燃烧新工艺,将Ni基载氧体与Cu?Fe基载氧体混合作为装填载氧体,考察了反应压力对其低温反应活性的影响. 结果表明,固相载氧体转化率和气相CH4转化率均随压力升高而增大,工作温度下限从0.1 MPa下的600℃降至0.9 MPa下的525℃, 900℃下20次循环的压力损失在0.9 MPa下较0.1 MPa下增加快,但载氧体性能未劣化,也未出现明显的积碳和烧结.
引用本文
田强 车立新 丁斌 石书强 苏庆泉. 反应压力对Ni基与Cu-Fe基混合装填载氧体还原性能的影响[J]. 过程工程学报, 2018, 18(4): 750-756.
Qiang TIAN Lixin CHE Bin DING Shuqiang SHI Qingquan SU. Effect of pressure on the reduction performance of the mixture of Ni-based oxygen carrier and Cu?Fe-based oxygen carrier[J]. Chin. J. Process Eng., 2018, 18(4): 750-756.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217404
http://www.jproeng.com/CN/Y2018/V18/I4/750
参考文献
[ ] 金红光,洪慧,王宝群,等. 化学能与物理能综合梯级利用原理 [J]. 中国科学E 辑:工程科学?材料科学, 2005, 35(3): 299–313. [ ] JuanAdanez, Alberto Abad, et al.Progress in Chemical-Looping Combustion and Reforming technologies[J]. Progress in Energy and Combustion Science, 2012(38):215-282. [ ] P. Erri, A. Varma. Spinel-supported Oxygen Carriers for Inherent CO2 Separation during Power Generation [J]. Ind. Eng. Chem. Res. 2007, 46(25), 8597–8601. [ ] B. Moghtaderi. Review of the recent chemical looping process developments for novel energy and fuel applications. Energy Fuels 2012, 26, 15–40. [ ] E. Kimball, H.P. Hamers, P. Cobden, F. Gallucci, M. van Sint Annaland. Operation of ?xed-bed chemical looping combustion [J]. Energy Proc. 2013, 37, 575–9. [ ] S. Zhang, R. Xiao, W. Zheng. Comparative study between ?uidized-bed and ?xed-bed operation modes in pressurized chemical looping combustion of coal [J]. Applied Energy 2014, 130, 181–189. [ ] Z.Zhou, L.Han, G.M.Bollas. Model-based analysis of bench-scale fixed-bed units for chemical looping combustion [J]. Chem. Eng. J. 2013, 233(11), 331–348. [ ] L. Han, Z. Zhou, G.M. Bollas. Heterogeneous modeling of chemical-looping combustion. Part 1: Reactor model [J]. Chem. Eng. Sci. 2013, 104(50), 233–249. [ ] L. Han, Z. Zhou, G.M. Bollas. Heterogeneous modeling of chemical-looping combustion. Part 2: Particle model[J]. Chem. Eng. Sci. 2014, 113, 116–128. [ ] Z. Zhou, L. Han, G.M. Bollas. Model-assisted analysis of fluidized bed chemical-looping reactors[J]. Chem. Eng. Sci. 2015, 134, 619–631. [ ] L. Han, G.M. Bollas. Chemical-looping combustion in a reverse-flow fixed bed reactor[J]. Energy 2016, 102, 669–681. [ ] HSC Chemistry 5.0 for Windows, 2002. Chemical Reaction and Equilibrium, Software with Extensive Thermochemical Database, Outokumpu Research Oy. [ ] de Diego LF, García-LabianoF, AdánezJ,et al. Development of Cu-based oxygen carriers for chemical-looping combustion [J]. Fuel, 2004, 83:1749-57. [ ] Mattisson T, Johansson M, Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating and oxygen–application of chemical looping combustion[J]. Energy&Fuel, 2013, 17:643-651. [ ] XiaomingZheng, LixinChe, YanqiongHao, Qingquan Su. Cycle performance of Cu-based oxygen carrier based on a chemical looping combustion process [J].Journal of Energy Chemistry, 2016(25):101-109. [ ] XiaomingZheng, Qingquan Su, WanliangMi, Peikun Zhang. Effect of Steam Reforming on Methane-Fueled Chemical-Looping Combustion with Cu-based Oxygen Carrier [J]. International Journal of Hydrogen Energy, 2014, 39(17):9158-9168. [ ] Tian Q, Che L, Ding B, et al. Performance of Cu-Fe-based oxygen carrier in a CLC process based on fixed bed reactors: Original Research Article: Performance of Cu-Fe-based oxygen carrier in a CLC process[J]. Greenhouse Gases Science & Technology, 2017(2). [ ] Jin, H.; Ishida, M. Reactivity Study on Natural-Gas-Fueled Chemical-Looping Combustion by a Fixed-Bed Reactor. Ind. Eng.Chem. Res. 2002, 41 (16): 4004. [ ] Jin, H.; Ishida, M. A New Type of Coal Gas Fueled Chemical-Looping Combustion. Fuel 2004, 83: 2411?2417. [ ] Oscar Nordness, Lu Han, Zhiquan Zhou, George M. Bollas. High-Pressure Chemical-Looping of Methane and Synthesis Gas with Ni and Cu Oxygen Carriers. Energy Fuels, 2016, 30:504-514. [ ] 张帅, 肖睿, 杨一超,等. 基于废铁渣载氧体燃煤加压化学链燃烧试验研究[J]. 工程热物理学报, 2011, 32(6):1073-1076. [ ] 郑晓明, 苏庆泉, 米万良,等. 基于新型化学链燃烧工艺的Cu基载氧体循环寿命[J]. 过程工程学报, 2014, 14(5):867-873. |
相关文章 4
[1] | 胡颖 尹雪峰 常和 冯雪岩 王泽佳 郝雪晖 郭志娟. 化学链燃烧中载氧体磨损和产生积碳的机制及抑制方法[J]. 过程工程学报, 2020, 20(5): 493-502. |
[2] | 孙小青 陈朋 刘永卓 郭庆杰. 烟煤化学链反应特性及机理分析[J]. 过程工程学报, 2019, 19(6): 1120-1128. |
[3] | 郑晓明苏庆泉米万良史勇. 基于新型化学链燃烧工艺的Cu基载氧体循环寿命[J]. , 2014, 14(5): 867-873. |
[4] | 郑晓明苏庆泉米万良邵嘉兴潘璐. 颗粒粒度对Cu基载氧体反应性能的影响[J]. , 2014, 14(4): 631-636. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3084