Exploring the entanglement of free spin-\begin{document}${\bf\dfrac{1}{2}}$\end{document}, spin-
本站小编 Free考研考试/2022-01-01
Zhi Yang1, , Ling-Yan Hung1,2, , 1.Department of Physics & Center for Field Theory and Particle Physics, Fudan University, 200433 Shanghai, China 2.State Key Laboratory of Surface Physics & Department of Physics, Fudan University, 200433 Shanghai, China Received Date:2019-01-30 Available Online:2019-05-01 Abstract:In this study, we explore the entanglement of free spin-$ \displaystyle\frac{1}{2} $, spin-1, and spin-2 fields. We start with an example involving Majorana fields in 1+1 and 2+1 dimensions. Subsequently, we perform the Bogoliubov transformation and express the vacuum state with a particle pair state in the configuration space, which is used to calculate the entropy. This clearly demonstrates that the entanglement entropy originates from the particles across the boundary. Finally, we generalize this method to free spin-1 and spin-2 fields. These higher free massless spin fields have well-known complications owing to gauge redundancy. We deal with the redundancy by gauge-fixing in the light-cone gauge. We show that this gauge provides a natural tensor product structure in the Hilbert space, while surrendering explicit Lorentz invariance. We also use the Bogoliubov transformation to calculate the entropy. The area law emerges naturally by this method.
HTML
--> --> -->
2.1+1 dimensional Majorana fermion - a pair of left and rightmoving fermionsThe Majorana field $ \psi $ is a field sharing the same Lagrangian with the Dirac field, but satisfying the condition $ \psi^\ast=\psi $, which means that the anti-particle and particle of the Majorana field are the same [15]. In 1+1 dimensions at t = 0, a Majorana field with $ \gamma^\mu=(\sigma_y,i\sigma_x) $ has the form [16]
where the annihilation and creation operators bk and $ b_p^\dagger $ satisfy the anti-commutation relation $ \{b_k,b_p^\dagger\}=\delta(k-p) $. We define the vacuum $ |0\rangle $ as the vacuum of this set of operators, i.e. $ b_k|0\rangle=0 $. Let us consider the following Bogoliubov transformation [17]
which transforms the operators $ (b_k,b_{-k}^\dagger) $ into the new set of operators $ (a_{1k},a_{2k}) $. For the Majorana field, we have the relation
where $ \alpha,\beta=0,1 $ represent the two components of the Majorana field. To satisfy (3), the operators $ a_{1k} $ and $ a_{2p} $ should have the relation
where $ (a_k,a_{-k}^\dagger) $ are new annihilation and creation operators that satisfy the anti-commutation relation $ \{a_k, a_p^\dagger\}= $$\delta(k-p) $. We can verify that (5) and (6) satisfy the constraint (4). We define the vacuum $ |\Omega\rangle $, which is annihilated by ak, i.e. $ a_k|\Omega\rangle=0 $. Hence, we obtain the Bogoliubov transformation between $ (a_k,a_{-k}^\dagger) $ and $ (b_k,b_{-k}^\dagger) $
where $ \gamma $ is the normalization factor, $ \left| \Omega \right \rangle $ is the vacuum defined by $ a_k \left| \Omega \right \rangle = 0 $ and the coefficient Ck is fixed by
where $f^k_{NL}={\rm e}^{{\rm i}k(N-L)}$. To compute the entanglement entropy, the configuration space is divided into two regions A and $\bar{A}$, where the sites in each region are labelled by small letters (n) and small letters with bar ($\bar{n}$), respectively. The region A we choose can be any subregion of the total system. The state $\left| \Psi \right \rangle$ is
where $ \tilde{f}^k_{\bar{n}l} = f^k_{\bar{n}l} + f^k_{l\bar{n}} $. A reduced density matrix of $ \rho_{A} $ is constructed by tracing out the degrees of freedom in region $ \bar{A} $.
