CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE
YaoYangping1, ZhangMinsheng1,2,*,, WanZheng3, WangNaidong1, ZhuChaoqi2 1 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China2 China Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, Shandong, China3 Research Institute of Base and Foundation, China Academy of Building Research, Beijing 100013, China 中图分类号:TU43 文献标识码:A
关键词:本构模型;砂土;状态参量;参考压缩线;临界状态线 Abstract The mechanical properties of sand are influenced by void ratio and compression pressure. Based on the sand critical state line characteristics, this paper describes the isotropic compression line by means of the linear relation in e-(p/pa)ξ space. A reference compression curve which is more suitable for describing the isotropic compression of sand is proposed by comparing the relationship between two different compression curve functions and critical state line functions, and the isotropic hardening rule based on the reference compression line is given. A yield surface function suitable for describing the mechanical properties of sand is proposed and a method for determining the yield surface shape parameter μ using isotropic compression and equal p paths is given. To get the potential strength Mf and the characteristic state stress ratio Mc, describe the sand compression and shear characteristics, the compression curve corresponding to stress ratio is taken as the reference curve of sand. The correlation between the current stress ratio and the reference curve of state parameter is proposed based on the isotropic compression and constant p path. Consequently, a smooth transition from reference compression curve to critical state line for the reference curve of state parameter is achieved. The established 11 parameters of the sand constitutive model can all be obtained through routine geotechnical tests or experiences. The sand constitutive model established in this paper describes well the compression and shear characteristics of Toyoura sand in different void ratios and pressures based on the model prediction, isotropic compression tests, triaxial drained and undrained tests of Toyoura sand.
Keywords:constitutive model;sand;state parameter;reference compression curve;critical state line -->0 PDF (2667KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 姚仰平, 张民生, 万征, 王乃东, 朱超祁. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598 https://doi.org/10.6052/0459-1879-17-334 YaoYangping, ZhangMinsheng, WanZheng, WangNaidong, ZhuChaoqi. CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598 https://doi.org/10.6052/0459-1879-17-334
新窗口打开 参数S通过砂土等向压缩试验拟合得到. 利用式(10)对不同的S下湿式堆积、干式堆积、水沉积等方法制备砂土试 样在0~4 MPa下进行的等向压缩试验进行预测,当预测结果与试验结果较为吻合时,即可确定S, 图6所示为S为2时,拟合结果 与试验结果对比图,从图中可以看出,对于干式堆积及水沉积 制备的砂土,以及最密压缩线模型拟合与试验结果吻合较好. 同时还利用拟合结果对Toyoura 砂最密状态的变化趋势及最松状态的变化趋势进行了预测,如图7所示,对比结果显示预测结果与试验结果同样较为吻合, 因此本文选取S为2. 显示原图|下载原图ZIP|生成PPT 图6Toyoura砂压缩试验结果与拟合 -->Fig. 6Comparison between experiment results and fitting on Toyoura sand under isotropic compression -->
显示原图|下载原图ZIP|生成PPT 图7Toyoura砂压缩试验结果与预测对比 -->Fig. 7Comparison between experiment results and predictions on Toyoura sand under isotropic compression -->
3.2 模型预测
在不同初始围压下分别对孔隙比0.735, 0.833及0.907的Toyoura砂进行三轴不排水剪切试验,试验结果与模型预测对比 如图8~图10 所示,其中(a)图为剪应力与轴向应变关系,(b)图为应力路径. 显示原图|下载原图ZIP|生成PPT 图8孔隙比0.735下Toyoura砂三轴不排水剪切试验结果与模型预测对比 -->Fig. 8Comparison between experiment results and predictions on Toyoura sand for e=0.735 under undrained triaxial compression -->
显示原图|下载原图ZIP|生成PPT 图9孔隙比0.833下Toyoura砂三轴不排水剪切试验结果与模型预测对比 -->Fig. 9Comparison between experiment results and predictions on Toyoura sand for e=0.833 under undrained triaxial compression -->
显示原图|下载原图ZIP|生成PPT 图10孔隙比0.907下三轴不排水剪切试验结果与模型预测对比 -->Fig. 10Comparison between experiment results and predictions on Toyoura sand for e=0.907 under undrained triaxial compression -->
在0.1 MPa和0.5 MPa下对不同孔隙比的Toyoura砂进行进行三轴排水剪切试验,试验结果与模型预测曲线如图11和图12所示, 其中(a)图为剪应力与轴向应变关系,(b)图为剪应力与孔隙比变化关系. 对于砂土的不排水剪切试验,其力学特性因其压力及初始孔隙比不同而有所变化,随着试验围压从 MPa 逐渐增 加到 3.0 MPa (图8~图10),砂土的剪缩性增强,在应力路径上围压越大则应力越向原点方向移动;而在相同的压力下则孔隙比越大则砂土越容易剪缩. 对比试验结果与预测结果可以看出,模型很好地反应出砂土不排水力学特性. 对于砂土的排水剪切试验(图11 和图12),其力学特性与不排水剪切试验相似,相同围压下,初始孔隙比越大则砂土越具有剪 缩特性. 在剪应力与轴向应变关系中,模型预测的应力稍微大于实际测试结果,对于稍微密实砂土,尤其是0.1 MPa下孔隙比 为0.810时,模型预测的应力软化过于明显,而实际测试中这一特性表现不明显. 剪应力与体应变关系曲线中,模型很好地预测了砂土体积变化趋势. 显示原图|下载原图ZIP|生成PPT 图110.5 MPa下Toyoura砂三轴排水剪切试验结果与模型预测对比 -->Fig. 11Comparison between experiment results and predictions on Toyoura sand for p=0.5 MPa under drained triaxial compression -->
显示原图|下载原图ZIP|生成PPT 图120.1 MPa下Toyoura砂三轴排水剪切试验结果与模型预测对比 -->Fig. 12Comparison between experiment results and predictions on Toyoura sand for p=0.1 MPa under drained triaxial compression -->
4 结 论
为描述饱和砂土的力学特性,本文基于临界状态提出了一种砂土本构模型. 通过总结与归纳模型构建过程得出以下结论: (1)通过分析砂土压缩特性及其在e-lgp平面内非线性特点,提出更适合于描述砂土在等向压缩路径下的参考体积压缩线,并使用幂函数进行描述. (2) 建议了适用于描述砂土剪缩特性的屈服面表达式,在等p路径下给出了影响屈服面形状参数μ的确定方法. (3)利用当前应力比所对应的压缩线作为状态参量参考线,以调整硬化参数和剪胀方程,进而反映砂土的压缩、剪胀及剪缩特性. 这种做法实现了砂土由压缩至剪切过程中状态参量的统一表述. (4)利用Toyoura 砂的不排水剪切试验及排水剪切试验与模型预测进行对比,结果表明本文建立的模型很好地描述了Toyoura 砂在不同孔隙比和不同压力下的剪切特性. The authors have declared that no competing interests exist.
