1. 北京科技大学冶金与生态工程学院,北京 100083
2. 中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190
3. 山东钢铁济钢合金科技有限公司,山东 济南 250000
收稿日期:
2017-10-16修回日期:
2017-12-08出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
黄凯基金资助:
亚熔盐法处理低品位硼镁矿制备过硼酸钠清洁化工新过程的基础研究Preparation of PVC-MnO2 and its adsorption behavior to Li ion
Hongyan WANG1, Kai HUANG1*, Yusheng ZHANG3, Shili ZHENG2, Yi ZHANG2, Ping LI21. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijng 100083, China
2. National Engineering Lab for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, China
3. Shandong Steel Jisteel Alloy Technology Co., Ltd., Jinan, Shandong 250000, China
Received:
2017-10-16Revised:
2017-12-08Online:
2018-08-22Published:
2018-08-15Contact:
Kai -HUANG 摘要/Abstract
摘要: MnCO3和Li2CO3经高温煅烧合成Li4Mn5O12,再与聚氯乙烯(PVC)和N,N-二甲基甲酰胺溶液混合,干燥、酸洗后制得粒径3?4 mm的多孔球形PVC?MnO2锂离子筛,用其吸附Li离子. 结果表明,PVC?MnO2吸附Li离子的反应符合Langmuir方程和拟二级动力学方程,吸附焓变为0.358 kJ/mol,吸附反应为吸热反应,Li离子最高吸附量可达23.4 mg/g.
引用本文
王宏岩 黄凯 张玉生 郑诗礼 张懿 李平. PVC-MnO2的制备及其对锂离子的吸附行为[J]. 过程工程学报, 2018, 18(4): 821-827.
Hongyan WANG Kai HUANG Yusheng ZHANG Shili ZHENG Yi ZHANG Ping LI. Preparation of PVC-MnO2 and its adsorption behavior to Li ion[J]. Chin. J. Process Eng., 2018, 18(4): 821-827.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217358
http://www.jproeng.com/CN/Y2018/V18/I4/821
参考文献
[1]李法强. 世界锂资源提取技术述评与碳酸锂产业现状及发展趋势[J].世界有色金属, 2015, 5: 17-23. [2]Ling C, Zhang R, Takechi K, et al. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH[J]. J. Phys. Chem. C. 2014, 118(46): 26591-26598. [3]Rahman M A, Wang X, Wen C. A review of high energy density lithium–air battery technology[J]. J. Appl. Electrochem. 2014, 44(1): 5-22. [4]何启贤. 世界锂金属资源开发利用现状及其市场前景分析[J]. 轻金属, 2011, 9: 3-7. [5]胡兴军. 锂:市场前景极为广阔[J]. 中国金属通报, 2011, 9: 26-28. [6]谢贞付, 王毓华, 于福顺, 等. 伟晶岩型锂辉石矿浮选研究综述[J]. 稀有金属, 2013, 4: 641-649. [7]Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability[J]. J. Ind. Ecol. 2011, 15(5): 760-775. [8]Liu L, Zhang H, Zhang Y, et al. Lithium extraction from seawater by manganese oxide ion sieve MnO2?0.5H2O[J]. Colloids Surf., A : Physicochemical and Engineering Aspects, 2015, 468: 280-284. [9]Wang L, Ma W, Liu R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177(17): 1421-1428. [10]Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4[J]. Ind. Eng. Chem. Res. 2001, 40(9): 2054-2058. [11]Ryu T, Ryu J C, Shin J, et al. Recovery of lithium by an electrostatic field-assisted desorption process[J]. Ind. Eng. Chem. Res. 2013, 52(38): 13738-13742. [12]Xiao J L, Sun S Y, Wang J, et al. Synthesis and adsorption properties of Li1.6Mn1.6O4 spinel[J]. Ind. Eng. Chem. Res. 2013, 52(34): 11967-11973. [13]Zhang Q H, Li S P, Sun S Y, et al. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve[J]. Adv. Powder Technol. 2009, 20(5): 432-437. [14]Xiao G, Tong K, Zhou L, et al. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve[J]. Ind. Eng. Chem. Res. 2012, 51(33): 10921-10929. [15]Umeno A, Miyai Y, Takagi N, et al. