1. 安徽工业大学能源与环境学院,安徽 马鞍山 243002
2. 生物膜法水质净化及利用技术教育部工程研究中心,安徽 马鞍山 243002
收稿日期:
2017-11-16修回日期:
2018-01-23出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
孟海玲Degradation of humic acid by microwave?Cu loaded activated carbon catalytic oxidation
Zailiang LIU1,2, Hailing MENG1*, Ke ZHOU1, Tinglei LIU1, Lu HONG11. School of Energy and Environment, Anhui University of Technology, Ma?anshan, Anhui 243032, China
2. Water Purification and Utilization Technology of Biofilm Process Engineering Research Center, Ministry of Education,
Ma'anshan, Anhui 243032, China
Received:
2017-11-16Revised:
2018-01-23Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 以粉末活性炭(PAC)和颗粒活性炭(GAC)为载体,采用浸渍焙烧法制备了负载铜氧化物的活性炭催化剂,考察了其表面结构、元素组成及BET参数;以腐殖酸模拟废水为对象,研究了微波?载铜活性炭催化氧化降解腐殖酸的效果和影响因素,探讨了微波?催化氧化协同H2O2降解腐殖酸的机理. 结果表明,载铜活性炭比未负载铜的活性炭对腐殖酸的降解率更高,且Cu/PAC的催化效果远优于Cu/GAC,两种催化剂最佳的微波?催化氧化条件分别为Cu/PAC投加量1 g/L, H2O2投加量0.9 mL/L, pH=3,微波功率400 W,微波时间4 min和Cu/GAC投加量8 g/L, H2O2投加量1.5 mL/L, pH=6,微波功率400 W,微波时间4 min,该条件下腐殖酸的去除率分别为93.91%和91.59%. 微波、H2O2和催化剂协同作用对腐殖酸高效降解有决定性作用.
引用本文
刘再亮 孟海玲 周科 刘庭蕾 洪露. 微波-载铜活性炭催化氧化降解腐殖酸[J]. 过程工程学报, 2018, 18(4): 886-892.
Zailiang LIU Hailing MENG Ke ZHOU Tinglei LIU Lu HONG. Degradation of humic acid by microwave?Cu loaded activated carbon catalytic oxidation[J]. Chin. J. Process Eng., 2018, 18(4): 886-892.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217393
http://www.jproeng.com/CN/Y2018/V18/I4/886
参考文献
[1]金可勇,俞三传,潘学杰,等.耐污染反渗透膜在城市生活污水回用中的应用研究[J].水处理技术, 2005, 31(11):16-19 [2]Jin K Y, Yu S CH, Pan X J, et al.Study on anti-fouling RO membrane for reuse and municipal wastewater[J].Technology of Water Treatment, 2005, 31(11):16-19 [3]赵祥礼,曾晓立,段鑫.污水深度处理出水回用于多晶硅生产用水[J].工业用水与废水, 2013, 44(5):39-41 [4]Zhao X L, Zeng X L, Duan X.Reusing advanced treated sewage in polycrystalline silicon production[J].Industrial Water & Wastewater, 2013, 44(5):39-41 [5] F.Tang, H.-Y. Hu, L.-J. Sun, Q.-Y. Wu, Y.-M. Jiang, Y.-T. Guan, J.-J. Huang, Fouling of reverse osmosis membrane for municipal wastewater reclamation: Autopsy results from a full-scale plant, Desalination, 2014, 349: 73-79. [6] K.Kimura, N. Ogawa, Y. Watanabe, Permeability decline in nanofiltration/reverse osmosis membranes fed with municipal wastewater treated by a membrane bioreactor, Water science and technology : a journal of the International Association on Water Pollution Research, 2013, 67:1994-1999. [7] 付小康.二级出水中Fe与腐殖酸共存时的膜污染特性及控制条件研究 [D]. 西安:西安建筑科技大学,2015. [8]Fu X K.Study on fouling characteristic of ultrafiltration for Fe and HA coexist in second effluent and analysis of operation conditions on membrane fouling [D]. Xi' an: Xi`an University of Architecture and Technology, 2015. [9]王旭东,梁勇,王磊,等.典型城市污水二级处理水中性状特征[J].工业水处理, 2014, 34(12):17-21 [10]Wang X D, Liang Y, Wang L, et al.Characteristics of dissolved organic matter in the secondary effluent of typical urban sewage[J].Industrial Water Treatment, 2014, 34(12):17-21 [11] H.-C. Kim, B.A. Dempsey, Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM, Journal of Membrane Science, 2013, 428: 190-197. [12] M.Sri Abirami Saraswathi, R. Kausalya, N.J. Kaleekkal, D. Rana, A. Nagendran, BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes, Journal of Environmental Chemical Engineering, 2017, 5: 2937-2943. [13]刘晋,张婷,陈敏敏.微污染水源中腐殖酸的去除机理及动力学研究进展[J].应用化工, 2017, 46(4):744-748 [14]Liu J, Zhang T, Chen M M.Research progress of mechanism and kinetics for removal of humic acid in micro polluted water resource[J].Applied Chemical Industry, 2017, 46(4):744-748 [15]凌慧诗,王志红,刘立凡,等.改性凹凸棒土的优化定向制备及对腐殖酸的吸附效果[J].环境工程学报, 2016, 10(6):2921-2926 [16]Ling H SH, Wang ZH H, Liu L F, et al.Optimized preparation of directional modified attapulgite and its application to absorb humic acid[J].Chinese Journal of Environmental Engineering, 2016, 10(6):2921-2926 [17]方芳,刘国强,郭劲松,等.