删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Effect of null aether field on weak deflection angle of black holes

本站小编 Free考研考试/2022-01-01

A. ?vgün 1,
, ?. Sakall? 1,
, J. Saavedra 2,
, 1.Physics Department, Faculty of Arts and Sciences, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
2.Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso, Chile
Received Date:2020-01-07
Accepted Date:2020-07-06
Available Online:2020-12-01
Abstract:We study light rays in the static and spherically symmetric gravitational field of the null aether theory (NAT). To this end, we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation. Using the optical metrics of the NAT black hole, we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle. Our calculations indicate how gravitational lensing is affected by the NAT field. We also illustrate that the bending of light stems from global and topological effects.

HTML

--> --> -->
1.Introduction
According to the theory of general relativity (GR) [1], gravity affects space-time geometry, and the gravitational field produced by matter can be powerful enough to drastically alter the ordinary causal structure of space-time and produce a region, the so-called black hole (BH), in which even light is held and no part can escape to infinity. Therefore, scientists have been studying BHs in detail over the years [2-6].
The event horizon of a BH is the limit to which events cannot impact an observer on the opposite side. That is, it is the gravitational point of no return, and nobody can really "see" a BH. In fact, the event horizon is a null surface that separates the rays of light that reach infinity from those falling into singularity. On the other hand, astronomers can observe this curvature in space-time in the form of light from distant objects that gets bent while going around objects in the foreground. In particular, if a BH is immersed in a bright region, like a disc of glowing gas, it creates a dark region similar to a shadow [7, 8]. This shadow, caused by gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these massive objects. From this information, the position and mass of the BH can be determined. For static and spherical symmetric spaces, suitable coordinate systems can be introduced to determine the location of the event horizon by considering the points at which the local light cones tilt over. This means that the existence of the event horizon (i.e., BH) is related to the local Lorentz invariance of time. Therefore, it is of significance to study the properties of BHs in the context of gravity theories that address the local Lorentz invariance violations. For example, in GR, the existence of BHs depends on the causal structure, which originates from both the Lorentz symmetry in matter fields and the local flatness theorem. Therefore, it is natural to examine whether or not BHs will still be formed in the absence of Lorentz symmetry; if they exist, it is even more essential to analyze their physical features, as the signatures of Lorentz violations appear in the regime of strong gravity. On the other hand, when the Lorentz symmetry is broken and the causal structure is modified in the most radical way, BH solutions surprisingly do exist. In these new BH solutions, the event horizon is replaced by the universal horizon to be able to capture any mode independently of the propagation velocity [9, 10]. Some BH solutions have already been found in restricted Lorentz-violating gauges, such as spherical symmetry [9, 11] and slowly rotating backgrounds, both in lower dimensions [12] and four dimensions [13-16]. Generally, numerical solutions to the equations of Ho?ava gravity and the Einstein-aether theory admit such BHs. Nevertheless, analytical solutions are rare for such theories. However, these solutions are obtained in symmetry-restricted scenarios for various asymptotics [17]. In the Einstein-aether theory, the vector field is timelike everywhere, and it explicitly breaks the boost sector of Lorentz symmetry, which has been studied extensively in the literature (see, for instance, [18]). In particular, aether models present themselves as phenomenological probes to test for the presence of Lorentz symmetry breaking (LSB) in astrophysical objects and cosmology. Aether models are nothing but vector inputs to the Lagrangian density of a system having a nonvanishing vacuum expectation. Because of this property, the vector field dynamically selects an opted frame at each point in space-time and automatically breaks the Lorentz invariance. This is a mechanism that resembles the breaking of local symmetry in the Higgs mechanism [19] and serves as a phenomenological representation of the LSB terms in the gravitation sector of the Standard Model Extension [20].