This expression is already quite revealing. We can see that the first and second line actually lead to no entanglement. They contain operators acting only on A or $ \bar{A} $. The third line explains the large amount of entanglement between regions A and $ \bar{A} $ - entanglement is created when pairs of particles are created, one inside A and the other in $ \bar{A} $. Moreover, as we shall see below, these particles that are created cannot be separated by too large of a distance, because the amplitude decreases rapidly with separation. Tracing out the degrees of freedom in region $ \bar{A} $ gives the following coefficients in $ \rho_{A} $
In the 1+1 dimensional Majorana fermion case, the coefficients Ck control the range of the interaction. The factor $ \sum_k C_k f^k_{nl} $ can be converted to an integral by taking a continuum limit with an IR cut-off $ \epsilon $ and UV cut-off K
This is evaluated numerically and shown in Fig. 1. Figure1. (color online) Red and blue lines represent the real and imaginary part of the integral (25), respectively. Both the real and imaginary parts of the integral decrease quickly with distance, and the long range contribution is very small. $\epsilon=0.1$ and K = 10 are used in this plot.
The figure shows that the interaction between sites falls over large distances. The sites near the boundary make the main contribution to the entanglement entropy.
3.2+1 dimensional Majorana fermionIn 2+1 dimensions at t = 0, the Majorana field with $ \gamma^\mu=(\sigma_y,-i\sigma_z,i\sigma_x) $ has the form [16]
where the annihilation and creation operators bk and $ b_p^\dagger $ satisfy the anti-commutation relation $ \{b_k,b_p^\dagger\}=\delta(\vec{k}-\vec{p}) $. We define the vacuum $ |0\rangle $ as the vacuum of this set of operators, i.e. $ b_k|0\rangle=0 $. Let us consider the following Bogoliubov transformation
which transforms the operators $ (b_k,b_{-k}^\dagger) $ to the new set of operators $ (a_{1k},a_{2k}) $. For the 2+1 dimensional Majorana field, we have the relation
where $ \alpha,\beta=0,1 $ represent two components of the Majorana field. To satisfy (28), the operator $ a_{1k} $ and $ a_{2p} $ should have the relation
$\{ {a_{ik}},{a_{jp}}\} = {\delta _{ij}}\delta (\vec k + \vec p),$
where $ (a_k,a_{-k}^\dagger) $ are new annihilation and creation operators that satisfy the anti-commutation relation $ \{a_k, a_p^\dagger\}=\delta(\vec{k}-\vec{p}) $. We can verify that (30) and (31) satisfy the constraint (29). We define the vacuum $ |\Omega\rangle $, which is annihilated by ak, i.e. $ a_k|\Omega\rangle=0 $. Hence, we obtain the Bogoliubov transformation between $ (a_k,a_{-k}^\dagger) $ and $ (b_k,b_{-k}^\dagger) $
where $ \gamma $ is the normalization factor, $ \left| \Omega \right \rangle $ is the vacuum defined by $ a_k \left| \Omega \right \rangle = 0 $, and the coefficient Ck is fixed by
where $ f^k_{NL}={\rm e}^{{\rm i}\vec{k}\cdot(\vec{N}-\vec{L})} $. For a simplification of notations, we neglect the vector nation and denote $ \vec{n} $ as n. To compute the entanglement entropy, the configuration space is divided into two regions A and $ \bar{A} $, where the sites in each region are labelled by small letters (n) and small letters with bars ($ \bar{n} $), respectively. The region A we choose can be any subregion of the total system. The state $ \left| \Psi \right \rangle $ is
where $ \tilde{f}^k_{\bar{n}l} = f^k_{\bar{n}l} + f^k_{l\bar{n}} $. Following the same procedure of the case in 1+1 dimensional Majorana field, we can obtain the reduced density matrix and the second Rényi entropy S2, which have the same form as (18) and (22), respectively. The only difference is the expression of Ck. In the 2+1 dimensional Majorana fermion case, the coefficients Ck also control the range of the interaction. The factor $ \sum_k C_k f^k_{nl} $ can be converted to an integral by taking a continuum limit with an IR cut-off $ \epsilon $ and UV cut-off K
This is evaluated numerically and shown in Fig. 2. Figure2. (color online) Plots of integral (42) in 2+1 dimensional Majorana fermion model. The left and right figures represent the real and imaginary parts of the integral, respectively. The amplitude of the surface decreases quickly with distance, and the long range contribution can be neglected. $\epsilon=0.1$ and K = 10 are used in these plots.
The figures show that the interaction between sites diminishes over large distances. The sites near the boundary contribute most significantly to the entanglement entropy. Hence, an area law is expected in this model.
