删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Effect of momentum anisotropy on quark matter in the quark-meson model

本站小编 Free考研考试/2022-01-01

He-Xia Zhang 1,,
, Ben-Wei Zhang 1,2,,
,
Corresponding author: He-Xia Zhang, zhanghexia@mails.ccnu.edu.cn
Corresponding author: Ben-Wei Zhang, bwzhang@mail.ccnu.edu.cn
1.Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
2.Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Received Date:2021-10-19
Available Online:2021-04-15
Abstract:We investigate the chiral phase structure of quark matter with spheroidal momentum-space anisotropy specified by one anisotropy parameter $\xi$ in the 2+1 flavor quark-meson model. We find that the chiral phase diagram and the location of the critical endpoint (CEP) are significantly affected by the value of $\xi$. With an increase in $\xi$, the CEP is shifted to lower temperatures and higher quark chemical potentials. In addition, the temperature of the CEP is more sensitive to the anisotropy parameter than the corresponding quark chemical potential, which is the opposite to that from the finite system volume effect. The effects of the momentum anisotropy on the thermodynamic properties and scalar (pseudoscalar) meson masses are also studied at the vanishing quark chemical potential. The numerical results reveal that an increase in $\xi$ can hinder the restoration of chiral symmetry. We also find that shear viscosity and electrical conductivity decrease as $\xi$ increases. However, the bulk viscosity exhibits a significant non-trivial behavior with $\xi$ in the entire temperature domain of interest.