The null aether theory (NAT) is one of the new vector-tensor theories of the modified gravity theory [21]. In this theory, the dynamical vector field acts as the aether, and an exact spherically symmetric BH solution with charge is possible [22]. It was also discussed in [22] that the NAT fields affect the solar system dynamics when the Eddington-Robertson-Schiff parameters $ \beta $ and $ \gamma $, which appear in the perihelion precession and light deflection expressions, are extracted for the NAT BHs. Furthermore, it was shown that in the post-Newtonian order, although there is no contribution from the NAT field to the deflection of light rays passing near the BH (as in GR), the NAT field contributes to the perihelion precession of planetary orbits. Later remark can play a role on solar system observations. The physical features (singularity structure, ADM mass, and thermodynamics) of the NAT BH are also analyzed in [22]. Moreover, the NAT charge is able to reduce the horizon thermodynamics to that of the Reissner-Nordstr?m-(A)dS BH of GR and modify the circular orbits of massive and massless particles around the BH. To utilize the differential deflection exhibited by weak lensing, the first weak deflection angle is calculated. It depends on the mass distribution of the gravitational lensing system. Gibbons and Werner reported that it is possible to calculate the deflection angle in weak field limits using the Gauss-Bonnet theorem (GBT) and optical geometry [23, 24]. In this method, they focus on the domain outside the trajectory of light. The optical metric has geodesics, which are spatial light rays, such that the focusing of light rays is considered as a topological effect [25]. At the present time, the GW method has been applied to various space-time metrics of black holes and wormholes (see, for example, [26-61] and the references therein). We can define the domain surface as $ (D, \chi, g) $ using the Euler characteristic $ \chi $ and a Riemannian metric g. Thus, the GBT can be formulated as follows [23]:
$ \int \int_D K {\rm d}S + \int_{\partial D} \kappa {\rm d}t + \sum\limits_i \alpha_i = 2\pi \chi(D), $
(1)
where $ \alpha_i $ is the exterior angle with the ith vertex, K represents the Gaussian curvature, and $ \kappa $ represents the geodesics curvature. This method only works for asymptotically flat space-times and is expressed as follows [23]:
$ \hat{\alpha} = - \int \int_D K {\rm d}S. $
(2)
In this study, our main purpose is to explore the effects of NAT on gravitational lensing. To this end, we organize the paper as follows: In Section 2, we briefly review the BH space-time of the NAT. Section 3 is devoted to the computation of the deflection angle by NAT BH using the GBT in a weak field regime and in the plasma medium. We conclude our results in Section 4. Natural units are used throughout this paper: $ \hbar = c = 1 $.
2.NAT BH space-time
The line element of the asymptotically flat NAT BH is expressed as [22]
$ {\rm d}s^2 = -h(r){\rm d}t^2+\frac{{\rm d}r^2}{h(r)}+r^2{\rm d}\theta^2+r^2\sin^2\theta {\rm d}\varphi^2, $
(3)
where
$ h(r) = \left\{ {\begin{array}{*{20}{l}}{1 - \dfrac{{2a_1^2{b_1}}}{{{r^{1 + q}}}} - \dfrac{{2a_2^2{b_2}}}{{{r^{1 - q}}}} - \dfrac{{2\tilde m}}{r}}&{({\rm{for}}\;q \ne 0),}\\{1 - \dfrac{{2m}}{r}}&{({\rm{for}}\;q = 0),}\end{array}} \right.$
(4)
where $ a_1 $, $ a_2 $, $ \tilde{m} $, and m are integration constants and
$ \begin{split}& q\equiv\sqrt{9+8\frac{c_1}{c_{23}}},\\& b_1 = \frac{1}{8}[c_3-3c_2+c_{23}q],\; \; b_2 = \frac{1}{8}[c_3-3c_2-c_{23}q], \end{split} $
(5)
in which $ c_{1} $, $ c_{2} $, $ c_{3} $, and $ c_{23} = c_{2}+c_{3} $ are dimensionless constant parameters. Furthermore, the constants $ \tilde{m} $ and m are the mass parameters of the solutions.
As is evident from Eq. (4), in the case $ q = 0 $, the metric is nothing but the well-known Schwarzschild space-time, which is asymptotically flat. However, in the case $ q\neq0 $, to achieve asymptotically flat boundary conditions, one should consider the following cases separately (by definition, $ q>0 $ [22]):
$ h(r)\mid_{r\rightarrow\infty} = 1 \left\{\begin{array}{l} {{\rm{for}}\; 0<q<1} &{({\rm{if}} \;a_1\neq0 \;{\rm{and}} \;a_2\neq0)\; {\rm{or}} \;({\rm{if}} \;a_1 = 0\; {\rm{or}} \;b_1 = 0),} &\\ {{\rm{for}} \;0<q} &{({\rm{if}} \;a_2 = 0\; {\rm{or}} \;b_2 = 0).} \end{array} \right. $
(6)
In this study, we shall consider the case of $ a_2 = 0 $. Thus, the metric function $ h(r) $ and the scalar aether field $ \phi(r) $ take the following forms:
$h(r) = 1-\frac{2a_1^2b_1} {r^{1+q}}-\frac{2\tilde{m}}{r}, $
(7)
$ \phi(r) = \frac{a_1}{r^{(1+q)/2}}. $
(8)
The location of the event horizon $ r_0 $ is given by $ h(r_0) = 0 $ and the area of the event horizon is $ A = 4\pi r_0^2 $. Setting $ a_1 = GQr_0^{(q-1)/2} $, where Q is the NAT "charge," Eqs. (7) and (8) become
$ h(r) = 1-\frac{2G^2Q^2b_1} {r^2}\left(\frac{r_0}{r}\right)^{q-1}-\frac{2\tilde{m}}{r}, $
(9)
$\phi(r) = \frac{GQ}{r}\left(\frac{r_0}{r}\right)^{(q-1)/2}. $
(10)
At the location $ r_0 $, we have
$ h(r_0) = 1-\frac{2G^2Q^2b_1} {r_0^2}-\frac{2\tilde{m}}{r_0} = 0, $
(11)
$\phi(r_0) = \frac{GQ}{r_0}. $
(12)
It is worth noting that the horizon condition (11) is independent of the parameter q. In addition, the scalar aether field $ \phi(r) $ resembles the electric potential at $ r = r_0 $.
