HTML
--> --> -->In this article, we study the CME in detail by determination of Landau levels. For the massive Dirac fermion system, several studies on CME addressed Landau levels. In Ref. [15], Fukushima et al. proposed four methods to derive the CME. One of these methods made use of Landau energy levels for the massive Dirac equation with chemical potential
From the study on CME for massive Dirac fermions through Landau levels, we conclude that the contribution to CME arises uniquely from the lowest Landau level, while the contributions from higher Landau levels cancel each other. However, because of the mass m of the Dirac fermion, the physical picture of the CME for the massive Dirac fermion system is not as clear as in the massless fermion case, as the physical meaning of the chiral chemical potential
$ \psi_{0\lambda}(k_{y},k_{z};{{x}}) = c_{0\lambda}\left(\begin{array}{c} \varphi_{0}\\ 0\\ F_{0\lambda}\varphi_{0}\\ 0 \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})},\ (\lambda = \pm1), $ | (1) |
In this article, we focus on a massless fermion (also referred to as the “chiral fermion”) system, where we show that it is easy to obtain a net electric current along the magnetic field direction, seen from the picture of the lowest Landau level. The chiral fermion field can be divided into two independent parts, namely the righthand and lefthand parts. First, we set up the notation. The electric charge of a fermion/antifermion is
To study the CME in the chiral fermion system, first we show a succinct derivation of CME employing the Wigner function approach, which we can use to obtain the CME as a quantum effect of the first order in the
The rest of this article is organized as follows. In Sec. 2, we present a succinct derivation for the CME using Wigner function approach. In Sec. 3, we determine the Landau levels for the righthand fermion field. In Secs. 4 and 5, we perform the second quantization of the righthand fermion system and obtain CME through the ensemble average. In Sec. 6, we discuss the physical picture of the lowest Landau level. Finally, we summarize this study in Sec. 7. Some derivation details are presented in the appendixes.
Throughout this article, we adopt natural units, where
$ \begin{split} {\cal{W}}_{\alpha\beta}(x,p) =& \bigg\langle:\frac{1}{(2\pi)^{4}}\int {\rm d}^{4}y{\rm e}^{-{\rm i}p\cdot y}\overline{\Psi}_{\beta}\left(x+\frac{y}{2}\right)U\left(x+\frac{y}{2},x-\frac{y}{2}\right)\\&\times\Psi_{\alpha}\left(x-\frac{y}{2}\right):\bigg\rangle, \\[-13pt]\end{split} $ | (2) |
Suppose that the electromagnetic field
$ \gamma\cdot K{\cal{W}}(x,p) = 0, $ | (3) |
$ {\cal{W}} = \frac{1}{4}({\cal{F}}+{\rm i}\gamma^{5}\mathcal{P}+\gamma^{\mu}{\cal{V}}_{\mu}+\gamma^{5}\gamma^{\mu}{\cal{A}}_{\mu}+\frac{1}{2}\sigma^{\mu\nu}{\cal{S}}_{\mu\nu}). $ | (4) |
$ J_{V}^{\mu}(x) = \int {\rm d}^{4}p{\cal{V}}^{\mu}, $ | (5) |