HTML

--> --> -->
I.INTRODUCTION
Quantum chromodynamics (QCD) is a fundamental theory for describing the strong interaction, and its phase structure has become an important subject of considerable interest in recent decades. The first-principle results from lattice QCD simulation [1, 2] have indicated that with increasing temperature $ T $, the transition from ordinary nuclear matter to chiral symmetric quark-gluon plasma (QGP) is a smooth crossover at low or zero chemical potential $ \mu $. At a high chemical potential, lattice QCD simulation, as a reliable tool for obtaining the chiral properties of QCD matter, confronts a great challenge due to the fermion sign problem [3]. However, strategies (for reviews see, e.g., Refs. [4-6]) such as Taylor series expansion [7-9], imaginary chemical potential, reweighting techniques [10, 11], and the complex Langevin method [12, 13] have been developed to attempt to tackle this problem. In this context, some alternative theoretical tools, such as QCD low-energy effective models (e.g., the Nambu-Jona-Lasinio model [14-16], the Polyakov-loop extended NJL (PNJL) model [17-19], the quark-meson model or linear sigma model [20-24], the Polyakov quark-meson (PQM) model [25-28]), the Dyson-Schwinger equation approach [29, 30], and the functional renormalization group approach [31-34], which are not restricted by the chemical potential, have been proposed to explore the QCD phase structure at high chemical potentials better. Further, the results obtained from the effective model calculations [35, 36] demonstrate that the chiral phase transition of the strongly interacting matter is a first-order transition at high density, and a second-order critical endpoint (CEP) can exist between the crossover line and the first-order phase transtion line in the ($ \mu $, $ T $)-plane. Apart from the phase transition, other important information, such as the thermodynamic properties, in-medium properties of mesons [36, 37], and transport properties [38-40], for the strongly interacting matter has also been extensively studied in these QCD effective models.
To take into account the intricacy of the realistic quark matter produced in relativistic heavy-ion collisions (HICs) at the RHIC and the LHC, different improved versions of the QCD effective models have been proposed by including the effects of the finite volume of the system [41-56], the non-extensive effects in terms of long-distance correlation [57, 58], the presence of magnetic fields [59-68], and the effect of electric fields [69-73] to better explore the chiral/confinement properties of the strongly interacting matter at finite temperatures or quark chemical potentials. Conventionally, in the literature, all the effective models or improved effective models have been based on an ideal assumption that the constituents of quark matter are completely isotropic in the momentum-space in the absence of magnetic fields. However, due to the asymmetric geometry of the fireball created in HICs, the system evolves with different pressure gradients along different directions. As a result, the expansion and cooling rate along the beam direction (denoted as the longitudinal direction) is greater than that in the radial direction [74], and this momentum anisotropy can survive at all stages of the HICs; consequently, the parton-level momentum distribution functions may become anisotropic. Thus, it is essential to consider the momentum-space anisotropy induced by the rapid longitudinal asymptotic expansion in the phenomenological investigation of different observables. Thus far, extensive investigations have been performed to explore the effects of momentum anisotropy on the parton self-energy [74-77], photon and dilepton production [78-81], dissociation of quarkonium [82-84], heavy-quark potential [85, 86], various transport coefficients [87-90], and jet quenching parameter [91], which are sensitive to the evolution of the QGP. The associated results have indicated that the momentum-space anisotropy has a significant effect on the observables of the QGP. However, to the best of our knowledge, thus far, there has not been a study of momentum anisotropy in the framework of effective QCD models or research regarding the effect of momentum-space anisotropy on the chiral phase transition. Inspired by this fact, one major goal of the present study is to reveal how the momentum anisotropy qualitatively affects the chiral phase structure as well as transport properties in strongly interacting matter.
The present paper is a first attempt to study the effect of the momentum-space anisotropy induced by the rapid longitudinal expansion of the fireball created in HICs on the QCD chiral phase transition. We adopt the 2+1 flavor quark-meson model, which has been successful in describing the mechanism of spontaneous chiral symmetry breaking, to approximate quark matter. The effect of momentum anisotropy enters in the quark-meson model by substituting the isotropic (local equilibrium) distribution function in the total thermodynamic potential with the anisotropic one. This introduces an additional degree of freedom, viz., the direction of anisotropy. The anisotropic parameter, $ \xi $, representing the degree of momentum anisotropy or the tendency of the system to stay away from the isotropic state, is also considered to be an argument in the isotropic distribution function. Based on this momentum anisotropy-dependent quark-meson model, we first explore how the momentum anisotropy affects the chiral phase diagram and the location of the CEP. Next, we investigate the thermodynamic properties and thermal properties of various scalar (pseudoscalar) meson masses for the vanishing chemical potential in both isotropic and anisotropic quark matter. Finally, transport coefficients, such as the shear viscosity, electrical conductivity, and bulk viscosity, which are crucial for understanding the dynamical evolution of QCD matter, are also estimated in (an-)isotropic quark matter. Note that we restrict ourselves, here, to the anisotropic system close to the isotropic local equilibrium state; consequently, the calculations of thermodynamic quantities, meson masses, and transport coefficients in the anisotropic system are methodologically similar to those in the isotropic system. In particular, for a small $ \xi $ limit, the anisotropic distribution can just linearly expand to the linear order of $ \xi $. Using this linear approximation of the anisotropic distribution, the mathematical expression of the transport coefficients, which are obtained by solving the relativistic Boltzmann equation under the relaxation time approximation, can be explicitly separated into an equilibrium part and an anisotropic correction part [87-90]. For $ \xi\rightarrow 0 $, the analytic expressions can be reduced to the standard expressions in the local equilibrium medium, which will be discussed in Sec. IV.
The remainder of this paper is organized as follows. In Sec. II, we give a brief overview of the three-flavor quark-meson model. In Sec. III, the modification of the thermodynamic potential within momentum-space anisotropy is presented. In Sec. IV, we discuss the chiral phase transition, thermodynamic properties, meson masses, and transport coefficients in both isotropic and anisotropic quark matter. In Sec. V, we summarize the main results and present an outlook.
II.THE QUARK-MESON MODEL
The quark-meson model, as a successful QCD-like effective model, can capture an important feature of QCD, namely, chiral symmetry breaking and restoration at a high temperature/density. The Lagrangian of the three-flavor quark-meson model presently used in this study is taken from Ref. [23]:
$ \begin{array}{l} {\cal{L}}_{ \rm{QM}} = \bar{\Psi}({\rm i}\gamma_{\mu}D^{\mu}-g\phi_5)\Psi+{\cal{L}}_{\mathrm{M}}, \end{array} $
(1)
where $ \Psi = u,d,s $ is the quark field with three flavors ($ N_{f} = 3 $) and three color degrees of freedom ($ N_{c} = 3 $). The first term on the right hand side of Eq. (1) represents the interaction between the quark field and the scalar ($ \sigma $) and pseudoscalar ($ \pi $) fields with a flavor-blind Yukawa coupling, $ g $, of the quarks to the mesons. The meson matrix is given as
$ \begin{array}{l} \phi_5 = T_a(\sigma_{a}+{\rm i}\gamma_5\pi_a), \end{array} $
(2)
where $ T_{a} = \lambda_a/2 $, with $a = 0,\cdots,8$, are the nine generators of the U(3) symmetry; $ \lambda_{a} $ is the Gell-Mann matrix with $\lambda_{0} = \sqrt{\dfrac{2}{3}}1$; and $ \sigma_{a} $ and $ \pi_a $ denote the scalar meson nonet and the pseudoscalar meson nonet, respectively.
The second term in Eq. (1) is the purely mesonic contribution, $ {\cal{L}}_{\mathrm{M}} $, which describes the chiral symmetry breaking pattern in strong interaction. It is given by [23]
$ \begin{aligned}[b] {\cal{L}}_{\mathrm{M}} =& \mathrm{Tr}(\partial_\mu\phi^{\dagger}\partial^{\mu}\phi-m^2\phi^{\dagger}\phi)-\lambda_1[\mathrm{Tr}(\phi^{\dagger}\phi)]^2\\ &-\lambda_2\mathrm{Tr}(\phi^{\dagger}\phi)^2+c[\mathrm{Det}(\phi)+\mathrm{Det}(\phi^{\dagger})]\\&+\mathrm{Tr}[H(\phi+\phi^{\dagger})], \end{aligned} $
(3)
with $\phi = T_{a}\phi_{a} = T_{a}(\sigma_{a}+{\rm i}\pi_a)$ representing a complex ($ 3\times3 $)-matrix. Explicit chiral symmetry breaking is expressed by the last term of Eq. (3), where $ H = T_{a}h_{a} $ is a ($ 3\times3 $)-matrix with nine external fields, $ h_{a} $. Explicit $ U(1)_{A} $ symmetry is given by the 't Hooft determinant term with anomaly term $ c $; $ m^2 $ is the tree-level mass of the fields in the absence of symmetry breaking; $ \lambda_1 $ and $ \lambda_2 $ are the two possible quartic coupling constants.
Under the mean-field approximation [36], the total thermodynamic potential density of the quark-meson model at finite temperature $ T $ and quark chemical potential $ \mu_f $ is given by
$ \begin{array}{l} \Omega(T,\mu_f) = \Omega_{q\bar{q}}(T,\mu_f)+U(\sigma_{x},\sigma_{y})_{}. \end{array} $
(4)
The first term on the right hand side of Eq. (4), $ \Omega_{q\bar{q}} $, denotes the fermionic part of the thermodynamic potential [36]:
$ \begin{aligned}[b] \Omega_{q\bar{q}}(T,\mu_f) =& 2N_{c}\sum_{f = u,d,s}^{}T\int_{}^{}\dfrac{{\rm d}^3{{p}}}{(2\pi)^3}\Bigg[\ln\Big(1-f_{q,f}^0(T,\mu_{f},{{p}})\Big)\\ &+\ln\Big(1-f_{\bar{q},f}^0(T,\mu_{f},{{p}})\Big)\Bigg], \end{aligned} $
(5)
with the isotropic equilibrium distribution function of the (antiquark) quark for the$ f $-th flavor
$ \begin{array}{l} f^0_{q(\bar{q}),f}(T,\mu_{f},{{p}}) = \dfrac{1}{\exp[E_{f}\mp\mu_{f}/T]+1}. \end{array}$
(6)
Here, $ E_{f} = \sqrt{p^{2}+m_f^{2}} $ is the single-particle energy with flavor-dependent constituent quark mass $ m_{f} $. The $ \mp $ sign corresponds to quarks and antiquarks, respectively. In the present work, a uniform quark chemical potential, $ \mu\equiv\mu_{u}\equiv\mu_{d}\equiv\mu_{s} $, is assumed. Further, the breaking of the $ SU(2) $ isospin symmetry is not considered; consequently, the up and down quarks have approximately the same masses, i.e., $ m_{u}\approx m_{d} $. In the quark-meson model, the constituent quark masses are given as
$ \begin{array}{l} m_{l} = g\sigma_x/2,\;\;\;\; \;\;\;\; m_{s} = g\sigma_y/\sqrt{2}, \end{array}$
(7)
where $ l $ denotes light quarks ($ l\equiv u,d $); and $ \sigma_x $ and $ \sigma_y $ denote the non-strange and strange chiral condensates, respectively. The Yukawa coupling, $ g $, is fixed to reproduce a light constituent quark mass of $ m_l\approx300 $ MeV. The second term, $ U(\sigma_{x},\sigma_{y})_{} $, $ viz $, the purely mesonic potential, is given as [20, 23, 28]
$ \begin{aligned}[b] U =& -h_x \sigma_x-h_y \sigma_y+ \dfrac{m^2\left(\sigma^2_x+\sigma^2_y\right)}{2} -\dfrac{c\sigma^2_x \sigma_y }{2\sqrt{2}} \\& + \dfrac{\lambda_1 \sigma^2_x \sigma^2_y}{2} +\dfrac{(2 \lambda_1 +\lambda_2)\sigma^4_x}{8} + \dfrac{ (\lambda_1+\lambda_2)\sigma^4_y}{4}, \end{aligned} $
(8)
where model parameters $ m^2 $, $ h_x $, $ h_y $, $ \lambda_1 $, $ \lambda_2 $, and $ c $, as reported in Ref. [36], are listed in Table 1. Finally, the behavior of $ \sigma_{x} $ and $ \sigma_{y} $ as functions of temperature and quark chemical potential can be obtained by minimizing the total thermodynamic potential density, i.e.,
$m^2/\mathrm{MeV^2}$ $h_x/\mathrm{MeV^3}$ $h_y/\mathrm{MeV^3}$ $\lambda_1$ $\lambda_2$ $c/\mathrm{MeV}$
$(342.252)^2$ $(120.73)^3$ $(336.41)^3$ 1.4 46.68 4807.84


Table1.Parameters used in our work, taken from Ref. [36].