Using the asymptotically flat solutions of the NAT black hole given in [22], taking $ q = 1 $, the metric function and scalar aether field are expressed as
$ h(r) = 1-\frac{2a_1^2b_1} {r^2}-\frac{2\tilde{m}}{r}, $
(13)
$ \phi(r) = \frac{a_1}{r^{1/2}}. $
(14)
The deflection angle of photon can be calculated using the following formula ($ r_0 $ is the distance of closest approach) [62]:
$ \hat{\alpha}(r_0) = -\pi + 2 \int_{r_0}^\infty {\rm d}r \frac{1}{r \sqrt{\frac{r^2 f(r_0)}{r_0^2}-h(r)}}. $
(15)
However, in most cases, it is not easy to solve this integral. For example, in the case of $ \frac{\tilde{m}}{r_0} \ll 1 $, the deflection angle is found to be too small, which is known as weak lensing. Moreover, $ \hat{\alpha} $ grows as $ r_0 $ approaches the photosphere until it diverges and converts into strong lensing.
3.Calculation of weak deflection angle of NAT BH
2
3.1.Weak deflection angle and GBT
-->

3.1.Weak deflection angle and GBT

In this section, we calculate the weak deflection angle of NAT BH using the GBT. First, for simplicity, we assume that $ \theta = \pi/2 $ for the equatorial plane and use the space-time metric given in Eq. (13) to write the optical metric as follows:
$ {\rm d}t^2 = \frac{{\rm d}r^2}{\left(1-\dfrac{2a_1^2b_1} {r^2}-\dfrac{2\tilde{m}}{r}\right)^2} + \frac{r^2}{\left(1-\dfrac{2a_1^2b_1} {r^2}-\dfrac{2\tilde{m}}{r}\right)} {\rm d}\phi^2. $
(16)
Next, we calculate the Gaussian curvature of the optical NAT BH space-time:
$ K = \frac{R}{2} \approx -2\,{\frac {\tilde{m}}{{r}^{3}}}+6\,{\frac {{ b_1}\, \left( 2\,\tilde{m}-r \right) { {a_1}}^{2}}{{r}^{5}}}. $
(17)
Here, using the above Gaussian curvature of the optical NAT BH space-time in the GBT, we obtain the deflection angle. The GBT provides the relation between the intrinsic geometry of space-time and the topology of the region $ D_{R} $ in M, with the boundary $ \partial D_{R} = \gamma_{\tilde{g}}\cup C_{R} $ [23]:
$ \int\limits _{D_{R}}K\,\mathrm{d}S+\oint\limits _{\partial D_{R}}\kappa\,\mathrm{d}t+\sum\limits_{i}\epsilon_{i} = 2\pi\chi(D_{R}). $
(18)
Note that $ \kappa = \tilde{g}\,(\nabla_{\dot{\gamma}}\dot{\gamma},\ddot{\gamma}) $represents the geodesic curvature, where $ \tilde{g}(\dot{\gamma},\dot{\gamma}) = 1 $ and $ \ddot{\gamma} $ is the unit acceleration vector, and $ \epsilon_{i} $ corresponds to the exterior angle at the $ i^{\rm th} $ vertex. As $ r\rightarrow\infty $, both jump angles reduce to $ \pi/2 $, and it is found that $ \theta_{O}+\theta_{S}\rightarrow\pi $. Because $ D_{R} $ is not singular, the Euler characteristic is $ \chi(D_{R}) = 1 $. Hence, the GBT is expressed as
$ \iint\limits _{D_{R}}K\,\mathrm{d}S+\oint\limits _{\partial D_{R}}\kappa\,\mathrm{d}t+\theta_{i} = 2\pi\chi(D_{R}), $
(19)
in which $ \gamma_{\tilde{g}} $ is a geodesic and $ \theta_{i} = \pi $ denotes the total jump angle. Therefore, we have $ \kappa(\gamma_{\tilde{g}}) = 0 $. After recalling the Euler characteristic number, which is $ \chi = 1 $, we find that the remaining part yields $ \kappa(C_{R}) = |\nabla_{\dot{C}_{R}}\dot{C}_{R}| $ as $ r\rightarrow\infty $. The radial component of the geodesic curvature is calculated as follows:
$ \left(\nabla_{\dot{C}_{R}}\dot{C}_{R}\right)^{r} = \dot{C}_{R}^{\varphi}\,\partial_{\varphi}\dot{C}_{R}^{r}+\Gamma_{\varphi\varphi}^{r}\left(\dot{C}_{R}^{\varphi}\right)^{2}. $
(20)
At very large R, $ C_{R}: = r(\varphi) = r = {\rm const} $, and we have
$ \left(\nabla_{\dot{C}_{R}^{r}}\dot{C}_{R}^{r}\right)^{r}\rightarrow-\frac{1}{r}. $
(21)