$ J_{A}^{\mu}(x) = \int {\rm d}^{4}p{\cal{A}}^{\mu}. $ | (6) |
$ \bigg(K^{2}-\frac{\rm i}{2}\sigma^{\mu\nu}[K_{\mu},K_{\nu}]\bigg){\cal{W}} = 0. $ | (7) |
$ \left(p^{2}-\frac{1}{4}\hbar^{2}\nabla^{2}\right){\cal{V}}_{\mu} = -e\hbar\tilde{F}_{\mu\nu}{\cal{A}}^{\nu}, $ | (8) |
$ \left(p^{2}-\frac{1}{4}\hbar^{2}\nabla^{2}\right){\cal{A}}_{\mu} = -e\hbar\tilde{F}_{\mu\nu}{\cal{V}}^{\nu}, $ | (9) |
$ {\cal{V}}^{\mu} = {\cal{V}}_{(0)}^{\mu}+\hbar{\cal{V}}_{(1)}^{\mu}+\hbar^{2}{\cal{V}}_{(2)}^{\mu}+\cdots, $ | (10) |
$ {\cal{A}}^{\mu}= {\cal{A}}_{(0)}^{\mu}+\hbar{\cal{A}}_{(1)}^{\mu}+\hbar^{2}{\cal{A}}_{(2)}^{\mu}+\cdots, $ | (11) |
$ p^{2}{\cal{V}}_{(0)}^{\mu} = 0,$ | (12) |
$ p^{2}{\cal{A}}_{(0)}^{\mu} = 0, $ | (13) |
$ p^{2}{\cal{V}}_{(1)\mu} =-e\hbar\tilde{F}_{\mu\nu}{\cal{A}}_{(0)}^{\nu}, $ | (14) |
$ p^{2}{\cal{A}}_{(1)\mu} = -e\hbar\tilde{F}_{\mu\nu}{\cal{V}}_{(0)}^{\nu}. $ | (15) |
$\begin{split} {\cal{V}}_{(0)}^{\mu} = & \frac{2}{(2\pi)^{3}}p^{\mu}\delta(p^{2})\sum\limits_{s}\bigg[\theta(p^{0})\frac{1}{{\rm e}^{\beta(p^{0}-\mu_{s})}+1}\\&+\theta(-p^{0})\frac{1}{{\rm e}^{\beta(-p^{0}+\mu_{s})}+1}\bigg],\end{split} $ | (16) |
$\begin{split} {\cal{A}}_{(0)}^{\mu} = & \frac{2}{(2\pi)^{3}}p^{\mu}\delta(p^{2})\sum\limits_{s}s\bigg[\theta(p^{0})\frac{1}{{\rm e}^{\beta(p^{0}-\mu_{s})}+1}\\&+\theta(-p^{0})\frac{1}{{\rm e}^{\beta(-p^{0}+\mu_{s})}+1}\bigg], \end{split}$ | (17) |
$\begin{split} {\cal{V}}_{(1)}^{\mu} =& \frac{2}{(2\pi)^{3}}e\hbar\tilde{F}^{\mu\nu}p_{\nu}\delta^{\prime}(p^{2})\\&\times\!\sum\limits_{s}s\bigg[\theta(p^{0})\frac{1}{{\rm e}^{\beta(p^{0}-\mu_{s})}+1}+\theta(-p^{0})\frac{1}{{\rm e}^{\beta(-p^{0}+\mu_{s})}+1}\bigg], \end{split} $ | (18) |
$ \begin{split} {\cal{A}}_{(1)}^{\mu} =& \frac{2}{(2\pi)^{3}}e\hbar\tilde{F}^{\mu\nu}p_{\nu}\delta^{\prime}(p^{2})\\&\times\sum\limits_{s}\bigg[\theta(p^{0})\frac{1}{{\rm e}^{\beta(p^{0}-\mu_{s})}+1}+\theta(-p^{0})\frac{1}{{\rm e}^{\beta(-p^{0}+\mu_{s})}+1}\bigg], \end{split}$ | (19) |
Now, we can calculate
$ J_{V}^{z} = \int {\rm d}^{4}p{\cal{V}}_{(1)}^{z} = \frac{e\hbar\mu_{5}}{2\pi^{2}}B, $ | (20) |
$ J_{A}^{z} = \int {\rm d}^{4}p{\cal{A}}_{(1)}^{z} = \frac{e\hbar\mu}{2\pi^{2}}B, $ | (21) |
$ {\cal{L}} = \overline{\Psi}(x){\rm i}\gamma\cdot D\Psi(x), $ | (22) |
$ {\rm i}\gamma\cdot D\Psi(x) = 0, $ | (23) |
$ {\rm i}\frac{\partial}{\partial t}\Psi(t,{{x}}) = {\rm i}{{\alpha}}\cdot{{D}}\Psi(t,{{x}}), $ | (24) |
$ {\rm i}\frac{\partial}{\partial t}\left(\begin{array}{c} \Psi_{L}(t,{{x}})\\ \Psi_{R}(t,{{x}}) \end{array}\right) = \left(\begin{array}{c} -{\rm i}{{\sigma}}\cdot{{D}}\Psi_{L}(t,{{x}})\\ {\rm i}{{\sigma}}\cdot{{D}}\Psi_{R}(t,{{x}}) \end{array}\right), $ | (25) |
In the following, we focus on solving the eigenvalue equation for the righthand fermion field
To determine the Landau levels, we must solve the eigenvalue equation for the righthand fermion field as follows,