$ \begin{array}{l} \dfrac{\partial\Omega}{\partial \sigma_{x}} = \dfrac{\partial\Omega}{\partial \sigma_{y}}\bigg|_{\sigma_{x} = \bar{\sigma}_x,\sigma_{y} = \bar{\sigma}_y} = 0, \end{array} $
(9)
with $ \sigma_{x} = \bar{\sigma}_x, \sigma_{y} = \bar{\sigma}_y $ being the global minimum.
III.THERMODYNAMIC POTENTIAL WITH MOMENTUM ANISOTROPY
Due to the rapid longitudinal expansion of the partonic matter created in the HICs, an anisotropic deformation of the argument of the isotropic (equilibrium) parton distribution functions is generally used to simulate the momentum anisotropy of QGP [74-90]. A special and widely used spherical momentum deformation introduced by Romatschke and Strickland [74], which is characterized by the removal and addition of particles along a single momentum anisotropy direction, is applied in this study. Accordingly, the local distribution function of $ f $-th flavor quarks (antiquarks) in an anisotropic system can be obtained from the isotropic (local equilibrium) distribution function by rescaling one preferred direction in the momentum space, which is given as
$ \begin{array}{l} f_{\rm aniso}^{0}(T,\mu_{f},{{p}}) = \dfrac{1}{{\rm e}^{\left(\sqrt{{{p}}^2+\xi({{p}}\cdot{{n}})^2+m_f^2}\mp\mu_{f}\right)/T}+1}. \end{array} $
(10)
Here, the anisotropy parameter, $ \xi $, presenting the degree of momentum-space anisotropy, can generally be defined as
$ \begin{array}{l} \xi = \dfrac{\left\langle{{p}}_{T}^2\right\rangle}{2\langle p_{L}^2\rangle}-1, \end{array} $
(11)
where $ p_{L} $ and $ {{p}}_{T} $ are the components of momentum, parallel and perpendicular to the direction of anisotropy, $ {{n}} $, respectively; $ {{p}} = (p\sin\theta\cos\phi,\;p\sin \theta\sin\phi,\;p\cos\theta) $, where we use the notation $ |{{p}}|\equiv p $ for convenience; $ {{n}} = (\sin\alpha,0,\cos\alpha) $; and $ \alpha $ is the angle between $ {{p}} $ and $ {{n}} $. Accordingly, $({{p}}\cdot{{n}})^2 = p^2(\sin\theta\cos\phi\sin\alpha+\cos\theta\cos\alpha)^2 = p^2c (\theta,\phi,\alpha)$. Note that $ \xi>0 $ corresponds to a contraction of the particle distribution in the direction of anisotropy, whereas $ -1<\xi<0 $ represents a stretching of the particle distribution in the direction of anisotropy.
If the system is close to the ideal massless parton gas and $ \xi $ is small, $ \xi $ is also related to the ratio of shear viscosity to entropy density $ \eta/s $, as well as proper time $ \tau $ of the medium. The relation for one-dimensional Bjorken expansion in the Navier-Stokes limit is given as [92]
$ \begin{array}{l} \xi = \dfrac{10}{T\tau}\dfrac{\eta}{s}. \end{array} $
(12)
This implies that the non-vanishing shear viscosity, combined with a finite momentum relaxation rate in an expanding system, can also contribute to the momentum-space anisotropy. At the RHIC energy with a critical temperature of $ T_{c}\approx160 $ MeV, $ \tau\approx6 $ fm/c, and $ \eta/s = 1/4\pi $, we can obtain $ \xi\approx 0.3 $.
In this work, we assume that the system has a small deviation from the momentum-space isotropy; therefore, the value of $ \xi $ is small ($ |\xi|\ll1 $), and Eq. (10) can be expanded up to linear order in $ \xi $:
$ \begin{aligned}[b] f_{\rm aniso}^0({{p}})&\approx f^0_{q,f}-\dfrac{\xi({p\cdot{{n}}})^2}{2E_{f}T}{\rm e}^{(E_{f}-\mu_{f})/T}f_{q,f}^{02}\\ &= f_{q,f}^0-\dfrac{\xi({p\cdot{{n}}})^2}{2E_{f}T}f_{q,f}^{0}(1-f_{q,f}^0). \end{aligned} $
(13)
By replacing the isotropic distribution functions in Eq. (5) with Eq. (13), we finally obtain the $ \xi $-dependent thermodynamic potential density of the fermionic part:
$ \begin{aligned}[b] \Omega_{q\bar{q}} =& 2N_{c}\sum_{f}^{}\int_{}^{}\dfrac{T{\rm d}^3{{p}}}{(2\pi)^3}\\& \times \left\{\ln \left(1-f_{q,f}^0+\dfrac{\xi p^2c(\theta,\phi,\alpha)}{2E_{f}T}f_{q,f}^{0}(1-f_{q,f}^0) \right)\right.\\&\left.+\ln\left(1-f_{\bar{q},f}^0+\dfrac{\xi p^2c(\theta,\phi,\alpha)}{2E_{f}T}f_{\bar{q},f}^{0}(1-f_{\bar{q},f}^0)\right)\right\}. \end{aligned} $
(14)
Similar to the studies on the finite-size effect [41] and the non-extensive effect [57], we also treat anisotropy parameter $ \xi $ as a thermodynamic argument in the same footing as $ T $ and $ \mu $ and do not have any modifications to the usual quark-meson model parameters due to the presence of momentum anisotropy. Replacing the fermionic thermodynamic potential in Eq. (9) with Eq. (14), we can finally obtain the $ \xi $-dependent chiral condensates at a finite temperature and quark chemical potential.
IV.RESULTS AND DISCUSSION
2
A.Phase transition and phase diagram
-->

A.Phase transition and phase diagram

In the 2+1 flavor quark-meson model, the chiral condensates of both light quarks and strange quarks can be regarded as order parameters to analyze the feature of the chiral phase transition. The anisotropy parameters we use here are artificially taken as $ \xi = -0.4,\; 0,\; 0.2,\; 0.4 $, even though the value of $ \xi $ in realistic HICs always remains positive in sign. In Fig. 1, temperature $ T $ dependences of non-strange chiral condensate $ \sigma_{x} $ and strange chiral condensate $ \sigma_{y} $ for both isotropic and anisotropic quark matter for a vanishing quark chemical potential are plotted. For $T = 0\; {\rm MeV},\; \sigma_{x}^0\approx92.4 \;{\rm MeV},\; \sigma_{y}^0\approx94.5$ MeV. As can be seen, $ \sigma_{x} $ and $ \sigma_{y} $ in both isotropic and anisotropic quark matter decrease continuously with increasing temperature. This means that at the vanishing quark chemical potential, the restoration of the chiral symmetry for (an-)isotropic quark matter is always a crossover phase transition. Further, the restoration of the chiral symmetry in the strange sector is always slower than that in the non-strange sector. As $ \xi $ increases, the values of $ \sigma_{x} $ and $ \sigma_{y} $ increase, and their melting behaviors become smoother. This demonstrates that an increase in the anisotropy parameter tends to delay the chiral symmetry restoration.
Figure1. (color online) Temperature dependences of non-strange chiral condensate $\sigma_{x}$ (upper panel) and strange chiral condensate $\sigma_{y}$ (lower panel) at the vanishing quark chemical potential for both isotropic ($\xi=0$ (blue dashed lines)) and anisotropic ($\xi=$ $-0.4$ (orange dotted-dashed lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines)) quark matter in the quark-meson model. The values of $\sigma_{x}$ and $\sigma_{y}$ in the vacuum are approximately 92.4 MeV and 94.5 MeV, respectively.