活性污泥法对水溶性腐殖酸的去除效能与机制研究[J].环境科学, 2008, 29(8):2266-2270 [18]Fang F, Liu G Q, Guo J S, et al.Removal Efficiency and Mechanism of Aqueous Humic Acids by Activated Sludge Process[J].Chinese Jouranl of Environmental Science, 2008, 29(8):2266-2270 [19]李民, 陈炜鸣, 蒋国斌,等.催化臭氧降解高浓度腐殖酸废水[J].环境科学学报, 2017, 37(9):3409-3418 [20]Li M, Chen W M, Jiang G B, et al.Ozonation treatment of high humic acid wastewater catalized by Fe-Ce GAC[J].Acta Scientiae Circumstantiae, 2017, 37(9):3409-3418 [21]王菲凤,李丽丽, 吴春山,等.掺杂纳米材料的制备及可见光催化降解水中腐殖酸[J].环境工程学报, 2017, 11(8):4594-4600 [22]Wang F F, Li L L, Wu CH SH, et al.Preparation of Mn doped TiO2 nanomaterials and their visible-light photocatalytic performance for degradation of humic acid[J].Chinese Journal of Environmental Engineering, 2017, 11(8):4594-4600 [23]樊彩梅,孙彦平.钙镁离子对二氧化钛光催化氧化水中腐殖酸的影响[J].过程工程学报, 2001, 1(4):427-431 [24]Fan C M, Sun Y P.Effect of Calcium and Magnesium on the Photocatalytic Oxidation of Humic Acid in Water over TiO2 [J], The Chinese Jouranl of Process Engineering, 2001, 1(4): 427-431. [25] N.Remya, J.-G. Lin, Current status of microwave application in wastewater treatment—A review, Chem Eng J, 2011, 166: 797-813. [26] D.C. Anton, A. Debrassi, F. de Campos Buzzi, J. Dal Magro, J. Scapinello, N. Nedelko, A. ?lawska-Waniewska, P. D?u?ewski, C.A. Rodrigues, Effect of microwave radiation on the adsorption of the dye Remazol Red 198 (RR198) by O-carboxymethylchitosan-N-lauryl/F2O3 magnetic nanoparticles, Process Safety and Environmental Protection, 2016, 102: 392-402. [27] Z.Liu, H. Meng, H. Zhang, J. Cao, K. Zhou, J. Lian, Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process, Sep Purif Technol, 2017. [28] W.Shi, X. Liu, T. Zhang, Q. Wang, L. Zhang, Magnetic nano-sized cadmium ferrite as an efficient catalyst for the degradation of Congo red in the presence of microwave irradiation, RSC Adv., 2015, 5: 51027-51034. [29] J.Yin, J. Cai, C. Yin, L. Gao, J. Zhou, Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method, Journal of Environmental Chemical Engineering, 2016, 4: 958-964. [30] A.Y. Atta, B.Y. Jibril, T.K. Al-Waheibi, Y.M. Al-Waheibi, Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-supported copper oxides, Catalysis Communications, 2012, 26: 112-116. [31] H.Iboukhoulef, A. Amrane, H. Kadi, Microwave-enhanced Fenton-like system, Cu(II)/H2O2, for olive mill wastewater treatment, Environ Technol, 2013, 34: 853-860. [32] J.Ren, M. Ren, D. Wang, J. Lin, Z. Li, Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol, Journal of Thermal Analysis and Calorimetry, 2015, 120: 1929-1939. [33] 张回, 载铜活性炭联合微波处理难降解废水的试验研究 [D].马鞍山:安徽工业大学, 2016. [34]Zhang H.Experimental research on the treatment of refractory wastewater by copper loaded activated carbon and microwave [D]. Ma’anshan: Anhui University of Technology, 2016. [35] D.Xu, F. Cheng, Q. Lu, P. Dai, Microwave Enhanced Catalytic Degradation of Methyl Orange in Aqueous Solution over CuO/CeO2 Catalyst in the Absence and Presence of H2O2, Industrial & Engineering Chemistry Research, 2014, 53: 2625-2632. |
相关文章 7
[1] | 丁磊 高阳 贾韫翰 钟梅英. 不同分子质量的腐殖酸对溴离子在MIEX树脂上吸附行为的影响[J]. 过程工程学报, 2018, 18(6): 1332-1339. |
[2] | 成岳潘顺龙焦创王晶. Fe-MEL分子筛催化剂的制备及其催化脱色[J]. , 2012, 12(1): 148-153. |
[3] | 张丽清刘新锋周华锋谢颖李宏亮. a-FeOOH纳米棒的制备及其在催化降解甲基橙中的应用[J]. , 2010, 10(6): 1227-1230. |
[4] | 杨玮娇李会泉李锐星柳海涛唐清. H2O2改性溶胶-凝胶法制备ZrO2基催化剂载体[J]. , 2009, 9(4): 819-823. |
[5] | 石慧吴兆亮卢珂赵艳丽. Ca2+/H2O2降解水中孔雀石绿[J]. , 2009, 9(1): 38-42. |
[6] | 章永洁;王亚权;刘腾飞;米镇涛;吴魏;闵恩泽;齐涛. TS-1分子筛催化苯乙酮氨肟化反应[J]. , 2006, 6(6): 922-925. |
[7] | 樊彩梅;孙彦平. 钙镁离子对二氧化钛光催化氧化水中腐殖酸的影响[J]. , 2001, 1(4): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3114