$ {\rm i}{{\sigma}}\cdot{{D}}\psi_{R} = E\psi_{R}, $ | (26) |
$ \psi_{R0}(k_{y},k_{z};{{x}}) = \left(\begin{array}{c} \varphi_{0}(\xi)\\ 0 \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}. $ | (27) |
$ \psi_{Rn\lambda}(k_{y},k_{z};{{x}}) = c_{n\lambda}\left(\begin{array}{c} \varphi_{n}(\xi)\\ iF_{n\lambda}\varphi_{n-1}(\xi) \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}, $ | (28) |
For
$ \begin{split} \{\Psi_{R}({{x}}),\Psi_{R}^{\dagger}({{x}}^{\prime})\} =& \delta^{(3)}({{x}}-{{x}}^{\prime}), \\ \{\Psi_{R}({{x}}),\Psi_{R}({{x}}^{\prime})\} =& 0. \end{split} $ | (29) |
$ \begin{split} \Psi_{R}({{x}}) =& \sum\limits_{k_{y},k_{z}}[\theta(k_{z})a_{0}(k_{y},k_{z})\psi_{R0}(k_{y},k_{z};{{x}})\\&+\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})\psi_{R0}(k_{y},k_{z};{{x}})] \\ & +\sum\limits_{n,k_{y},k_{z}}[a_{n}(k_{y},k_{z})\psi_{Rn+}(k_{y},k_{z};{{x}})\\&+b_{n}^{\dagger}(k_{y},k_{z})\psi_{Rn-}(k_{y},k_{z};{{x}})]. \end{split} $ | (30) |
$ \begin{split} \{\theta(k_{z})a_{0}(k_{y},k_{z}),\theta(k_{z}^{\prime})a_{0}^{\dagger}(k_{y}^{\prime},k_{z}^{\prime})\} & = \theta(k_{z})\delta_{k_{y}k_{y}^{\prime}}\delta_{k_{z}k_{z}^{\prime}} \\ \{\theta(-k_{z})b_{0}(k_{y},k_{z}),\theta(-k_{z}^{\prime})b_{0}^{\dagger}(k_{y}^{\prime},k_{z}^{\prime})\} & = \theta(-k_{z})\delta_{k_{y}k_{y}^{\prime}}\delta_{k_{z}k_{z}^{\prime}} \\ \{a_{n}(k_{y},k_{z}),a_{n^{\prime}}^{\dagger}(k_{y}^{\prime},k_{z}^{\prime})\} & = \delta_{nn^{\prime}}\delta_{k_{y}k_{y}^{\prime}}\delta_{k_{z}k_{z}^{\prime}} \\ \{b_{n}(k_{y},k_{z}),b_{n^{\prime}}^{\dagger}(k_{y}^{\prime},k_{z}^{\prime})\} & = \delta_{nn^{\prime}}\delta_{k_{y}k_{y}^{\prime}}\delta_{k_{z}k_{z}^{\prime}}. \end{split}$ | (31) |
$ \begin{split} H =& \int {\rm d}^{3}x\Psi_{R}^{\dagger}({{x}}){\rm i}{{\sigma}}\cdot{{D}}\Psi_{R}({{x}}) = \sum\limits_{k_{y},k_{z}}[k_{z}\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z})\\&+(-k_{z})\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})b_{0}(k_{y},k_{z})] +\sum\limits_{n,k_{y},k_{z}}E_{n}(k_{z})[a_{n}^{\dagger}(k_{y},k_{z})\\&\times a_{n}(k_{y},k_{z})+b_{n}^{\dagger}(k_{y},k_{z})b_{n}(k_{y},k_{z})], \end{split} $ | (32) |
$ \begin{split}N = & \int {\rm d}^{3}x\Psi_{R}^{\dagger}({{x}})\Psi_{R}({{x}}) \\ = & \sum\limits_{k_{y},k_{z}}[\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z})-\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})b_{0}(k_{y},k_{z})] \\ & \times\sum\limits_{n,k_{y},k_{z}}[a_{n}^{\dagger}(k_{y},k_{z})a_{n}(k_{y},k_{z})-b_{n}^{\dagger}(k_{y},k_{z})b_{n}(k_{y},k_{z})], \\[-19pt]\end{split} $ | (33) |
$ \hat{\rho} = \frac{1}{Z}{\rm e}^{-\beta(H-\mu_{R}N)}, $ | (34) |
$ Z = {\rm{Tr}}\,{\rm e}^{-\beta(H-\mu_{R}N)}. $ | (35) |
$ \langle:\hat{F}:\rangle = {\rm{Tr}}\,(\hat{\rho}\hat{F}). $ | (36) |