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J]. Ind. Eng. Chem. Res. 2002, 41(17): 4281-4287. [16]Park M J, Nisola G M, Beltran A B, et al. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chem. Eng. J. 2014, 254: 73-81. [17]Xiao J L, Sun S Y, Song X, et al. Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve[J]. Chem. Eng. J. 2015, 279: 659-666. [18]Zhu G, Wang P, Qi P, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chem. Eng. J. 2014, 235: 340-348. [19]Hong H J, Park I S, Ryu T, et al. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chem. Eng. J. 2013, 234: 16-22. [20]Xiao J, Nie X, Sun S, et al. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model[J]. Adv. Powder Technol. 2015, 26(2): 589-594. [21]Li P, Zheng S L, Qing P H, et al. The vanadate adsorption on a mesoporous boehmite and its cleaner production application of chromate[J]. Green Chem, 2014, 16(9):4214-4222. [22]Granadoscorrea F, Jiménezbecerril J. Chromium (VI) adsorption on boehmite[J]. J. Hazard. Mater, 2009, 162(2–3):1178-1184. [23]Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption[J]. Rsc Advances, 2016, 6(104):102608-102616. [24]Naiya T K, Bhattacharya A K, Das S K. Removal of Cd(II) from aqueous solutions using clarified sludge[J]. J. Colloid Interface Sci, 2008, 325(1):48-56. [25]Ho Y S, Mckay G. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Saf. Environ. Prot, 1998, 76(4):332-340. [26]Shu J X, Wang Z H, Huang Y J, et al. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis[J]. J. Alloys Compd, 2015, 633(5):338-346. [27]Zhou L M, Wang Y P, Liu Z R, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres[J]. J. Hazard. Mater, 2009, 161(2–3):995-1002. |
相关文章 15
[1] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[2] | 张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470. |
[3] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[4] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[5] | 陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56. |
[6] | 夏紫薇 郑刘根 周春财 魏祥平 董祥林. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2021, 21(1): 108-115. |
[7] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[8] | 吴浩 邹冲 何江永 王凯 刘占伟 师帅. 低阶煤热解条件对高炉喷吹半焦燃烧性能及动力学特性的影响[J]. 过程工程学报, 2020, 20(4): 449-457. |
[9] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[10] | 叶聪 邢献军 张学飞 陈涛 张佳佳. 城市污泥与稻壳水热炭混合燃烧特性与动力学[J]. 过程工程学报, 2020, 20(3): 362-370. |
[11] | 龚傲 吴选高 喻小强 王定纯 徐志峰 田磊. 选择性还原氨浸从高硅低品位铜钴矿中提取铜、钴 的工艺及其浸出动力学[J]. 过程工程学报, 2020, 20(10): 1156-1165. |
[12] | 龙超 陈瑞 翟持 陈飞 杨春曦. 微芯片中磁性液滴的生成与操控综述[J]. 过程工程学报, 2020, 20(10): 1134-1146. |
[13] | 范一鸣 王景甫. 气淬高温熔渣颗粒运动和换热特性的数值分析[J]. 过程工程学报, 2019, 19(4): 685-692. |
[14] | 刘佳霖 任瑛 陈卫 杨晖 何秀娟 李应成. 油水界面上阴/阳离子型复配表面活性剂体系的分子动力学模拟[J]. 过程工程学报, 2019, 19(3): 533-543. |
[15] | 孙海韵 马培勇 邢勇强 邢献军 陈明明. 基于SLMD预测生物质三组分混合成型特性[J]. 过程工程学报, 2019, 19(3): 575-580. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3102