HTML
--> --> --> $ C({{q}},{{K}}) = 1+\frac{\int {\rm d}^4x_1 {\rm d}^4x_2 S_1(x_1,{ p}_2) S_2(x_2,{ p}_2) {\left|\psi_{\rm{rel}} \right|}^{2}} {\int {\rm d}^{4}x_{1}{\rm d}^{4}x_{2}S_{1}(x_{1},{ p}_{2})S_{2}(x_{2},{ p}_{2})}, $ | (1) |
We usually use the ‘out-side-long’(o-s-l) coordinate system in the HBT research, shown in Fig. 2. The longitudinal direction is along the beam direction, and the transverse plane is perpendicular to the longitudinal direction. In the transverse plane, the momentum direction of pair particles is the outward direction. The direction perpendicular to the outward direction is referred to as the sideward direction.
Figure2. The diagram of ‘out-side-long’(o-s-l) coordinate system.
In the calculation of the HBT correlation function, the rapidity range is consistently set to
Figure3. (color online) HBT correlation function in
The HBT correlation function of the Gaussian form can be written as [25]
$ C({{q}},{{K}}) = 1+\lambda {\exp} {[-q_{\rm o}^2 R_{\rm o}^2({ K})-q_{\rm s}^2 R_{\rm s}^2({ K})- q_{\rm l}^2 R_{\rm l}^2({ K})]}, $ | (2) |
$R_{\rm{s}}^2 = \langle r_{\rm{s}}^2\rangle ,$ | (3) |
$R_{\rm{o}}^2 = \langle {({r_{\rm{o}}} - {\beta _{\rm{o}}}t)^2}\rangle - {\langle {r_{\rm{o}}} - {\beta _{\rm{o}}}t\rangle ^2},$ | (4) |
$R_{\rm{l}}^2 = \langle {({r_{\rm{l}}} - {\beta _{\rm{l}}}t)^2}\rangle - {\langle {r_{\rm{l}}} - {\beta _{\rm{l}}}t\rangle ^2},$ | (5) |
$\langle \xi \rangle = \frac{{\int {{{\rm d}^4}} x\xi S(x,p)}}{{\int {{{\rm d}^4}} xS(x,p)}}.$ | (6) |
First, the influence of the source lifetime must be excluded. Using a Gaussian source to generate pion data, the emission function can be written as
$ S(x,{ p}) = A{ p}^{2}{\rm{exp}}\left(-\frac{\sqrt{{ p}^2+m^2}}{T}\right) {\rm{exp}}\left(-\frac{{ r}^2}{2R^2}-\frac{t^2}{2(\Delta t)^2}\right), $ | (7) |
Figure4. (color online) Transverse momentum dependence of HBT radii for a Gaussian source.
In Fig. 4(a), when the lifetime of source is
Figure5. HBT radii changes with
In Fig. 5, the Gaussian source radius remains at 6 fm, and the transverse momentum range is 125–625 MeV/c. We can see the increase of
$R_{\rm{s}}^2 = \langle r_{\rm{s}}^2\rangle ,$ | (8) |
$R_{\rm{o}}^2 = \langle r_{\rm{o}}^2\rangle + {\langle {\beta _{\rm{o}}}\rangle ^2}\langle {(\Delta t)^2}\rangle ,$ | (9) |
$R_{\rm{l}}^2 = \langle r_{\rm{l}}^2\rangle + {\langle {\beta _{\rm{l}}}\rangle ^2}\langle {(\Delta t)^2}\rangle ,$ | (10) |
To discuss the influence of the single-particle angle distribution on the transverse momentum dependence of HBT radii, we introduce another source, i.e., the space-momentum angle correlation source. The emission function can be written as
$ S(x,{ p}) = A{ p}^{2}{\rm{exp}}\left(-\frac{\sqrt{{ p}^2+m^2}}{T}\right) {\rm{exp}}\left(-\frac{{ r}^2}{2R^2}-\frac{t^2}{2(\Delta t)^2}\right) {\rm w}\left(\Delta \varphi\right), $ | (11) |
${\rm{w}}\left( {\Delta \varphi } \right) = \left\{ {\begin{array}{*{20}{l}}0&{\alpha {\rm{ < }}\Delta \varphi \leqslant \pi }\\1&{0 \leqslant \Delta \varphi \leqslant \alpha }\end{array}} \right.,$ | (12) |
In Fig. 6(a),
Figure6. (color online) HBT radii for a space-momentum angle correlation source.