To obtain the chiral critical temperature, we introduce the susceptibilities of light quarks $ \chi_{l} $ and strange quarks $ \chi_{s} $, which are defined as
$ \begin{array}{l} \chi_{l} = -\dfrac{\partial\sigma_{x}}{\partial T}, \;\;\;\;\;\;\;\chi_{s} = -\dfrac{\partial\sigma_{y}}{\partial T}. \end{array} $
(15)
The thermal behaviors of both $ \chi_{l} $ and $ \chi_{s} $ are presented in Fig. 2. We can see that $ \chi_{l} $ and $ \chi_{s} $ have peaks at particular temperatures. The peak position of $ \chi_{l} $ determines the critical temperature, $ T^{\chi}_{c} $, for the chiral transition in the non-strange sector. Unlike $ \chi_{l} $, $ \chi_{s} $ has two peaks in the entire temperature domain of interest. The temperature coordinate of the first peak of $ \chi_{s} $ is almost the same as that of $ \chi_{l} $, and the location of the second broad peak of $ \chi_{s} $ determines the critical temperature, $ T^{\chi}_{s} $, for the chiral transition of the strange sector. The chiral critical temperature, $ T_{c}^{\chi} $, at the vanishing quark chemical potential is the origin of the crossover phase transition in the QCD chiral phase diagram. Furthermore, these chiral critical temperatures are sensitive to the variation of $ \xi $. As $ \xi $ increases, $ T^{\chi}_{c,s} $ shifts toward higher temperatures, and the height of $ {\chi}_{l,s} $ decreases. The exact values of both $ T^{\chi}_{c} $ and $ T^{\chi}_{s} $ for different anisotropy parameters are listed in Table 2. Compared with the case of $ \xi = 0 $, chiral critical temperatures $ T^{\chi}_c $ and $ T^{\chi}_s $ decrease by approximately 6% for $ \xi = -0.4 $. For the cases of $ \xi = 0.2 $ and 0.4, both $ T^{\chi}_c $ and $ T^{\chi}_s $ increase by approximately 4% and 9%, respectively.
Figure2. (color online) Temperature dependence of the susceptibilities in non-strange sector $\chi_{l}$ (upper panel) and strange sector $\chi_{s}$ (lower panel) at $\mu=0$ GeV for both isotropic ($\xi=0$ (blue dashed line)) and anisotropic ($\xi=$ $-0.4$ (orange dotted-dashed line), 0.2 (red solid line), and 0.4 (green wide dashed line)) quark matter in the quark-meson model.

$ \xi $ $-0.4$ $0$ $0.2$ $0.4$
$T^{\chi}_c/\mathrm{MeV}$ 137 146 152 159
$T^{\chi}_s/\mathrm{MeV}$ 233 248 258 270


Table2.Chiral critical temperatures, $T^{\chi}_c$ and $T^{\chi}_s$, for the non-strange condensate and strange condensate, respectively, at the vanishing quark chemical potential for different anisotropy parameters.

Next, we extend our exploration to the finite quark chemical potential to analyze the effect of momentum anisotropy on the structure of the QCD phase diagram. In Fig. 3, the temperature dependence of non-strange chiral condensate $ \sigma_{x} $ for both isotropic and anisotropic quark matter at different quark chemical potentials ($ viz $., $ \mu = $150, 200, and 250 MeV) is plotted. At $\mu = 150\; {\rm{MeV}}$, the chiral symmetry restoration with different values of $ \xi $ still occurs as the crossover phase transition. For $\mu = 200\; {\rm{MeV}}$, the value of $ \sigma_{x} $ in the anisotropic quark matter with $ \xi = -0.4 $ decreases from 60 to 23 MeV, and the associated susceptibility presents a divergent behavior at $T = 90\;{\rm{MeV}}$, which signals the appearance of a first-order phase transition. For $\mu = 250\;{\rm{MeV}}$, the discontinuity of $ \sigma_{x} $ (i.e., the first-order phase transition) also occurs at $ \xi = -0.4,\; 0 $, and 0.2, whereas at $ \xi = 0.4 $, the phase transition is still a smooth crossover. Thus, for the anisotropic matter with $ \xi = 0.4 $, a first-order phase transition occurs at the higher quark chemical potential. Accordingly, the chiral phase transition diagram can be studied by outlining the location of $ T^{\chi}_{c} $ for a wide range of quark chemical potentials. The first-order phase transition has to end, and then it changes into a crossover at the QCD critical endpoint (CEP), at which the phase transition is of the second order. In Fig. 4, the 2+1 flavor chiral phase diagram in the ($ \mu $, $ T $)-plane for the quark-meson model within the effect of momentum-space anisotropy is presented. Along the first-order phase transition line (crossover phase transition line), the chiral critical temperature increases from zero up to the CEP temperature (from the $ T_{\rm CEP} $ up to $ T_{c}^{\chi}(\mu = 0) $), whereas the critical quark chemical potential decreases from $ \mu_{c}(T = 0) $ to $ \mu_{\rm CEP} $ (from $ \mu_{\rm CEP} $ to zero). We observe that the phase boundary in the ($ \mu $, $ T $)-plane of the quark-meson model phase diagram is shifted to higher values of $ \mu $ and $ T $, with the increasing anisotropy parameter. We can also clearly see that the position of the CEP significantly depends on the variation of the momentum anisotropy parameter. As $ \xi $ increases, the location of the CEP shifts to a higher $ \mu $ and a smaller $ T $ domain, which is similar to that in the study of the non-extensive effect in the linear sigma model [58]. A similar phenomenon is also observed in the literature for the analysis of the finite size effects on chiral phase transitions [50-53, 56]. In Ref. [50], when the system size is reduced to 4 fm, the CEP in the quark-meson model vanishes, and the whole chiral phase boundary becomes a crossover curve. Based on this result, we deduce that as $ \xi $ increases further, the CEP may disappear. In this work, for $ \xi = -0.4,\; 0,\; 0.2,\; 0.4 $, the location of the CEP is at $ (T_{\rm CEP},\; \mu_{\rm CEP}) = (100,\; 174) $ MeV, (91,222) MeV, (84,247) MeV and (79,270) MeV, respectively. The value of $ \mu_{\rm CEP} $ from $ \xi = -0.4 $ to $ \xi = 0.4 $ increases by approximately 50%, whereas the value of $ T_{\rm CEP} $ increases by approximately 20%. This means that the influence of momentum-space anisotropy on the quark chemical potential coordinate of the CEP is more prominent than that on the temperature of the CEP. An opposite trend can be observed in the study of the finite volume effect [50], where the temperature coordinate of the CEP in the quark-meson model appears to be affected more strongly by the finite volume than the quark chemical potential coordinate of the CEP.
Figure3. (color online) Temperature dependences of the non-strange chiral condensate at $\mu=150\;\mathrm{MeV}$ (upper panel), $\mu=200\;\mathrm{MeV}$ (middle panel), and $\mu=250\;\mathrm{MeV}$ (lower panel) in quark matter with different anisotropy parameters, i.e., $\xi=\;-0.4$ (orange dotted-dashed lines), 0.0 (blue dash lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines).