$ \begin{split}\langle:\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z}):\rangle & = \frac{\theta(k_{z})}{{\rm e}^{\beta(k_{z}-\mu_{R})}+1} \\ \langle:\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})b_{0}(k_{y},k_{z}):\rangle & = \frac{\theta(-k_{z})}{{\rm e}^{\beta(-k_{z}+\mu_{R})}+1} \\ \langle:a_{n}^{\dagger}(k_{y},k_{z})a_{n}(k_{y},k_{z}):\rangle & = \frac{1}{{\rm e}^{\beta[E_{n}(k_{z})-\mu_{R}]}+1} \\ \langle:b_{n}^{\dagger}(k_{y},k_{z})b_{n}(k_{y},k_{z}):\rangle & = \frac{1}{{\rm e}^{\beta[E_{n}(k_{z})+\mu_{R}]}+1}. \end{split} $ | (37) |
$ {{J}}_{R} = \bigg\langle:\Psi_{R}^{\dagger}({{x}}){{\sigma}}\Psi_{R}({{x}}):\bigg\rangle. $ | (38) |
$ \begin{split} J_{R}^{z} = & \langle:\Psi_{R}^{\dagger}({{x}})\sigma^{3}\Psi_{R}({{x}}):\rangle \\ = & \sum\limits_{k_{y},k_{z}}\bigg(\langle:\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z}):\rangle\\&+\langle:\theta(-k_{z})b_{0}(k_{y},k_{z})b_{0}^{\dagger}(k_{y},k_{z}):\rangle\bigg) \\ & \times\psi_{R0}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{R0}(k_{y},k_{z};{{x}}) \\ & +\sum\limits_{n,k_{y},k_{z}}\langle:a_{n}^{\dagger}(k_{y},k_{z})a_{n}(k_{y},k_{z}):\rangle\psi_{Rn+}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{Rn+}(k_{y},k_{z};{{x}}) \\ & +\sum\limits_{n,k_{y},k_{z}}\langle:b_{n}(k_{y},k_{z})b_{n}^{\dagger}(k_{y},k_{z}):\rangle\psi_{Rn-}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{Rn-}(k_{y},k_{z};{{x}}) \\ =& \sum\limits_{k_{y},k_{z}}\bigg(\frac{\theta(k_{z})}{{\rm e}^{\beta(k_{z}-\mu_{R})}\!+\!1}\!-\!\frac{\theta(-k_{z})}{{\rm e}^{\beta(-k_{z}+\mu_{R})}\!+\!1}\bigg)\psi_{R0}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{R0}(k_{y},k_{z};{{x}}) \\ & +\sum\limits_{n,k_{y},k_{z}}\frac{1}{{\rm e}^{\beta[E_{n}(k_{z})-\mu_{R}]}+1}\psi_{Rn+}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{Rn+}(k_{y},k_{z};{{x}}) \\ & -\sum\limits_{n,k_{y},k_{z}}\frac{1}{{\rm e}^{\beta[E_{n}(k_{z})+\mu_{R}]}+1}\psi_{Rn-}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{Rn-}(k_{y},k_{z};{{x}}). \end{split} $ | (39) |
$ \begin{split}&\sum\limits_{k_{y}}\psi_{R0}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{R0}(k_{y},k_{z};{{x}}) \\ =& \frac{1}{L^{2}}\sum\limits_{k_{y}}\left(\begin{array}{cc} \varphi_{0}(\xi), & 0\end{array}\right)\left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)\left(\begin{array}{c} \varphi_{0}(\xi)\\ 0 \end{array}\right) \\ =& \frac{1}{2\pi L}\int_{-\infty}^{\infty}{\rm d}k_{y}[\varphi_{0}(\sqrt{eB}x-k_{y}/\sqrt{eB})]^{2} \\ = & \frac{eB}{2\pi L}, \end{split} $ | (40) |
$ \begin{split}&\sum\limits_{k_{y}}\psi_{Rn\lambda}^{\dagger}(k_{y},k_{z};{{x}})\sigma^{3}\psi_{Rn\lambda}(k_{y},k_{z};{{x}}) \\ =& \frac{1}{2\pi L}\int_{-\infty}^{\infty}{\rm d}k_{y}c_{n\lambda}^{2}(k_{z})\bigg([\varphi_{n}(\xi)]^{2}-\frac{2neB[\varphi_{n-1}(\xi)]^{2}}{[k_{z}+\lambda E_{n}(k_{z})]^{2}}\bigg) \\ = & \frac{eB}{2\pi L}c_{n\lambda}^{2}(k_{z})\bigg(1-\frac{2neB}{[k_{z}+\lambda E_{n}(k_{z})]^{2}}\bigg) \\ =& \frac{eB}{2\pi L}c_{n\lambda}^{2}(k_{z})[2-c_{n\lambda}^{-2}(k_{z})] = \frac{eB}{2\pi L}\cdot\frac{\lambda k_{z}}{E_{n}(k_{z})}. \end{split} $ | (41) |