-->
4.1.Model of gauge field in light-cone gauge
We consider the entanglement entropy of 2+1 dimensional Maxwell fields with light-cone gauge-fixing. In this study, we use the Minkowski metric $ \eta_{\mu\nu}={\rm diag}(-1,1,1) $ with the Minkowski coordinate $ (x^0,x^1,x^2) $. We also introduce the light-cone coordinate $ x^+,x^-,x^2 $ with
The vector in the light-cone gauge has the properties $ a_+=-a^- $ and $ a_-=-a^+ $. Following is the calculation of the 2+1 dimensional Maxwell fields. We start with the Lagrangian $ \mathcal{L}\!=\!-\!\displaystyle\frac{1}{4}F_{\mu\nu}F^{\mu\nu} $. Because $ \mathcal{L} $ is a scalar, $ \mu $; $ \nu $ can be 0, 1, 2 or +, ?, 2. We start with the light-cone coordinate. Because of the asymmetry of $ F_{\mu\nu} $, $ F_{++}=F_{--}=F_{22}=0 $, the Lagrangian becomes
Here, there is no gauge redundancy in the Lagrangian (53). The Hilbert space of $ A^y $ should have the tensor product structure, so we can consider its entanglement entropy. It behaves like a free scalar field, which coincides with the trivial center case of [11]. 24.2.Bogoliubov transformation and entropy of gauge field in light-cone gauge -->
4.2.Bogoliubov transformation and entropy of gauge field in light-cone gauge
In the 2+1 dimensional U(1) gauge field with the light-cone gauge, from (53), we have the equation of motion
$\Box {A^y} = 0,$
(55)
where $ \Box=-\displaystyle\frac{\partial^2}{\partial t^2}+\displaystyle\frac{\partial^2}{\partial x^2}+\displaystyle\frac{\partial^2}{\partial y^2} $. We can find that there is only one physical degree of freedom in the 2+1 dimensional U(1) gauge field, and the component with physical freedom $ A^y $ satisfies the equation for the massless scalar field. For the non-zero components of the gauge field, we have the solution
We define $ a_k|\Omega\rangle=0 $, where $ |\Omega\rangle $ is the vacuum of the new set of operators. We find that (62) and (63) satisfy (60) and (61). Thus, from (56), (57), (62), and (63), we have the Bogoliubov transformation
Here $ (a_k,a_{-k}^\dagger) $ are the annihilation and creation operators of the new modes. We also have the vacuum $ |0\rangle $, which is annihilated by bk
${b_k}|0\rangle = 0.$
(68)
From (67), we find that the new set of operators satisfy
where $ \gamma $ is the normalization factor, $ \left| \Omega \right \rangle $ is the vacuum defined by $ a_k \left| \Omega \right \rangle = 0 $, and the coefficient Ck is fixed by
We find that the Bogoliubov transformation of the light-cone gauge field is very similar to that of the free scalar field [4]. Let us consider a system with a finite number of sites. The inverse Fourier transform of the operator ak is
where $ f^k_{NL}={\rm e}^{{\rm i}\vec{k}\cdot(\vec{N}-\vec{L})} $. For a simplification of notations, we neglect the vector nation and denote $ \vec{n} $ as n. To compute the entanglement entropy, the configuration space is divided into two regions A and $ \bar{A} $, where the sites in each region are labelled by small letters (n) and small letters with bars ($ \bar{n} $), respectively. The region A can be chosen as any subregion of the total system. The state $ \left| \Psi \right \rangle $ is
where $ \tilde{f}^k_{\bar{n}l} = f^k_{\bar{n}l} + f^k_{l\bar{n}} $. Following the same procedure of previous cases, we can obtain the reduced density matrix and second Rényi entropy S2, which have the same form as (18) and (22), respectively. The only difference is the expression of Ck. In 2+1 dimensional U(1) gauge field theory in the light-cone gauge, the coefficients Ck also control the range of the interaction. The factor $ \sum_k C_k f^k_{nl} $ can be converted to an integral by taking a continuum limit with an IR cut-off $ \epsilon $ and UV cut-off K
with $ \omega=\sqrt{k_x^2+k_y^2} $. This is evaluated numerically and shown in Fig. 3. Figure3. (color online) Plots of integral (77) in 2+1 dimensional U(1) gauge field with light-cone gauge. The left and right figures represent the real and imaginary parts of the integral, respectively. The amplitude of the surface decreases quickly with distance, and the long range contribution can be neglected. $\epsilon=0.1$, K = 10 and $\alpha=1$ are used in these plots.