Figure4. (color online) Chiral phase diagram for different anisotropy parameters in the quark-meson model. The solid lines represent the first-order phase transition curves, the dashed lines denote the crossover transition curves, and the solid dots represent the position CEP ($\mu_{\rm CEP}, T_{\rm CEP}$).

2
B.QCD thermodynamic quantities
-->

B.QCD thermodynamic quantities

Let us now study the influence of anisotropy parameter $ \xi $ on the thermodynamics at the vanishing quark chemical potential. The $ T $- and $ \xi $-dependent pressure, $ P(T,\xi) $, which is derived from the thermodynamic potential, is given as
$ \begin{array}{l} P(T,\xi) = -\Omega(T,\xi), \end{array} $
(16)
with vacuum normalization $ P(0,\xi) = 0 $. Entropy density $ s $ and energy density $ \epsilon $ are defined as
$ \begin{array}{l} s(T,\xi) = -\dfrac{\partial\Omega(T,\xi)}{\partial T} \end{array} $
(17)
and
$ \begin{array}{l} \epsilon(T,\xi) = -P(T,\xi)+Ts(T,\xi), \end{array} $
(18)
respectively.
In Fig. 5, the variations in scaled pressure $ P/T^{4} $, scaled entropy density $ s/T^{3} $, and scaled energy density $ \epsilon/T^{4} $ with respect to temperature in the quark-meson model for both isotropic and anisotropic quark matter are presented. It can be seen that the thermal behaviors of $ P/T^{4} $, $ s/T^{3} $, and $ \epsilon/T^{4} $ for the anisotropic quark matter are in agreement with those for the isotropic system. Specifically, with increasing temperature, $ P/T^{4} $, $ s/T^{3} $, and $ \epsilon/T^{4} $ first rise rapidly and then tend toward a saturation value. At a high enough temperature, the limit values of $ P/T^4 $, $ s/T^3 $, and $ \epsilon/T^{4} $ for the case of $ \xi = -0.4 $ stabilize at approximately 4.0, 16.5, and 12.5, respectively, even th-ough all these values are lower than their respective QCD Stefan-Boltzmann (SB) limit values: $\dfrac{P_{\rm SB}}{T^4} = \left(N_{c}^2-1\right)\dfrac{\pi^2}{45} + N_{c}N_{f}\dfrac{2\pi^2}{180} \simeq 5.2$, $\dfrac{s_{\rm SB}}{T^3} = \dfrac{4P_{\rm SB}}{T^4}\simeq20.8, \; \dfrac{\epsilon_{\rm SB}}{T^4} = \dfrac{3P_{\rm SB}}{T^4}\simeq15.6$. From Fig. 5, we can also see that the limit values of these thermodynamics at a high enough temperature are still decreasing functions of $ \xi $, which is opposite to their qualitative behaviors with non-extensive parameter $ q $. In Ref. [57], at a high temperature, the limit values of these scaled thermodynamics increase as $ q $ increases. Moreover, their features with $ \xi $ are significantly different from those with the finite volume effect. For example, Refs. [42, 53] indicate that with increasing temperature, $ P/T^4 $ first decreases with increasing volume and then quickly saturates to the infinite volume value; in other words, these thermodynamics are insensitive to volume changes in the high temperature domain.
Figure5. (color online) Temperature dependences of scaled pressure $P/T^4$(left panel), scaled entropy density $s/T^3$(middle panel), and scaled energy density $\epsilon/T^4$ (right panel) for $\mu=0\;\mathrm{MeV}$ in quark matter with different anisotropy parameters, i.e., $\xi=$ $-0.4$ (orange dotted-dashed lines), 0.0 (blue dash lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines).

The speed of sound squared, $ c_{s}^2 $, as an important quantity in the HICs, is also studied in the present work. It is defined by
$ \begin{array}{l} c_{s}^2(T,\xi) = \dfrac{\partial P}{\partial \epsilon}\bigg|_{V} = \dfrac{\partial P}{\partial T}\bigg|_{V}\bigg/\dfrac{\partial\epsilon}{\partial T}\bigg|_{V} = \dfrac{s}{C_{V}}, \end{array} $
(19)
with the specific heat at constant volume $ V $
$ \begin{array}{l} C_{V}(T,\xi) = \dfrac{\partial \epsilon}{\partial T}\bigg|_{V} = -T\dfrac{\partial^2\Omega}{\partial T^2}\bigg|_{V}. \end{array} $
(20)
As shown in the upper panel of Fig. 6, the scaled specific heat, $ C_{V}/T^{3} $, first rises rapidly with increasing temperature, reaches the maximum near chiral critical temperature $ T^{\chi}_c $, and then decreases and eventually remains constant. Similar to $ P/T^{4} $, $ s/T^{3} $, and $ \epsilon/T^{4} $, the limit value of $ C_{V}/T^{3} $ at high temperatures also decreases as $ \xi $ increases. The peak of $ C_{V}/T^{3} $ decreases as $ \xi $ increases; in other words, as $ \xi $ increases, the critical behavior of $ C_{V}/T^{3} $ is smoothed out. From the lower panel of Fig. 6, we can observe that the thermal behavior of the speed of sound squared, $ c_{s}^{2} $, for $ \xi = -0.4 $ exhibits a sharp drop near the corresponding chiral critical temperature $ T_{c}^{\chi} $; then, it increases rapidly up to the ideal gas value of $ 1/3 $. Moreover, as $ \xi $ increases, the dip structure of $ c_{s}^{2} $ is gradually weakened, and the location of its minimum shifts to higher temperatures, which is qualitatively similar to $ C_V/T^3 $. At high temperatures, we can see that $ c_{s}^2 $ is nearly unaffected by $ \xi $ because the reduction in entropy density and the increment in the inverse specific heat almost cancel each other out. The literature on studies of the finite-size effect [41, 42] and the non-extensive effect [57] in the PNJL model has also indicated that as system size $ L $ (non-extensive parameter $ q $) decreases (increases), the critical behavior of $ c_{s}^2 $ gradually dilutes and even vanishes. Therefore, these results for thermodynamics again emphasize that an increase in $ \xi $ can hinder the restoration of chiral symmetry.
Figure6. (color online) Temperature dependences of scaled specific heat $C_{V}/T^3$ (upper panel) and squared speed of sound $c_{s}^2$ (lower panel) at $\mu=0$ MeV for isotropic ($\xi=0$ (blue dashed lines)) and anisotropic ($\xi=$ $-0.4$ (orange dotted-dashed lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines)) quark matter in the quark-meson model.