Figure7. (color online)
In Fig. 7, the transverse momentum range is 125–625 MeV/c. When
We use a homogeneous expansion source to calculate the HBT radii in different
$ S = A{ p}^{2}{\rm{exp}}\left(-\frac{\gamma E-\gamma{ {\beta p}}}{T}\right) {\rm{exp}}\left(-\frac{{ r}^2}{2R^2}-\frac{t^2}{2(\Delta t)^2}\right), $ | (13) |
$ f(\Delta\varphi) = c_1{\rm{exp}}(c_2\cos(\Delta\varphi)), $ | (14) |
Figure8. (color online) Fit normalized
There are nine bins of
Figure9. (color online) Simulation for a homogeneous expansion source. Black simulation lines are calculated in space-momentum angle correlation source.
For all four situations in Fig. 9, the simulated HBT radii are almost equal to the HBT radii calculated in the homogeneous expansion sources. This indicates that the source expansion can cause the space-momentum angle
$\begin{split}S\left( {x,p} \right) =& A{M_{\rm{T}}}\cosh \left( {\eta - Y} \right){\rm{exp}}\left( { - \frac{{pu\left( x \right)}}{T}} \right)\\&\times\exp \left( { - \frac{{{{\left( {\tau - {\tau _0}} \right)}^2}}}{{2{{\left( {\delta \tau } \right)}^2}}} - \frac{{{\rho ^2}}}{{2R_{\rm{g}}^2}} - \frac{{{\eta ^2}}}{{2{{\left( {\delta \eta } \right)}^2}}}} \right),\end{split}$ | (15) |
$ u(x) = \left( \cosh\eta\cosh\eta_{\rm T},\sinh\eta_{\rm T}\vec{e}_{\rm T},\sinh\eta\cosh\eta_{\rm T} \right), $ | (16) |
${\eta _{\rm{T}}} = \left\{ {\begin{array}{*{20}{l}}{{\eta _{{\rm{Tmax}}}}\frac{\rho }{{{R_{\rm{g}}}}}}&{\rho < {R_{\rm{g}}}}\\{{\eta _{{\rm{Tmax}}}}}&{\rho \geqslant {R_{\rm{g}}}}\end{array}} \right..$ | (17) |
Since the CRAB filter is set
We generate pions that have random
par | 250–350 MeV | 350–450 MeV | 450–600 MeV | ||
0.1003 | |||||
0.2027 | |||||
0.3095 | |||||
0.4236 | |||||
0.5493 | |||||
0.6931 | |||||
Table1.Fit results of normalized
Figure10. (color online) Fit normalized
The fits indicate that, with increase of
${c_1} = {k_1}p_{\rm{T}}^{{j_1}},$ | (18) |
${c_2} = {k_2}p_{\rm{T}}^{{j_2}},$ | (19) |
Figure11. (color online) Fit
We can also fit the HBT radii in different
$R = ap_{\rm{T}}^b,$ | (20) |
Figure12. (color online) Fit HBT radii for different
In the Fig. 12, there are three cases of
We plot parameters b as the function of k and j in Fig. 13. Because of the longitudinal limit, there is barely any changes in
Figure13. (color online) Fit parameters in cylinder expansion source. b from HBT radii fit function
$b({k_1}) = {\mu _{11}}{k_1}^{{\mu _{12}}},$ | (21) |
$b({j_1}) = {\nu _{11}}{{\rm e}^{ - {\nu _{12}}{j_1}}},$ | (22) |
$b({k_2}) = {\mu _{21}}\ln {k_2} + {\mu _{22}},$ | (23) |
$b({j_2}) = {\nu _{21}}\left( {\frac{1}{{1 + {{\rm e}^{{\nu _{{\rm{22}}}}{{\rm{j}}_{\rm{2}}}}}}} - 1} \right).$ | (24) |
Parameters | |||
Table2.Fit results of
A connection has been made between the