It is noted that the geodesic curvature does not depend on topological defects, $ \kappa(C_{R})\rightarrow r^{-1} $. Thereafter, from the optical space-time metric (16), one can see that $ \mathrm{d}t = r\,\mathrm{d}\,\varphi $; thus,
$ \kappa(C_{R})\mathrm{d}t = \mathrm{d}\,\varphi. $
(22)
Using the above results, the GBT equation reduces to the following form:
$ \iint\limits _{D_{R}}K\,\mathrm{d}S+\oint\limits _{C_{R}}\kappa\,\mathrm{d}t\overset{{r\rightarrow\infty}}{ = }\iint\limits _{S_{\infty}}K\,\mathrm{d}S+\int\limits _{0}^{\pi+\hat{\alpha}}\mathrm{d}\varphi. $
(23)
In the weak deflection limit, one may assume that the light ray is expressed as $ r(t) = u/\sin\varphi $ at the zeroth order. Thereafter, we use the straight line approximation [23] $ r = u/ \sin \phi $, where u is the impact parameter, and Eq. (2) becomes
$ \hat{\alpha} = - \int_0^\pi \int_{\frac{u}{\sin \phi}}^\infty K {\rm d}S, $
(24)
where $ {\rm d}S = r{\rm d}r {\rm d}\phi $. Note that we ignore the higher order terms. Hence, Eqs. (17) and (24) are simplified to the following expression for the deflection angle of the NAT BH in the second order owing to weak lensing:
$ \hat{\alpha}\simeq 3/2\,{\frac {{{ a_1}}^{2}{ b_1}\,\pi}{{u}^{2}}}+4\,{\frac {\tilde{m}}{u}}, $
(25)
where the deflection angle is in full agreement with Eq. (115) in the paper [22]. Here, one realizes that depending on the sign of the aether field parameter $ b_1 $, the light deflection can be more or less than the GR value expressed by the first term in Eq. (25). For $ b_1<0 $, the aether field decreases the light deflection angle relative to the Schwarzschild case in GR. This is similar to the effect of charge in the Reissner-Nordstr?m solution [63, 64] for the weak-field limits. Thus, in the presence of the $ b_1>0 $ NAT parameter, the aether increases the deflection angle, and the deflection angle reduces to that in the case of the Schwarzschild BH when $ b_1 = 0 $. The deflection angle in the leading order terms is seen to be in agreement with [22].
2
3.2.Weak deflection angle of NAT BH in plasma medium
-->

3.2.Weak deflection angle of NAT BH in plasma medium

To consider the effects of plasma [38], in this subsection we shall examine the case in which light travels from vacuum to a hot, ionized gas medium. Let v be the velocity of light through the plasma. Then, the refractive index $ n(r) $ is expressed as follows:
$ n(r) \equiv \frac{c}{v} = \frac{1}{{\rm d}r/{\rm d}t} \quad \quad\quad\quad\quad \{\because c = 1\}. $
(26)
Thus, we obtain the refractive index $ n(r) $ for a NAT BH: [38]
$ n(r) = \sqrt{1-\frac{\omega_e^2}{{\omega_\infty^2}} \left(1-\frac{2a_1^2b_1} {r^2}-\frac{2\tilde{m}}{r}\right)}, $
(27)
where $ \omega_{e} $ and $ \omega_{\infty} $ are the electron plasma and photon frequencies measured by an observer at infinity, respectively. The line element (13) can be rewritten as
$ \begin{split} {\rm d} \sigma ^ { 2 } = &g _ { i j } ^ { \mathrm { opt } } {\rm d} x ^ { i } {\rm d} x ^ { j } \\=& \frac { n ^ { 2 } ( r ) } {1-\dfrac{2a_1^2b_1} {r^2}-\dfrac{2\tilde{m}}{r}} \left[ \frac{{\rm d} r ^ { 2 }}{1-\dfrac{2a_1^2b_1} {r^2}-\dfrac{2\tilde{m}}{r}} + r^2 {\rm d} \phi ^ { 2 }\right]. \end{split}$
(28)
The optical Gaussian curvature can then be expressed as
$\begin{split} K \approx & -2\,{\frac {\tilde{m}}{{r}^{3}}}-3\,{\frac {\tilde{m}{\omega_e}^{2}}{{\omega _{\infty}}^{2}{r}^{3}}}+ \left( -6\,{r}^{-4}+12\,{\frac {\tilde{m}}{{r}^{5}}}\right.\\&\left.+ \left( -10\,{\frac {1}{{\omega _{\infty}}^{2}{r}^{4}}}+52\,{\frac {\tilde{m} }{{\omega _{\infty}}^{2}{r}^{5}}} \right) {\omega_e}^{2} \right) {a_1}^{2}b_1. \end{split}$