2
C.Meson mass
-->

C.Meson mass

In this part, we study the chiral structures of scalar ($ J^P = 0^+ $) and pseudoscalar ($ J^P = 0^- $) meson masses at the vanishing quark chemical potential. A detailed procedure for calculating the meson mass at a finite temperature and quark chemical potential in the quark-meson model can be found in Ref. [36]. Here, we just sketch the outline of the related computation. In quantum field theory, scalar and pseudoscalar meson masses can generally be obtained from the second derivative of the temperature- and quark chemical potential-dependent thermodynamic potential density, $ \Omega(T,\mu_{f}) $, with respect to the corresponding scalar fields $ \alpha_{S,a} = \sigma_{a} $ and pseudoscalar fields $ \alpha_{P,a} = \pi_{a} (a = 0,...,8) $, which can be expressed as [36]
$ \begin{array}{l} m_{i,ab}^2 = \dfrac{\partial^2\Omega\left(T,\mu_{f}\right)}{\partial\alpha_{i,a}\partial\alpha_{i,b}}\bigg|_{\rm{min}} = \left(m_{i,ab}^{\rm{M}}\right)^2+\left(m_{i,ab}^{\rm{T}}\right)^2, \end{array}$
(21)
where the $ i = S(P) $ subscript denotes the scalar (pseudoscalar) mesons. The first term on the right-hand side of Eq. (21) denotes the vacuum mass squared matrices calculated from the second derivative of purely mesonic potential. The second term represents the modification of the mass squared matrices due to fermionic thermal correction at a finite temperature and quark chemical potential, which in an anisotropic system can be written as
$ \begin{aligned}[b] (\delta m_{i,ab}^{T})^2 =& \dfrac{\partial\Omega_{q\bar{q}}(T,\mu_{f},\xi)}{\partial\alpha_{i,a}\partial\alpha_{i,b}} = 2N_{c}\sum_{f = l,s}\int\dfrac{{\rm d}p}{4\pi^2}\dfrac{p^2}{E_{f}}\left\{\left[f_{q,f}^0\left(m^2_{f,ab}-\dfrac{m^2_{f,a}m_{f,b}^2}{2E_{f}^2}\right)-\dfrac{f_{q,f}^0\left(1-f_{q,f}^0\right)}{2E_{f}T}m_{f,a}^2m_{f,b}^2\right]\right.\\& \left.\times\left[1-\dfrac{\xi p^2}{6E_{f}T}\left(1-f_{q,f}^0+\dfrac{T}{E_{f}}\right)\right]+\dfrac{\xi p^2f_{q,f}^0}{12E_{f}^2T^2}m_{f,a}^2m_{f,b}^2\left[\dfrac{2T^2}{E_{f}^2}+\dfrac{T}{E_{f}}-\dfrac{Tf^0_{q,f}}{E_{f}}-f_{q,f}^0\left(1-f_{q,f}^0\right)\right]+q\rightarrow\bar{q}\right\} . \end{aligned}$
(22)
The squared constituent quark mass derivative with respect to meson field $ \partial m_{f}^2/\partial\alpha_{i,a}\equiv m_{f,a}^2 $, and that with respect to meson fields $ \partial^2 m_{f}^2/(\partial\alpha_{i,a}\partial\alpha_{i,b})\equiv m_{f,ab}^2 $ for different flavors are listed in Table 3 of Ref. [36]. When $ \xi = 0 $, Eq. (22) can be reduced to the result for an isotropic system. Thereafter, the squared masses of four scalar meson states are given as [23, 36, 37]
$ \begin{array}{l} m_{a_{0}}^2 = (m_{a_{0}}^\mathrm{M})^2+(\delta m_{S,11}^T)^2, \end{array} $
(23)
$ \begin{array}{l} m_{\kappa}^2 = (m_{\kappa}^\mathrm{M})^2+(\delta m_{S,44}^T)^2, \end{array} $
(24)
$ \begin{aligned}[b] \; m_{\sigma}^2 =& m_{S,00}^2\cos^2\theta_{S}+m_{S,88}^2\sin^2\theta_{S}\\ &+2m_{S,08}^2\sin\theta_{S}\cos\theta_{S}, \end{aligned} $
(25)
$ \begin{aligned}[b] m_{f_{0}}^2 =& m_{S,00}^2\sin^2\theta_{S}+m_{S,88}^2\cos^2\theta_{S}\\ &-2m_{S,08}^2\sin\theta_{S}\cos\theta_{S}. \end{aligned} $
(26)
The four pseudoscalar meson masses are
$ \begin{array}{l} m_{\pi}^2 = (m_{\pi}^{\mathrm{M}})^2+(\delta m_{P,11}^T)^2, \end{array} $
(27)
$ \begin{array}{l} m_{K}^2 = (m_{K}^{\mathrm{M}})^2+(\delta m_{P,44}^T)^2, \end{array} $
(28)
$ \begin{aligned}[b] \;\;m_{\eta^{'}}^2 = & m_{P,00}^2\cos^2\theta_{P}+m_{P,88}^2\sin^2\theta_{P}\\ &+2 m_{P,08}^2\sin\theta_{P}\cos\theta_{P}, \end{aligned} $
(29)
$ \begin{aligned}[b] \;\;m_{\eta}^2 =& m_{P,00}^2\sin^2\theta_{P}+m_{P,88}^2\cos^2\theta_{P}\\& -2 m_{P,08}^2\sin\theta_{P}\cos\theta_{P}, \end{aligned} $
(30)
where the mixing angles, $ \theta_{S(P)} $, read as
$ \begin{array}{l} \tan 2{\theta _i} = \left( {\dfrac{{2m_{i,08}^2}}{{m_{i,00}^2 - m_{i,88}^2}}} \right),\;\;\;\;\;i - S,P. \end{array} $
(31)
and $ m_{i,00/88/08}^2 = (m_{i,00/88/08}^\mathrm{M})^2+\delta(m_{i,00/88/08}^{T})^2 $. The detailed descriptions of the vacuum contributions $\Big[ (m_{a_{0}}^\mathrm{M})^2$, $ (m_{\kappa}^\mathrm{M})^2 $, $ (m_{\pi}^{\mathrm{M}})^2 $, $ (m_{K}^{\mathrm{M}})^2 $ and $(m_{i,00/88/08}^\mathrm{M})^2 \Big]$ from the purely mesonic potential in Eqs. (23)-(30) can be found in Refs. [36, 37].
The left panels and right panels of Fig. 7 display the $ T $-dependent masses of the pseudoscalar ($ \pi $, $ K $, $ \eta' $, $ \eta $) and scalar ($ f_{0} $, $ \sigma $, $ a_{0} $, $ \kappa $) mesons for both isotropic and anisotropic quark matter in the quark-meson model, respectively. We can see that for a fixed anisotropy parameter, the masses of pseudoscalar meson sectors $ \pi $, $ K $, and $ \eta $ remain constant up to near the chiral critical temperature of non-strange condensate, $ T_{c}^{\chi} $, whereas the masses of $ \eta' $ and scalar meson sectors $ \sigma $, $ a_{0} $, $ \kappa $ remain constant at a low temperature and then decrease before reaching $ T_{c}^{\chi} $. For pseudoscalar meson sector $ f_{0} $, its mass also remains constant at a low temperature but decreases before reaching the chiral critical temperature of strange condensate, $ T_{s}^{\chi} $. For pseudoscalar meson sectors $ \pi $, $ K $, and $ \eta $, their masses always decrease with increasing $ \xi $ at $ T>140 $ MeV. However, for $ \eta' $ and pseudoscalar meson sectors ($ \pi $, $ K $, $ \eta' $, $ \eta $), the dependence of their masses on anisotropy parameter $ \xi $ is nonmonotonic in the entire temperature domain of interest. More precisely, with an increase in $ \xi $, the masses of $ \eta' $ $ \sigma $, $ a_{0} $, $ \kappa $ first increase in the low temperature domain ($ 100\; \mathrm{MeV}<T<160\;{\rm{MeV}} $) and then decrease in the higher temperature domain ($ T>160 \;{\rm{MeV}}$). For $ f_{0} $, its mass increases with increasing $ \xi $ at $ T<270 \;{\rm{MeV}}$ ($ viz $., $ T_{s}^{\chi}(\xi = 0.4) $) and decreases thereafter. As a whole, near above $ T_{c}^{\chi} $ or $ T_{s}^{\chi} $, all mesons have unphysical degrees of freedom, and their masses become degenerate, which signals the restoration of chiral symmetry. In Fig. 7, we can also see that with an increase in $ \xi $, the temperature coordinate at which meson masses begin to degenerate can be shifted to higher temperatures. This again demonstrates that an increase in the momentum-space anisotropy parameter can hinder the restoration of chiral symmetry. The qualitative behaviors of these meson masses with $ \xi $ are different from the results for analyzing the finite size dependence of meson masses within the PNJL model [42, 46], where $ K $, $ \eta $, and $ \eta' $ have a significant volume dependence in the lower temperature domain ($ T<100\; $MeV).
Figure7. (color online) Temperature dependences of pseudoscalar mesons $ \pi $, $ K $, $ \eta' $, $ \eta $ (left panels) and scalar mesons $ f_{0} $, $ \sigma $, $ a_{0} $, $ \kappa $ (right panels) at $ \mu = 0\; \mathrm{MeV} $ for both isotropic ($ \xi = 0 $ (blue dashed lines)) and anisotropic ($ \xi = $ $ -0.4 $ (orange dotted-dashed lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines)) quark matter in the quark-meson model.

