PRIMARY AND SUBHARMONIC SIMULTANEOUS RESONANCE OF DUFFING OSCILLATOR 1)
Li Hang*,?, Shen Yongjun,*,?,2), Li Xianghong*,**, Han Yanjun?, Peng Mengfei?* State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University,Shijiazhuang 050043,China ? Department of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China ** Department of Mathematics and Physics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
Abstract In this paper, the dynamics and stability of the Duffing oscillator subjected to the primary resonance together with the 1/3 subharmonic resonance are studied. At first, the approximate analytical solution and amplitude-frequency equation are obtained through the method of multiple scales, and the correctness and satisfactory precision of the approximate solution are verified by simulation. Then, the amplitude-frequency equation and phase-frequency equation of steady-state response are derived from the approximate analytical solution, and it can be found there are at most seven different periodic solutions, which are called multi-value characteristics and can be used to switch the state of the system. Moreover, the stability condition of steady-state response is derived based on Lyapunov theory, and the amplitude-frequency curves of steady-state response are compared with the cases where the primary or 1/3 subharmonic resonance exists alone, and it is found that the system contains both resonance characteristics. At last, the effects of nonlinear factor and excitations on the system response are analyzed by simulation. The particular phenomena in this system are revealed, i.e., the nonlinear factor affects the response amplitude, multi-value characteristics and stability of the system with stiffness softening. However, for the stiffness hardening system, the nonlinear factor only affects the response amplitude, which is similar to the cases of single-frequency excitation. These results are important for the study on the Duffing system or other similar systems. Keywords:nonlinear vibration;nonlinear differential equation;Duffing oscillator;simultaneous resonance
PDF (7927KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李航, 申永军, 李向红, 韩彦军, 彭孟菲. Duffing 系统的主-亚谐联合共振 1). 力学学报[J], 2020, 52(2): 514-521 DOI:10.6052/0459-1879-19-349 Li Hang, Shen Yongjun, Li Xianghong, Han Yanjun, Peng Mengfei. PRIMARY AND SUBHARMONIC SIMULTANEOUS RESONANCE OF DUFFING OSCILLATOR 1). Chinese Journal of Theoretical and Applied Mechanics[J], 2020, 52(2): 514-521 DOI:10.6052/0459-1879-19-349
引言
Duffing系统是动力学中一类典型的非线性系统,能够描述工程领域中的诸多非线性模型,例如转子系统的非线性行为[1-3],船的横摇运动[4-5],大型结构的振动[6]等.在动力学领域,目前对Duffing系统的研究主要为周期振动解和混沌控制两方面.韩祥临等[7]利用广义变分迭代方法研究了随机激励下Duffing系统的渐进解,并讨论了解的一致有效性.李瑞红等[8]研究了一类含三次耦合项的二自由度Duffing系统,发现一种由周期运动直接通往混沌的途径.Shen等[9-10]研究了一类含分数阶微分项的Duffing系统,提出等效刚度和等效阻尼的概念.Holmes等[11]用二阶平均法研究了一类具有负非线性刚度的Duffing系统,分析了周期解的分岔行为.张毅等[12]以多频参数激励Duffing系统为模型,基于快慢分析法得到模型的快子系统和慢变量,分析了快子系统的分岔行为.曲子芳等[13]以周期变化的双频激励van derPol-Duffing系统为模型,研究了系统的簇发振荡模式及非光滑行为演化机制,给出了平衡曲线和分岔图及在非光滑边界产生非光滑行为的演化行为分析.吕小红和罗冠炜[14]基于网格划分的思想设计了非线性系统多参数分岔的计算方法,利用此方法分析了Duffing系统在双参数平面上的分岔特性.毕勤胜和陈予恕[15-16]研究了一类强非线性Duffing系统,利用功能关系得到系统的周期解,给出系统从主共振到1/3次亚谐分岔的转迁集,应用广义牛顿法得到系统的对称破缺 分岔转迁集的解析表达式.Kimiaeifar等[17]研究了一类van der Pol-Duffing系统,利用同伦分析法得到了系统的周期解.Jin和Hu[18-19]研究了一类具有滞后状态反馈的Duffing系统在窄带随机参数激励下的主共振,和一类双时滞Duffing系统在窄带随机激励下的反馈控制,从振动控制的角度讨论了反馈增益和时滞对系统的影响.戎海武等[20]研究了Duffing系统在谐和与窄带随机噪声联合激励下的参数主共振响应和稳定性问题,分析了系统的失稳和跳跃现象.Hosseini[21]研究了Duffing系统的主共振,讨论了高阶近似解中的伪解问题,提出一种检测频率响应方程中是否存在伪解的判据.
以往对各类Duffing系统的周期振动解的研究可大致分为两类,一类是从系统结构角度,考虑结构的复杂性以建立更符合工程实际的动力学模型,例如文献[9,10]中的分数阶微分项可以更好地描述系统中的黏弹性阻尼;另一类是研究复杂激励下系统的动力学行为,例如文献[7,18,22]研究了随机激励下Duffing系统的解. Nayfeh在其专著[23]中利用多尺度法给出了Duffing系统的3倍超谐与1/3次亚谐联合共振的解. 姜源等[24-25]做了更进一步的工作,利用平均法得到了分数阶Duffing系统和van der Pol系统的3倍超谐与1/3次亚谐联合共振的解,并分析了分数阶项对系统动力学行为的影响.