(29)
On the other hand, it follows from Eq. (28) that
$ \frac{{\rm d}\sigma}{{\rm d}\varphi}\bigg|_{C_{r}} = \sqrt{1-\frac{\omega_e^2}{{\omega_\infty^2}} \left(1-\frac{2a_1^2b_1} {r^2}-\frac{2\tilde{m}}{r}\right)} \left( \frac { r^2 } { 1-\frac{2a_1^2b_1} {r^2}-\frac{2\tilde{m}}{r}} \right) ^ { 1 / 2 }, $
(30)
and we have
$ \lim\limits_{R\to\infty} \kappa_g\frac{{\rm d}\sigma}{{\rm d}\varphi}\bigg|_{C_R} = 1\,. $
(31)
For the limit $ R\to\infty $ and using the straight light approximation $ r = u/\sin\varphi $, the GBT is then expressed as [38]
$ \lim\limits_{R\to\infty} \int^{\pi+\alpha}_0 \left[\kappa_g\frac{{\rm d}\sigma}{{\rm d}\varphi}\right]\bigg|_{C_R}{\rm d}\varphi = \pi-\lim\limits_{R\to\infty}\int^\pi_0\int^R_{\frac{u}{\sin\varphi}}\mathcal{K} {\rm d}S. $
(32)
Consequently, the deflection angle yields
$ \hat{\alpha} \approx 6\,{\frac {\tilde{m}{\omega_e}^{2}}{u{\omega_{\infty}}^{2}}}+4\,{ \frac {\tilde{m}}{u}}+\,{\frac {5{a_1}^{2}b_1{\omega_e}^{2}\pi}{2{u}^{2}{\omega_{\infty}}^{2}}}+\,{\frac {3{a}^{2}b_1\pi}{2{u}^{2}}}, $
(33)
where the photon rays are moving in a medium of homogeneous plasma. Note that in the absence of plasma $ \left(\omega_{e} = 0\right) $ or $ \left(\omega_{e} / \omega_{\infty} \rightarrow 0\right) $, this deflection angle reduces to the vacuum case calculated in Eq. (25). It is clear that for the photons propagating in a homogeneous plasma for the case of frequency $ \omega_{e} / \omega_{\infty} = 6 \times 10^{-3} $ [65], the deflection angle increases. However, the effect of the plasma medium cannot be detected easily owing to its small value in near-future observations.
4.Conclusions
In this study, we have examined the weak gravitational lensing of NAT BH, which is a solution of the new vector-tensor theory. After integrating the deflection angle integral (24), analytically, we have illustrated that if $ \frac{\tilde{m}}{r_0} \ll 1 $, the deflection angle becomes too small. The latter remark is an evidence of weak lensing. Remarkably, $ \hat{\alpha} $ increases as $ r_0 $ approaches the photosphere until it diverges to produce strong lensing. The aether field parameter $ b_1 $ modifies the gravitational lensing in such a way that when $ b_1<0 $, the aether field decreases the light deflection angle relative to the Schwarzschild BH of GR. This result is analogous to the effect of charge in the Reissner-Nordstr?m BH [63, 64] in the weak-field limit. On the other hand, the positive NAT parameter increases the deflection angle, which reduces to the case of the Schwarzschild BH when $ b_1 = 0 $. Further, in the existence of plasma $ \left(\omega_{e} = 0\right) $, the photons propagate in a homogeneous plasma for the case of frequency $ \omega_{e} / \omega_{\infty} = 6 \times 10^{-3} $ [65-71], and the deflection angle increases. However, it seems that the effect of the plasma medium will not be detected in the near future owing to its infinitesimal value [72].
In future work, we plan to study our topological framework on the gravitational lensing of rotating NAT BHs, which can be obtained using the Newman-Janis algorithm [73], similar to the Kerr and/or BTZ algorithms, which are accepted as more realistic BH geometries. Spraying the particles from their ergosphere affects the moving photons around the rotating BH's photon sphere. Therefore, it will be interesting to analyze the deflection angle of the rotating NAT BH. We believe that the results to be obtained will shed light on future observations.