2
D.Transport coefficient
-->

D.Transport coefficient

Studying transport properties is essential for a deep understanding of the dynamical evolution of strongly interacting matter. In this part, we discuss the influence of momentum-space anisotropy on transport coefficients, such as shear viscosity $ \eta $, electrical conductivity $ \sigma_{\rm el} $, and bulk viscosity $ \zeta $ in quark matter. Due to the effect of momentum-space anisotropy encoded in the parton distribution functions, the general expressions of these transport coefficients, which are obtained by solving the relativistic Boltzmann equation in relaxation time approximation, require some modifications [87-90]. Therefore, using the results in Refs. [88, 89], the formulas of $ \xi $-dependent transport coefficients at zero quark chemical potential are given as
$ \begin{aligned}[b] \eta_{} = \sum\limits_{f}\dfrac{d_f}{15T}\int \dfrac{{\rm d}p}{\pi^2}\dfrac{p^6}{E_{f}^2}\left[\tau_{q,f}f_{q,f}^0(1-f_{q,f}^0)\right]-\sum\limits_{f}\dfrac{\xi d_{f}}{90T^2}\int \dfrac{{\rm d}p}{\pi^2}\dfrac{p^8}{E_{f}^3}\left[\tau_{q,f}f_{q,f}^0(1-f_{q,f}^0)\times \left(1-2f_{q,f}^0+\dfrac{T}{E_{f}}\right)\right], \end{aligned} $
(32)
$ \begin{aligned} \sigma_{\rm el} = \displaystyle\sum\limits_{f}\dfrac{d_{f}q_{f}^2}{3T}\int \dfrac{{\rm d}p}{\pi^2}\dfrac{p^4}{E_{f}^2}\left[\tau_{q,f}f_{q,f}^0(1-f_{q,f}^0)\right](1+\dfrac{\xi}{3})-\sum\limits_{f}\dfrac{q_{f}^2\xi d_f}{18T^2}\int\dfrac{{\rm d}p}{(2\pi)^3}\dfrac{p^6}{E_{f}^3}\left[f_{q,f}^0(1+f_{q,f}^0)\left(1-2f_{q,f}^0+\dfrac{T}{E_{f}}\right)\right], \end{aligned} $
(33)
$ \begin{aligned}[b] \zeta_{} =& \displaystyle\sum\limits_{f}\dfrac{d_{f}}{T}\displaystyle\int \dfrac{{\rm d}p}{\pi^2}\dfrac{p^2}{E_{f}^2}\left[\left(\dfrac{1}{3}-c_{s}^2\right)p^2-c_{s}^2m_{f}^2+c_{s}^2m_{f}T\dfrac{{\rm d}m_{f}}{{\rm d}T}\right]^2\left[\tau_{q,f}f_{q,f}^0\left(1-f_{q,f}^0\right)\right] \\ &-\displaystyle\sum\limits_{f}\dfrac{\xi d_{f}}{6T^2}\displaystyle\int \dfrac{{\rm d}p}{\pi^2} \dfrac{p^4}{E_{f}^3}\left[\left(\dfrac{1}{3}-c_{s}^2\right)p^2-c_{s}^2m_{f}^2+c_{s}^2m_{f}T\dfrac{{\rm d}m_{f}}{{\rm d}T}\right]^2\left[\tau_{q,f}f_{q,f}^0\left(1-f_{q,f}^0\right)\left(1-2f_{q,f}^0\right)\right]\\ &-\displaystyle\sum\limits_{f}\dfrac{\xi d_{f}}{6T}\displaystyle\int \dfrac{{\rm d}p}{\pi^2} \dfrac{p^4}{E_{f}^4}\left[\dfrac{1}{9}p^4 -\left(c_{s}^2(m_{f}^2+p^2)-c_{s}^2m_{f}T\dfrac{{\rm d}m_{f}}{{\rm d}T}\right)^2\right]\tau_{q,f}f_{q,f}^0\left(1-f_{q,f}^0\right). \end{aligned} $
(34)
Here, $ d_{f} $ is the degeneracy factor for $ f $-flavor quarks. The quark electric charge, $ q_f $, is given explicitly by $ q_u = -q_{\bar{u}} = 2e/3 $ and $ q_{d,s} = -q_{\bar{d},\bar{s}} = -e/3 $. The electron charge reads $ e = (4\pi\alpha_s)^{1/2 } $ with fine structure constant $ \alpha_s\simeq1/137 $. Different from the formula for bulk viscosity in Ref. [89], we replace the original term $\left[\left(\dfrac{1}{3}-c_{s}^2\right)p^2\right]^2$ in the integrand with $\left[\left(\dfrac{1}{3}-c_{s}^2\right)p^2-c_{s}^2m_{f}^2+c_{s}^2m_{f}T\dfrac{{\rm d}m_{f}}{{\rm d}T}\right]^2$ to incorporate the in-medium effect. In the treatment of relaxation time $ \tau_{q,f} $, we roughly take a constant value of $ \tau_{q,f} = 1\ \mathrm{fm} $ for the computation. In the weakly anisotropic system, the former terms in Eqs. (32)-(34) are significantly larger than the latter terms in magnitude due to the difference in momentum power of the respective integrands. Therefore, the transport coefficients are still mainly dominated by the first term of the related quantitative expressions.
The variation of shear viscosity $ \eta $ with temperature at the vanishing quark chemical potential for both isotropic and anisotropic quark matter is shown in Fig. 8. We see that $ \eta $ in the (an-)isotropic quark matter rises monotonically with increasing temperature because the $ T $ dependence of $ \eta $ mainly comes from quark distribution function $ f_{q,f}^0 $ in the associated integrand. The qualitative behavior of $ \eta $ with $ \xi $ can also be understand well from the associated expression. In the vicinity of chiral critical temperature $ T_{c}^{\chi} $, $ \eta $ slightly decreases as $ \xi $ increases due to the decreasing behavior of Boltzmann factor $ {\rm e}^{-m_{f}(T)/T} $ with $ \xi $. In the higher temperature domain ($ T>{ }160 $ MeV), the decreasing feature of $ \eta $ is negligible due to the unsensitivity of the constituent quark masses to $ \xi $. However, the absolute value of the second term in Eq. (32) significantly increases with an increase in $ \xi $. As a result, $ \eta $ decreases as $ \xi $ increases. This is similar to the result in Ref. [89], where $ \eta $ for the QGP is calculated in the quasiparticle model. For electrical conductivity $ \sigma_{\rm el} $, its thermal behavior is similar to that of $ \eta $, and the quantitative difference between $ \eta $ and $ \sigma_{el} $ mainly comes from the different momentum power of the respective integrands. Similar to the shear viscosity, the $ \xi $ dependence of $ \sigma_{\rm el} $ is also determined by the second term in the associated expression. In Fig. 9, we observe that $ \sigma_{\rm el} $ decreases as $ \xi $ increases, which is also qualitatively consistent with the results of $ \sigma_{\rm el} $ for the QGP in the quasiparticle model [87, 90]. The dependence of $ \eta $ and $ \sigma_{\rm el} $ on momentum-space anisotropy is different from that on finite system size $ L $ in the framework of the (P)NJL model. In Ref. [41], both $ \eta $ and $ \sigma_{\rm el} $ first increase as $ L $ decreases in the low temperature domain, whereas the size effect nearly vanishes in the high temperature domain. Furthermore, the results in Ref. [57] also indicate that both $ \eta $ and $ \sigma_{\rm el} $ in the PNJL model increase as non-extensive parameter $ q $ increases for $ T>150\;{\rm{MeV}} $.
Figure8. (color online) Temperature dependence of shear viscosity $\eta$ at $\mu=0$ MeV in quark matter with $\xi= -0.4$ (orange dotted-dashed line), 0.0 (blue dashed line), 0.2 (red solid line), and 0.4 (green wide dashed line).