VerdugoR, IshiharaK.The steady state of sandy soils . Soils and Foundations, 1996, 36(2): 81-91 [本文引用: 4]
[2]
LiXS, DafaliasYF, WangZL.State-dependant dilatancy in critical-state constitutive modelling of sand . Canadian Geotechnical Journal, 1999, 36(4): 599-611 [本文引用: 5]
[3]
RoscoeKH, SchofielAN, WrothCP.On the yielding of soils . Geotechnique, 1958, 8(1): 22-53 [本文引用: 1]
[4]
RiemerMF, SeedRB.Factors affecting apparent position of steady-state line . Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(3): 281-288 [本文引用: 1]
[5]
WangY.Characterization of dilative shear failure in sand. [PhD Thesis] . Hong Kong: Hong Kong University of Science and Technology, 1997 [本文引用: 1]
[6]
LiXS, WangY.Linear representation of steady-state line for sand . Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217 [本文引用: 4]
[7]
WangG, XieY.Modified bounding surface hypoplasticity model for sands under cyclic loading . Journal of Engineering Mechanics, 2014, 140(1): 91-101 [本文引用: 2]
[8]
LoukidisD, SalgadoR.Modeling sand response using two-surface plasticity . Computers and Geotechnics, 2009, 36(1): 166-186 [本文引用: 1]
(YaoYangping, YuYani.Extended critical state constitutive model for sand based on unified hardening parameter . Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832 (in Chinese)) [本文引用: 2]
[10]
ChangCS, KabirMG, ChangY.Micromechanics modeling for stress-strain behavior of granular soils. II: Evaluation . Journal of Geotechnical and Geoenvironmental Engineering, 1992, 118(12): 1975-1992 [本文引用: 2]
[11]
BeenK, JefferiesMG.A state parameter for sands . Geotechnique, 1985,35(2): 99-112 [本文引用: 2]
[12]
BoltonMD.The strength and dilatancy of sands . Geotechnique, 1986, 36(1): 65-78 [本文引用: 2]
[13]
IshiharaK.Liquefaction and flow failure during earthquakes . Geotechnique, 1993, 43(3): 351-415 [本文引用: 2]
(LuoTing, GaoZhiwei, WanZheng, et al.Influence of the stress path on dilatancy of soils and its modeling . Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 93-101 (in Chinese)) [本文引用: 1]
(LuDechun, YaoYangping.Constitutive model of sand considering complex stress paths . Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 451-459 (in Chinese)) [本文引用: 1]
[16]
PrevostJH.A simple plasticity model for frictional cohesionless soils . International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17 [本文引用: 1]
[17]
ManzariMT, DafaliasYF.A critical state two-surface plasticity model for sands . Geotechnique, 1997, 47(2): 255-272 [本文引用: 1]
LiXS, MingHY.Unified modeling of flow liquefaction and cyclic mobility . Soil Dynamics and Earthquake Engineering, 2000, 19(5): 363-369 [本文引用: 1]
[20]
ZienkiewiczOC, LeungKH, PastorM.Simple model for transient soil loading in earthquake analysis. I. Basic model and its application . International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5): 453-476 [本文引用: 1]
[21]
PastorMZ, ienkiewiczOC, ChanAH. Generalized plasticity and the modelling of soil behaviour . International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190 [本文引用: 1]
[22]
ManzanalD, Fernández MerodoJA, PastorM.Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part 1: Saturated state . International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1347-1362. [本文引用: 1]
[23]
LingHI, YangS.Unified sand model based on the critical state and generalized plasticity . Journal of Engineering Mechanics, 2006, 132(12): 1380-1391 [本文引用: 1]
(YaoYangping, WanZheng, QinZhenhua.Dynamic UH model for sands and its application in FEM . Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139 (in Chinese)) [本文引用: 1]