相关话题/Effect aether field

婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熺紒銏犳灈缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧鈽夋い顓炴健閹虫粌顕ュΔ濠侀偗闁诡喗锕㈤幃鈺冪磼濡厧甯鹃梻浣稿閸嬪懐鎹㈤崟顖氭槬闁挎繂顦伴悡娆戔偓瑙勬礀濞层倝鍩㈤崼鈶╁亾鐟欏嫭绀冪紒顔肩Ч楠炲繘宕ㄩ弶鎴炲祶濡炪倖鎸鹃崰鎰邦敊韫囨稒鈷掗柛灞捐壘閳ь剙鍢查湁闁搞儺鐏涘☉銏犵妞ゆ劑鍊栧▓鎯ь渻閵堝棗鍧婇柛瀣尰閵囧嫰顢曢敐鍥╃杽婵犵鍓濋幃鍌炲春閳╁啯濯撮柧蹇曟嚀楠炩偓婵犵绱曢崑鎴﹀磹閺嶎厽鍋嬫俊銈呮噺閸嬶繝鏌曢崼婵囩┛濠殿喗濞婇弻鈩冨緞婵犲嫭鐨戝┑鈩冨絻閻楁捇寮婚敓鐘茬闁挎繂鎳嶆竟鏇熺節閻㈤潧袨闁搞劍妞介弫鍐閻樺灚娈鹃梺鍛婄箓鐎氼噣寮抽崱娑欑厱闁哄洢鍔屾晶顔界箾閸繄鐒告慨濠冩そ瀹曘劍绻濋崒姣挎洘绻涚€涙ḿ鐭岄柛瀣ㄥ€曢悾宄懊洪鍕紜闂佸搫鍊堕崕鏌ワ綖瀹ュ鈷戦悷娆忓閸斻倝鏌f幊閸斿孩绂嶉幖渚囨晝闁靛牆娲ㄩ敍婊冣攽鎺抽崐鏇㈠疮椤愶箑鍑犻柡鍐ㄧ墛閻撴瑥顪冪€n亪顎楅柍璇茬墛椤ㄣ儵鎮欓弶鎴犱紝濡ょ姷鍋涘ú顓€€佸▎鎾充紶闁告洦浜i崺鍛存⒒閸屾艾鈧绮堟笟鈧獮鏍敃閿曗偓绾惧湱鎲搁悧鍫濈瑲闁稿绻濆鍫曞醇濮橆厽鐝曞銈庡亝濞茬喖寮婚妸鈺傚亞闁稿本绋戦锟�
2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮妤呮⒒娓氣偓濞佳呮崲閸儱纾归柡宓偓濡插牏鎲搁弮鍫濊摕闁挎繂顦悞娲煕閹板吀绨奸柛锝庡幘缁辨挻鎷呴崜鎻掑壈闂佹寧娲︽禍顏勵嚕椤愶箑纾奸柣鎰綑濞堟劙姊洪崘鍙夋儓闁哥姵鑹惧嵄闁告鍋愰弨浠嬫煃閽樺顥滃ù婊呭仜椤儻顦虫い銊ワ躬瀵偆鈧綆鍓涚壕钘壝归敐澶嬫锭濠殿喖鍊搁湁婵犲﹤妫楅悡鎰庨崶褝鍔熼柍褜鍓氱粙鎺曟懌婵犳鍨伴顓犳閹烘垟妲堟慨妤€妫楅崜杈╃磽閸屾氨孝闁挎洏鍎茬粚杈ㄧ節閸ヨ埖鏅濋梺闈涚墕閹峰寮抽銏♀拺闁告捁灏欓崢娑㈡煕閵娿儳鍩g€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熸潏鍓хɑ缁绢叀鍩栭妵鍕晜閼测晝鏆ら梺鍝勬湰缁嬫垿鍩㈡惔銈囩杸闁哄洨濯崬鍦磽閸屾瑧绐旂紓鍌涜壘铻為柛鏇ㄥ枤娴滄瑩姊绘担鍛婂暈婵炶绠撳畷銏c亹閹烘垹锛涢梺鍦劋椤ㄥ棝鍩涢幋锔界厱婵犻潧妫楅鈺呮煃瑜滈崜娆戠礊婵犲洤绠栭梺鍨儐缂嶅洭鏌嶉崫鍕簽婵炶偐鍠庨埞鎴︻敊鐟欐帞鎳撻埢鏂库槈閵忊€冲壒濠德板€愰崑鎾绘煃鐟欏嫬鐏撮柟顔规櫊楠炴捇骞掗崱妞惧闂佸綊妫跨粈渚€鏌ㄩ妶鍛斀闁绘ɑ褰冮弸銈嗙箾閸粎鐭欓柡宀嬬秮楠炲洭顢楁担鍙夌亞闂備焦鎮堕崐妤呭窗閹邦喗宕叉繝闈涱儏閻掑灚銇勯幒鎴濐仼闁绘帗妞介弻娑㈠箛椤栨稓銆婇梺娲诲幗椤ㄥ懘鍩為幋锔绘晩缂佹稑顑嗛悾鍫曟⒑缂佹﹩娈旂紒缁樺笧閸掓帡宕奸悢椋庣獮闁诲函缍嗛崜娑㈩敊閺囥垺鈷戦柣鐔煎亰閸