$ \begin{split}J_{R}^{z} =& \sum\limits_{k_{z}}\bigg(\frac{\theta(k_{z})}{{\rm e}^{\beta(k_{z}-\mu_{R})}+1}-\frac{\theta(-k_{z})}{{\rm e}^{\beta(-k_{z}+\mu_{R})}+1}\bigg)\frac{eB}{2\pi L} \\ &+\sum\limits_{n,k_{z}}\bigg(\frac{1}{{\rm e}^{\beta[E_{n}(k_{z})-\mu_{R}]}+1}+\frac{1}{{\rm e}^{\beta[E_{n}(k_{z})+\mu_{R}]}+1}\bigg)\frac{eB}{2\pi L}\cdot\frac{k_{z}}{E_{n}(k_{z})} \\ =& \frac{eB}{4\pi^{2}}\int_{-\infty}^{\infty}{\rm d}k_{z}\bigg(\frac{\theta(k_{z})}{{\rm e}^{\beta(k_{z}-\mu_{R})}+1}-\frac{\theta(-k_{z})}{{\rm e}^{\beta(-k_{z}+\mu_{R})}+1}\bigg)+0 \\ =& \frac{eB}{4\pi^{2}}\mu_{R}.\\[-12pt] \end{split}$ | (42) |
$ {{J}}_{R} = \frac{e\mu_{R}}{4\pi^{2}}{{B}}. $ | (43) |
$ {{J}}_{L} = -\frac{e\mu_{L}}{4\pi^{2}}{{B}}. $ | (44) |
$ {{J}}_{V} = {{J}}_{R}+{{J}}_{L} = \frac{e\mu_{5}}{2\pi^{2}}{{B}}, $ | (45) |
$ {{J}}_{A} = {{J}}_{R}-{{J}}_{L} = \frac{e\mu}{2\pi^{2}}{{B}}, $ | (46) |
$ \psi_{R0}(k_{y},k_{z};{{x}}) = \left(\begin{array}{c} \varphi_{0}\\ 0 \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})},\ \ E = k_{z}. $ | (47) |
$ \begin{split} H =& \sum\limits_{k_{z}}[k_{z}\theta(k_{z})a_{0}^{\dagger}(0,k_{z})a_{0}(0,k_{z})\\&+(-k_{z})\theta(-k_{z})b_{0}^{\dagger}(0,k_{z})b_{0}(0,k_{z})], \\ N =& \sum\limits_{k_{z}}[\theta(k_{z})a_{0}^{\dagger}(0,k_{z})a_{0}(0,k_{z})\\&+(-1)\theta(-k_{z})b_{0}^{\dagger}(0,k_{z})b_{0}(0,k_{z})], \\ P_{z} = & \sum\limits_{k_{z}}[k_{z}\theta(k_{z})a_{0}^{\dagger}(0,k_{z})a_{0}(0,k_{z})\\&+(-k_{z})\theta(-k_{z})b_{0}^{\dagger}(0,k_{z})b_{0}(0,k_{z})], \\ S_{z} =& \sum\limits_{k_{z}}\bigg[\frac{1}{2}\theta(k_{z})a_{0}^{\dagger}(0,k_{z})a_{0}(0,k_{z})\\&+\left(-\frac{1}{2}\right)\theta(-k_{z})b_{0}^{\dagger}(0,k_{z})b_{0}(0,k_{z})\bigg], \end{split}$ | (48) |
$ \begin{split} P_{z} & = -{\rm i}\int {\rm d}^{3}x\Psi_{R}^{\dagger}({{x}})\frac{\partial}{\partial z}\Psi_{R}({{x}}), \\ S_{z} & = \frac{1}{2}\int {\rm d}^{3}x\Psi_{R}^{\dagger}({{x}})\sigma^{3}\Psi_{R}({{x}}). \end{split} $ | (49) |
The analogous analysis can be applied to lefthand fermions. The picture of the lowest Landau level for a lefthand fermion is: All lefthand fermions/antifermions move along the
Because the total electric current
$\tag{A1} \bigg(K^{2}-\frac{\rm i}{2}\sigma^{\mu\nu}[K_{\mu},K_{\nu}]\bigg){\cal{W}} = 0. $ | (A1) |
$\tag{A2} \bigg(p^{2}-\frac{1}{4}\nabla^{2}+{\rm i}p\cdot\nabla-\frac{1}{2}eF_{\mu\nu}\sigma^{\mu\nu}\bigg){\cal{W}} = 0. $ | (A2) |
$\tag{A3} \bigg(p^{2}-\frac{1}{4}\nabla^{2}-{\rm i}p\cdot\nabla\bigg){\cal{W}}-\frac{1}{2}eF_{\mu\nu}{\cal{W}}\sigma^{\mu\nu} = 0. $ | (A3) |
$\tag{A4} {\rm i}p\cdot\nabla{\cal{W}}-\frac{1}{4}eF_{\mu\nu}[\sigma^{\mu\nu},{\cal{W}}] = 0. $ | (A4) |