( MengGuang, XueZhongqing . Study on nonlinear Duffing characteristics of flexible rotor with SFDB Journal of Aerospace Power, 1989(2):173-178, 197 (in Chinese)) [本文引用: 1]
ErtasA, ChewEK . Non-linear dynamic response of a rotating machine. , 1990,25(2-3):241-251
( WuJingdong . Study on some nonlinear dynamics problems of rotor system with impact-rubbing. [PhD Thesis] Shenyang: Northeastern University, 2006: 38-42 (in Chinese)) [本文引用: 1]
( LiuHui, PuJinyun, ChenXiaohong , et al. Study on non-linear rolling motion of a forced flooded ship using cell mapping method Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009,37(8):116-119 (in Chinese)) [本文引用: 1]
PanR, DaviesHG . Responses of a non-linearly coupled pitch-roll ship model under harmonic excitation , 1996,9(4):349-368 [本文引用: 1]
( ShuLihong, ZhouWei, LüZhiqiang , et al. Stainless steel wire-rope isolator used in vibration and impact isolation design for large machine equipment , 2006(4): 78-81, 177-178 (in Chinese)) [本文引用: 1]
( HanXianglin, LinWantao, XuYonghong , et al. Asymptotic solution to the generalized Duffing equation for disturbed oscillator in stochastic resonance Acta Physica Sinica, 2014,63(17):35-39 (in Chinese)) [本文引用: 2]
( LiRuihong, XuWei, LiShuang . Resonance and chaos behavior in a two-degree-of-freedom Duffing system with cubic coupled terms Chinese Journal of Applied Mechanics, 2007, ( 2):200-203, 337 (in Chinese)) [本文引用: 1]
ShenY, YangS, XingH , et al. Primary resonance of Duffing oscillator with fractional-order derivative , 2012,17(7):3092-3100 [本文引用: 3]
( ShenYongjun, YangShaopu, XingHaijun . Super-harmonic resonance of fractional-order Duffing oscillator Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):762-768 (in Chinese)) [本文引用: 3]
HolmesC, HolmesP . Second order averaging and bifurcations to subharmonics in Duffing's equation , 1981,78(2):161-174 [本文引用: 1]
( ZhangYi, HanXiujing, BiQinsheng . Series-mode pitchfork-hysteresis bursting oscillations and their dynamical mechanisms Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):228-236 (in Chinese)) [本文引用: 1]
( QuZifang, ZhangZhengdi, PengMiao , et al. Non-smooth bursting oscillation mechanisms in a Filippov-type system with multiple periodic excitations Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1145-1155 (in Chinese)) [本文引用: 1]
( LüXiaohong, LuoGuanwei . Transition law of adjacent fundamental motions in vibro-impact system with progression Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1091-1102 (in Chinese)) [本文引用: 1]
( BiQinsheng, ChenYushu . The periodic resonant solutions and the transition boundaries of strongly nonlinear Duffing's equation Journal of Vibration Engineering, 1997,10(1):29-34 (in Chinese)) [本文引用: 1]
( BiQinsheng, ChenYushu . Analytical expression of transition boundaries of the solution of Duffing systems Chinese Journal of Theoretical and Applied Mechanics, 1997(5):55-63 (in Chinese)) [本文引用: 1]
KimiaeifarA, SaidiAR, BagheriGH , et al. Analytical solution for van der Pol-Duffing oscillators , 2009,42(5):2660-2666 [本文引用: 1]
JinY, HuH . Dynamics of a Duffing oscillator with two time delays in feedback control under narrow-band random excitation , 2008,3(2):021205 [本文引用: 2]
JinY, HuH . Principal resonance of a Duffing oscillator with delayed state feedback under narrow-band random parametric excitation , 2007,50(1):213-227 [本文引用: 1]
( RongHaiwu, XuWei, FangTong . Principal response of Duffing oscillator to combined deterministic and narrow-band random parameteric excitation Chinese Journal of Theoretical and Applied Mechanics, 1998,30(2):50-57 (in Chinese)) [本文引用: 1]
HosseiniSAA . Some considerations on higher order approximation of Duffing equation in the case of primary resonance , 2013,20(5):1464-1473 [本文引用: 2]
( XuWei, FangTong, RongHaiwu . Duffing oscillator with visco-elastic term under narrow-band random excitation Chinese Journal of Theoretical and Applied Mechanics, 2002(5):764-771 (in Chinese)) [本文引用: 1]
( JiangYuan, ShenYongjun, WenShaofang , et al. Super-harmonic and sub-harmonic simultaneous resonances of fractional-order Duffing oscillator Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1008-1019 (in Chinese)) [本文引用: 3]
( JiangYuan, ShenYongjun, WenShaofang . Super-harmonic and sub-harmonic simultaneous resonances of fractional-order van der Pol oscillator Journal of Vibration Engineering, 2019,32(5):863-873 (in Chinese)) [本文引用: 1]
( AnMujin . Research on response of the vehicle under multi-correlative subsystems excitations. [Master Thesis] Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 1-2 (in Chinese)) [本文引用: 1]
RigantiR . Subharmonic solutions of the duffing equation with large non-linearity. , 1978,13(1):21-31 [本文引用: 1]
( WeiPeng, ShenYongjun, YangShaopu . Sub-harmonic resonance of Duffing oscillator with fractional-order derivative Journal of Vibration Engineering, 2014,27(6):811-818 (in Chinese))
Van KhangN, ChienT . Subharmonic resonance of Duffing oscillator with fractional-order derivative , 2016,11(5):051018 [本文引用: 1]
HassanA . On the third superharmonic resonance in the Duffing oscillator , 1994,172(4):513-526 [本文引用: 1]
RahmanZ, BurtonTD . Large amplitude primary and superharmonic resonances in the Duffing oscillator , 1986,110(3):363-380 [本文引用: 1]