ょ喎鈹戦鐐毈鐎殿喗濞婇崺锟犲磼濠婂拋鍟庨梺鑽ゅТ濞壯囧礋椤愵偂绱�547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鎮楅敐搴′簻妞ゅ骏鎷�4婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簼閺呮煡鏌涢妷銏℃珖妞わ富鍨跺娲偡闁箑娈堕梺绋款儑閸犳牠宕洪姀銈呯睄闁逞屽墴婵$敻宕熼鍓ф澑闂佽鍎抽顓⑺囬柆宥嗏拺缂佸顑欓崕鎰版煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫨鈧線寮崼婵嗚€垮┑掳鍊曢崯顐︾嵁閹扮増鈷掗柛灞剧懅椤︼箓鏌涘顒夊剰妞ゎ厼鐏濋~婊堝焵椤掆偓閻g兘顢涢悜鍡樻櫇闂侀潧绻堥崹鍝勨枔妤e啯鈷戦梻鍫熶緱濡狙冣攽閳ヨ櫕鍠橀柛鈹垮灲瀵噣宕奸悢鍝勫箥闂備胶顢婇~澶愬礉閺囥垺鍎嶆繛宸簼閻撶喖鏌i弮鍫熸暠閻犳劧绱曠槐鎺撴綇閵娿儳鐟查悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊呭仦缁傛帡鎮℃惔妯绘杸闂佺粯鍔樺▔娑氭閿曞倹鐓曟俊銈呭閻濐亜菐閸パ嶅姛闁逞屽墯缁嬫帟鎽繝娈垮灡閹告娊骞冨畡鎵虫瀻婵炲棙鍨甸崺灞剧箾鐎涙ḿ鐭掔紒鐘崇墵瀵鈽夐姀鐘电杸闂佺ǹ绻愰幗婊堝极閺嶎厽鈷戠紒顖涙礃濞呮梻绱掔紒妯肩疄鐎殿喛顕ч埥澶娾堪閸涱垱婢戦梻浣瑰缁诲倿骞婃惔顭掔稏闁冲搫鎳忛埛鎴︽煕濞戞﹫鍔熼柟铏礈缁辨帗娼忛妸锔绢槹濡ょ姷鍋涚换姗€骞冮埡鍐╁珰闁肩⒈鍓﹂崯瀣⒒娴e憡鍟炲〒姘殜瀹曞綊骞庨崜鍨喘閸╋繝宕ㄩ瑙勫闂佽崵鍋炵粙鍫ュ焵椤掆偓閸樻牗绔熼弴銏♀拻濞达絽鎲$拹锟犲几椤忓棛纾奸柕濞垮妼娴滃湱绱掗鍛箺鐎垫澘瀚伴獮鍥敇閻樻彃绠婚梻鍌欑閹碱偆鈧凹鍓涢幑銏ゅ箳閺冨洤小闂佸湱枪缁ㄧ儤绂嶅⿰鍫熺厸闁搞儺鐓侀鍫熷€堕柤纰卞厴閸嬫挸鈻撻崹顔界彯闂佺ǹ顑呴敃銈夘敋閿濆洦宕夐悶娑掑墲閻庡姊虹拠鈥崇€婚柛蹇庡嫎閸婃繂顫忕紒妯诲闁荤喖鍋婇崵瀣磽娴e壊鍎愰柛銊ㄥ劵濡喎顪冮妶鍡樺蔼闁搞劌缍婇幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷40缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎸鹃埀顒冾潐濞叉牕煤閵娧呬笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷顔藉缓闂侀€炲苯澧版繛鎴犳暬楠炴牗鎷呴崨濠勨偓顒勬煟鎼搭垳绉靛ù婊冪埣閹垽宕卞☉娆忎化闂佹悶鍎荤徊娲磻閹捐绀傞柛娑卞弾濡粎绱撻崒姘偓宄懊归崶銊d粓闁归棿鐒﹂崑锟犳煃閸濆嫭鍣归柦鍐枔閳ь剙鍘滈崑鎾绘煕閺囥劌浜炴い鎾存そ濮婃椽骞愭惔锝囩暤濠电偠灏欐繛鈧€规洘鍨块獮妯肩磼濡鍔掗梺鑽ゅ枑閻熴儳鈧凹鍓熷畷銏c亹閹烘挴鎷洪梺鍛婄箓鐎氼厼顔忓┑瀣厱閹兼番鍨归悘鈺備繆閸欏濮囨顏冨