Figure9. (color online) Temperature dependence of electrical conductivity $\sigma_{\rm el}$ at $\mu=0$ MeV in quark matter with $\xi= -0.4$ (orange dotted-dashed line), 0.0 (blue dashed line), 0.2 (red solid line), and 0.4 (green wide dashed line).

Next, we discuss the temperature dependence of bulk viscosity $ \zeta $ at zero quark chemical potential for both isotropic and anisotropic quark matter. As shown in Fig. 10, for a fixed anisotropy parameter, $ \zeta $ has peaks in the vicinity of both $ T^{\chi}_{c} $ and $ T^{\chi}_{s} $, which is significantly different from the thermal behavior of $ \eta $ and $ \sigma_{\rm el} $. We also note that the thermal profile of $ \zeta $ is similar to $ {\rm d}m_{s}/{\rm d}T $ or $ \chi_{s} $, which may be attributed to the fact that the qualitative behavior of $ \zeta $ is mainly governed by $ {\rm d}m_{s}/{\rm d}T $ rather than the quark distribution function in the associated integrand of Eq. (34). Due to the decreasing feature of the peak of $ {\rm d}m_{s}/{\rm d}T $ with increasing $ \xi $, the double-peak structure of $ \zeta $ is weakened as $ \xi $ increases, and the positions of the peaks shift to higher temperatures, as shown in Fig. 10. The diluting effect of $ \xi $ on the critical behavior of $ \zeta $ is similar to that in studies of the finite volume effect and the non-extensive effect. In Ref. [41], the double-peak structure of $ \zeta $ even converts to one broadened peak structure when the system size is reduced to $ 2\ \mathrm{fm} $. In Ref. [57], as non-extensive parameter $ q $ increases to 1.1, the two peaks of $ \zeta $ begin to merge into a broad peak.
Figure10. (color online) Temperature dependence of bulk viscosity $\zeta$ at $\mu=0\; {\rm{MeV}}$ in quark matter with $\xi= -0.4$ (orange dotted-dashed line), 0.0 (blue dashed line), 0.2 (red solid line), and 0.4 (green wide dashed line).

V.SUMMARY AND CONCLUSION
In this work, an anisotropy parameter, $ \xi $, which reflects the degree of momentum-space anisotropy arising from different expansion rates of the fireball generated in HICs along the longitudinal and radial direction was introduced, for the first time, in the 2+1 flavor quark-meson model by replacing the isotropic distribution function in the thermodynamic potential of the quark-meson model with the anisotropic one. The effect of $ \xi $ on the chiral properties, thermodynamics, meson masses, and transport properties in quark matter were investigated. We found that the chiral phase transition of quark matter with different anisotropy parameters is always a crossover at the vanishing quark chemical potential. At the finite quark chemical potential, the temperature of the CEP is affected more significantly by the anisotropy parameter than its quark chemical potential, which is opposite to that in the study of the finite volume effect. We also demonstrate that at a high temperature, the limit values of various scaled thermodynamic parameters ($ P/T^4 $, $ s/T^3 $, $ \epsilon/T^4 $, $ C_{V}/T^3 $) are quite sensitive to $ \xi $. As $ \xi $ increases, their limit values decrease, which is different from the finite size effect, but rather similar to the non-extensive effect. Further, the critical behavior of $ C_{V}/T^3 $ and $ c_{s}^2 $ can be smoothed out with increasing $ \xi $. For scalar and pseudoscalar mesons, the temperature at which their masses begin to degenerate is enhanced as $ \xi $ increases, which implies that an increase in $ \xi $ can hinder the restoration of chiral symmetry. Finally, the transport coefficients, such as shear viscosity $ \eta $, electrical conductivity $ \sigma_{\rm el} $, and bulk viscosity $ \zeta $ for both isotropic and anisotropic quark matter, were also calculated. Our results show that $ \eta $ and $ \sigma_{\rm el} $ rise with increasing temperature, whereas the thermal behavior of $ \zeta $ exhibits a noticeable double-peak structure. It was found that $ \eta $ and $ \sigma_{\rm el} $ decrease monotonically as $ \xi $ increases, whereas the qualitative behavior of $ \zeta $ with $ \xi $ was similar to $ \chi_{s}(\xi) $. With increasing $ \xi $, the double-peak structure of $ \zeta $ can be weakened, and the positions of the peaks shift to higher temperatures.
In the present study, we only focused on the chiral aspect of the QCD phase diagram. The exploration of the confinement phase transition in anisotropic quark matter can also be addressed via the Polyakov-loop potential. In the Polyakov-loop improved quark-meson model, the chiral phase transition and the location of the CEP are affected further. For the calculation of the transport coefficients in this study, the quark relaxation time was assumed to be a constant. However, in a realistic interaction scenario, the relaxation time may also vary with the momentum anisotropy. These issues comprise our future research directions. Moreover, note that a spheroidal momentum-space anisotropy specified by one anisotropy parameter in one preferred propagation direction was considered in this work; however, the introduction of additional anisotropy parameters is necessary to provide a better characterization of the QGP properties. The chiral and confinement phase transitions in quark matter with ellipsoidal momentum-anisotropy [76, 77], characterized by two independent anisotropy parameters, can also be modeled using the PNJL model or PQM model. Research on these directions is in progress, and we expect to report our results soon.
相关话题/Effect momentum anisotropy

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