$\tag{A5} \bigg(p^{2}-\frac{1}{4}\nabla^{2}\bigg){\cal{W}}-\frac{1}{4}eF_{\mu\nu}\{\sigma^{\mu\nu},{\cal{W}}\} = 0. $ | (A5) |
$\tag{A6} \begin{split}[\sigma^{\mu\nu},1] & = 0, \\{} [\sigma^{\mu\nu},{\rm i}\gamma^{5}] & = 0, \\{} [\sigma^{\mu\nu},\gamma^{\rho}] & = -2{\rm i}g^{\rho[\mu}\gamma^{\nu]}, \\{} [\sigma^{\mu\nu},\gamma^{5}\gamma^{\rho}] & = -2{\rm i}g^{\rho[\mu}\gamma^{5}\gamma^{\nu]}, \\{} [\sigma^{\mu\nu},\sigma^{\rho\sigma}] & = 2{\rm i}g^{\mu[\rho}\sigma^{\sigma]\nu}-2{\rm i}g^{\nu[\rho}\sigma^{\sigma]\mu}, \end{split} $ | (A6) |
$\tag{A7} \begin{split}\{\sigma^{\mu\nu},1\} & = 2\sigma^{\mu\nu}, \\ \{\sigma^{\mu\nu},{\rm i}\gamma^{5}\} & = -\epsilon^{\mu\nu\rho\sigma}\sigma_{\rho\sigma}, \\ \{\sigma^{\mu\nu},\gamma^{\rho}\} & = 2\epsilon^{\mu\nu\rho\sigma}\gamma^{5}\gamma_{\sigma}, \\ \{\sigma^{\mu\nu},\gamma^{5}\gamma^{\rho}\} & = 2\epsilon^{\mu\nu\rho\sigma}\gamma_{\sigma}, \\ \{\sigma^{\mu\nu},\sigma^{\rho\sigma}\} & = 2g^{\mu[\rho}g^{\sigma]\nu}+2{\rm i}\epsilon^{\mu\nu\rho\sigma}\gamma^{5}. \end{split} $ | (A7) |
$\tag{A8} \begin{split} p\cdot\nabla{\cal{F}} & = 0, \\ p\cdot\nabla\mathcal{P} & = 0, \\ p\cdot\nabla{\cal{V}}_{\mu} & = eF_{\mu\nu}{\cal{V}}^{\nu}, \\ p\cdot\nabla{\cal{A}}_{\mu} & = eF_{\mu\nu}{\cal{A}}^{\nu}, \\ p\cdot\nabla{\cal{Q}}_{\mu\nu} & = eF_{\ [\mu}^{\rho}{\cal{Q}}_{\nu]\rho}, \end{split} $ | (A8) |
$\tag{A9}\begin{split} \left(p^{2}-\frac{1}{4}\nabla^{2}\right){\cal{F}} & = \frac{1}{2}eF_{\mu\nu}{\cal{Q}}^{\mu\nu}, \\ \left(p^{2}-\frac{1}{4}\nabla^{2}\right)\mathcal{P} & = \frac{1}{2}e\tilde{F}_{\mu\nu}{\cal{Q}}^{\mu\nu}, \\ \left(p^{2}-\frac{1}{4}\nabla^{2}\right){\cal{V}}_{\mu} & = -e\tilde{F}_{\mu\nu}{\cal{A}}^{\nu}, \\ \left(p^{2}-\frac{1}{4}\nabla^{2}\right){\cal{A}}_{\mu} & = -e\tilde{F}_{\mu\nu}{\cal{V}}^{\nu}, \\ \left(p^{2}-\frac{1}{4}\nabla^{2}\right){\cal{Q}}_{\mu\nu} & = e(F_{\mu\nu}{\cal{F}}-\tilde{F}_{\mu\nu}\mathcal{P}), \end{split}$ | (A9) |
$ \tag{B1} {\rm i}{{\sigma}}\cdot{{D}}\psi_{R}({{x}}) = E\psi_{R}({{x}}), $ | (B1) |
$\tag{B2} \psi_{R}(x,y,z) = \left(\begin{array}{c} \phi_{1}(x)\\ \phi_{2}(x) \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}, $ | (B2) |
$\tag{B3} {{\sigma}}\cdot{{D}} = \left(\begin{array}{cc} -\partial_{z} & -\partial_{x}+{\rm i}\partial_{y}+eBx\\ -\partial_{x}-{\rm i}\partial_{y}-eBx & \partial_{z} \end{array}\right). $ | (B3) |
$ \tag{B4} {\rm i}(k_{z}-E)\phi_{1}+(\partial_{x}+k_{y}-eBx)\phi_{2} = 0, $ | (B4) |
$\tag{B5} (\partial_{x}-k_{y}+eBx)\phi_{1}-{\rm i}(k_{z}+E)\phi_{2} = 0. $ | (B5) |
$\tag{B6} \partial_{x}^{2}\phi_{1}+\bigg(E^{2}+eB-k_{z}^{2}-e^{2}B^{2}\bigg(x-\frac{k_{y}}{eB}\bigg)^{2}\bigg)\phi_{1} = 0, $ | (B6) |
$\tag{B7} \frac{{\rm d}^{2}\varphi}{{\rm d}\xi^{2}}+\bigg(\frac{E^{2}-k_{z}^{2}}{eB}+1-\xi^{2}\bigg)\varphi = 0. $ | (B7) |
$\tag{B8} \frac{E^{2}-k_{z}^{2}}{eB}+1 = 2n+1, $ | (B8) |