嵆瀹曞ジ鎮㈤崫鍕闂傚倷鑳剁涵鍫曞礈濠靛枹娲冀椤愩儱小缂備緡鍋勭€殿剟姊婚崒姘偓椋庢濮橆兗缂氱憸宥堢亱闂佸搫鍟崐濠氭儗閸℃褰掓晲閸偄娈欓梺鑽ゅ枑鐎氬牓寮崼婵嗙獩濡炪倖妫侀~澶屸偓鍨墵濮婄粯鎷呴崨濠傛殘婵炴挻纰嶉〃濠傜暦閵忋倖瀵犲璺烘閻庢椽鎮楅崗澶婁壕闂佸憡娲﹂崜娑㈠储闁秵鈷戦柛婵嗗閺嗙偤鏌熺粙鍨挃濠㈣娲熼獮鎰償濞戞鐩庨梻渚€娼ф蹇曟閺団偓鈧倿鎳犻鍌滐紲闂佸搫鍟崐鎼佸几濞戞瑣浜滈柕蹇婂墲缁€瀣煙椤旇娅婃い銏℃礋閿濈偤顢橀悜鍡橆棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婇柍褜鍓氶妵鍕敃閵忊晜鈻堥梺璇″櫙缁绘繈宕洪埀顒併亜閹烘垵顏柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備浇顫夊畷妯衡枖濞戙埄鏁佺€光偓閸曨剛鍘告繛杈剧到婢瑰﹪宕曡箛鏂讳簻妞ゆ挴鍓濈涵鍫曟煙妞嬪骸鈻堥柛銊╃畺瀹曟宕ㄩ娑樼樆闂傚倸鍊风欢姘跺焵椤掑倸浠滈柤娲诲灦瀹曘垽骞栨担鍦幘闂佸憡鍔樼亸娆撳春閿濆應鏀介柨娑樺閺嗩剟鏌熼鐣屾噰鐎殿喖鐖奸獮瀣敇閻愭惌鍟屾繝鐢靛У椤旀牠宕板Δ鍛櫇闁冲搫鎳庣粈鍌涚箾閹寸偟顣叉い顐f礋閺屻劌鈹戦崱妯轰痪閻熸粎澧楃敮妤呭疾閺屻儲鐓曢柍鈺佸暟閹冲懘鏌i幘鍐测偓鎼佲€旈崘顔嘉ч柛鎰╁妿娴犲墽绱掗悙顒佺凡缂佸澧庨崚鎺楀煛閸涱喖浜滅紒鐐妞存悂寮插┑瀣拺闂傚牊绋撴晶鏇熺箾鐠囇呯暤妤犵偛妫濋弫鎰緞鐎Q勫闂備礁婀辨灙婵炲鍏橀崺銉﹀緞鐎c劋绨婚梺鎸庢椤曆冾嚕椤曗偓閺屾盯鍩為幆褌澹曞┑锛勫亼閸婃牜鏁幒妤佹櫇闁靛/鈧崑鎾愁潩閻愵剙顏�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸垹绁﹂梺鍛婂姦閸犳牜绮绘繝姘厱闁规崘灏欑粣鏃堟煃閻熸壆绠茬紒缁樼箞婵偓闁挎繂妫涢妴鎰斿Δ濠佺凹闁圭ǹ鍟块悾宄扳攽鐎n亜绐涢柣搴㈢⊕宀e潡宕㈤柆宥嗏拺闁告繂瀚弳濠囨煕鐎n偅灏电紒杈ㄥ笧閳ь剨缍嗛崑鍛暦瀹€鈧埀顒侇問閸n噣宕戞繝鍥х畺濞寸姴顑呴崹鍌涖亜閹扳晛鐏╂鐐村灴濮婄粯鎷呴崨濠冨創濠电偠顕滅粻鎴︼綖濠靛惟闁冲搫鍊告禒顓㈡⒑鐎圭姵銆冮悹浣瑰絻鍗遍柛顐犲劜閻撴瑩鏌i幇闈涘缂傚秵鍨块弻鐔煎礂閸忕厧鈧劙鏌$仦鐣屝ユい褌绶氶弻娑㈠箻閸楃偛顫囧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻娑㈠箻閼碱剦妲梺鎼炲妽缁诲牓寮婚妸鈺傚亜闁告繂瀚呴姀銏㈢<闁逞屽墴瀹曟帡鎮欑€电ǹ骞堟繝鐢靛仦閸ㄥ爼鏁冮锕€缁╃紓浣贯缚缁犻箖鏌涢锝囩畼闁绘帗鎮傞弻锛勪沪缁嬪灝鈷夐悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偤宕堕浣叉嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犲Δ锝呭暞閻撴瑩鏌涢幋娆忊偓鏍偓姘炬嫹