$ \tag{B9} E = \pm E_{n}(k_{z})\equiv\pm\sqrt{2neB+k_{z}^{2}}, $ | (B9) |
$ \tag{B10} \phi_{1}(x) = \varphi_{n}(\xi) = N_{n}{\rm e}^{-\xi^{2}/2}H_{n}(\xi), $ | (B10) |
$\tag{B11} \phi_{2}(x) = \frac{\sqrt{eB}(\partial_{\xi}+\xi)\varphi_{n}(\xi)}{{\rm i}(k_{z}+E)} = \frac{{\rm i}[k_{z}-\lambda E_{n}(k_{z})]}{\sqrt{2neB}}\varphi_{n-1}(\xi), $ | (B11) |
$\tag{B12} \psi_{Rn\lambda}(k_{y},k_{z};{{x}}) = \left(\begin{array}{c} \varphi_{n}(\xi)\\ {\rm i}F_{n\lambda}(k_{z})\varphi_{n-1}(\xi) \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}. $ | (B12) |
$ \tag{B13} \psi_{R0}(k_{y},k_{z};{{x}}) = \left(\begin{array}{c} \varphi_{0}(\xi)\\ 0 \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}. $ | (B13) |
$\tag{B14} 2{\rm i}k_{z}\phi_{1}+(\partial_{x}+k_{y}-eBx)\phi_{2} = 0, $ | (B14) |
$\tag{B15} (\partial_{x}-k_{y}+eBx)\phi_{1} = 0. $ | (B15) |
$\tag{B16} 2{\rm i}k_{z}\exp\bigg(-\frac{1}{2}eBx^{2}+xk_{y}\bigg)+(\partial_{x}+k_{y}-eBx)\phi_{2} = 0. $ | (B16) |
$\tag{B17} (\partial_{x}-eBx)\phi_{2} = 0, $ | (B17) |
Thus far, we obtain the eigenfunctions and eigenvalues of the Hamiltonian of the righthand fermion field as follows:
For
$\tag{B18} \psi_{R0}(k_{y},k_{z};{{x}}) = \left(\begin{array}{c} \varphi_{0}\\ 0 \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}. $ | (B18) |
$\tag{B19} \psi_{Rn\lambda}(k_{y},k_{z};{{x}}) = c_{n\lambda}\left(\begin{array}{c} \varphi_{n}\\ {\rm i}F_{n\lambda}\varphi_{n-1} \end{array}\right)\frac{1}{L}{\rm e}^{{\rm i}(yk_{y}+zk_{z})}, $ | (B19) |
$\tag{C1} \begin{split} [N,\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})] & = \theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z}) \\{} [N,\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})] & = -\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z}) \\{} [N,a_{n}^{\dagger}(k_{y},k_{z})] & = a_{n}^{\dagger}(k_{y},k_{z}) \\{} [N,b_{n}^{\dagger}(k_{y},k_{z})] & = -b_{n}^{\dagger}(k_{y},k_{z}), \end{split}$ | (C1) |
$ \tag{C2}\begin{split} [H,\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})] & = k_{z}\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z}) \\{} [H,\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})] & = (-k_{z})\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z}) \\{} [H,a_{n}^{\dagger}(k_{y},k_{z})] & = E_{n}(k_{z})a_{n}^{\dagger}(k_{y},k_{z}) \\{} [H,b_{n}^{\dagger}(k_{y},k_{z})] & = E_{n}(k_{z})b_{n}^{\dagger}(k_{y},k_{z}), \end{split} $ | (C2) |
$ \begin{split}\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta) & = {\rm e}^{-\beta(H-\mu_{R}N)}\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z}){\rm e}^{\beta(H-\mu_{R}N)} \\ \theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z};\beta) & = {\rm e}^{-\beta(H-\mu_{R}N)}\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z}){\rm e}^{\beta(H-\mu_{R}N)} \end{split} $ |
$ \tag{C3} \begin{split} a_{n}^{\dagger}(k_{y},k_{z};\beta) & = {\rm e}^{-\beta(H-\mu_{R}N)}a_{n}^{\dagger}(k_{y},k_{z}){\rm e}^{\beta(H-\mu_{R}N)} \\ b_{n}^{\dagger}(k_{y},k_{z};\beta) & = {\rm e}^{-\beta(H-\mu_{R}N)}b_{n}^{\dagger}(k_{y},k_{z}){\rm e}^{\beta(H-\mu_{R}N)}. \end{split} $ | (C3) |
$\tag{C4} \begin{split}\frac{\partial}{\partial\beta}[\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta)] & = -[H-\mu_{R}N,\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta)] \\ & = -{\rm e}^{-\beta(H-\mu_{R}N)}[H-\mu_{R}N,\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})]{\rm e}^{\beta(H-\mu_{R}N)} \\ & = -{\rm e}^{-\beta(H-\mu_{R}N)}[(k_{z}-\mu_{R})\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})]{\rm e}^{\beta(H-\mu_{R}N)} \\ & = -(k_{z}-\mu_{R})[\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta)], \end{split}$ | (C4) |
$\tag{C5} \theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta) = \theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z}){\rm e}^{-\beta(k_{z}-\mu_{R})}. $ | (C5) |
$\tag{C6} \begin{split}\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z};\beta) & = \theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z}){\rm e}^{-\beta(-k_{z}+\mu_{R})} \\ a_{n}^{\dagger}(k_{y},k_{z};\beta) & = a_{n}^{\dagger}(k_{y},k_{z}){\rm e}^{-\beta[E_{n}(k_{z})-\mu_{R}]} \\ b_{n}^{\dagger}(k_{y},k_{z};\beta) & = b_{n}^{\dagger}(k_{y},k_{z}){\rm e}^{-\beta[E_{n}(k_{z})+\mu_{R}]}. \end{split}$ | (C6) |
$\tag{C7} \begin{split}&\langle:\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z}):\rangle \\ =& {\rm{Tr}}\,[\rho\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z})] \\ =& \frac{1}{Z}{\rm{Tr}}\,\bigg(\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta){\rm e}^{-\beta(H-\mu_{R}N)}a_{0}(k_{y},k_{z})\bigg) \\ =& \frac{1}{Z}{\rm{Tr}}\,\bigg(\theta(k_{z})a_{0}(k_{y},k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta){\rm e}^{-\beta(H-\mu_{R}N)}\bigg) \\ =& \langle:\theta(k_{z})a_{0}(k_{y},k_{z})a_{0}^{\dagger}(k_{y},k_{z};\beta):\rangle \\ =& \langle:\theta(k_{z})a_{0}(k_{y},k_{z})a_{0}^{\dagger}(k_{y},k_{z}):\rangle {\rm e}^{-\beta(k_{z}-\mu_{R})} \\ = &\theta(k_{z}){\rm e}^{-\beta(k_{z}-\mu_{R})}-\langle:\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z}):\rangle {\rm e}^{-\beta(k_{z}-\mu_{R})}, \end{split} $ | (C7) |
$\tag{C8} \langle\theta(k_{z})a_{0}^{\dagger}(k_{y},k_{z})a_{0}(k_{y},k_{z})\rangle = \frac{\theta(k_{z})}{{\rm e}^{\beta(k_{z}-\mu_{R})}+1}. $ | (C8) |
$ \tag{C9} \begin{split}\langle\theta(-k_{z})b_{0}^{\dagger}(k_{y},k_{z})b_{0}(k_{y},k_{z})\rangle & = \frac{\theta(-k_{z})}{{\rm e}^{\beta(-k_{z}+\mu_{R})}+1} \\ \langle a_{n}^{\dagger}(k_{y},k_{z})a_{n}(k_{y},k_{z})\rangle & = \frac{1}{{\rm e}^{\beta[E_{n}(k_{z})-\mu_{R}]}+1} \\ \langle b_{n}^{\dagger}(k_{y},k_{z})b_{n}(k_{y},k_{z})\rangle & = \frac{1}{{\rm e}^{\beta[E_{n}(k_{z})+\mu_{R}]}+1}. \end{split} $ | (C9) |