The figures show that the interaction between sites diminishes over large distances. The sites near the boundary contribute most significantly to the entanglement entropy. Hence, an area law is expected in this model. -->
5.1.Model of free spin-2 field in light-cone gauge
We consider the entanglement entropy of the 3+1 dimensional weak gravitational field $ g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu} $ with light-cone gauge-fixing. Here, $ h_{\mu\nu} $ is a spin-2 field. In this study, we use the Minkowski metric $ \eta_{\mu\nu}={\rm diag}(-1,1,1,1) $ with the Minkowski coordinate $ (x^0,x^1,x^2,x^3) $. We also introduce the light-cone coordinate $ x^+,x^-,x^2,x^3 $ with
The vector in the light-cone gauge has the properties $ a_+=-a^- $ and $ a_-=-a^+ $. Now we come to the calculation of weak gravitational (spin-2) field. We start with the Ricci scalar R. Because R is a scalar, $ \mu $; $ \nu $ can be 0, 1, 2, 3 or +, ?, 2, 3. We begin with the light-cone coordinate. We impose the gauge-fixing $ h^{++}=h^{+-}=h^{+I}=0 $, where $ I=2,3 $. For the components with subscript indexes, the gauge fixing is $ h_{--}=h_{-+}=h_{-I}=0 $. For calculating the Ricci scalar R, we use
Because $ h^{IJ} $ is symmetric and traceless, there are only two degrees of freedom $ h^{22} $ and $ h^{23} $. We expand the above expression with $ I,J,K=2,3 $, and obtain
where $ \nabla=\partial_x \vec{i}+\partial_y \vec{j}+\partial_z \vec{k} $. We have replaced $ h^{22} $ and $ h^{23} $ with $ h^{yy} $ and $ h^{yz} $ respectively.There is no gauge redundancy in the Lagrangian (107). We can expect that the Hilbert space of $ h^{yy} $ and $ h^{yz} $ should have the tensor product structure, so we can consider the entanglement entropy of this model. Hence, we provide a prescription of the entanglement entropy of a free spin-2 field. 25.2.Bogoliubov transformation and entropy of free spin-2 field in light-cone gauge -->
5.2.Bogoliubov transformation and entropy of free spin-2 field in light-cone gauge
In the 3+1 dimensional gravitational (spin-2) field with the light-cone gauge, we have two independent degrees of freedom. From (107), we have the equations of motion
$\Box {h^{yy}} = 0,\;\Box {h^{yz}} = 0.$
(108)
The equations of motion are the same as the free massless scalar field. Their solutions are
respectively, where $ (b_k, b_k^\dagger) $ and $ (b^{'}_k, b_k^{'\dagger}) $ are the creation and annihilation operators of two physical degrees of freedom. Let us consider the mode $ (b_k, b_k^\dagger) $. For the operator $ h^{yy} $, its canonical momentum is $ \dot{h}^{yy} $. We obtain the solution
We find that apart from the dimension, the Bogoliubov 3+1 dimensional spin-2 field with the light-cone gauge is the same as that of the 2+1 dimensional U(1) gauge field. Moreover, they are both the same with the free scalar field. The form of the Bogoliubov transformation is the same as (66), with $ \omega=\sqrt{k_x^2+k_y^2+k_z^2} $. We define the vacuum $ |0\rangle $ by $ b_k|0\rangle=0 $, and the vacuum $ |\Omega\rangle $ by $ a_k|\Omega\rangle=0 $ in the 3+1 dimensional spin-2 field with the light-cone gauge. Because of the Bogoliubov transformation, the vacuum $ |0\rangle $ can be expressed by the vacuum $ |\Omega\rangle $ and operator $ (a_k,a_p^\dagger) $ as
with $ \omega=\sqrt{k_x^2+k_y^2+k_z^2} $. We can consider a system with a finite number of sites. We can divide the system into two parts, A and $ \bar{A} $. The region A we choose can be any subregion of the total system. Considering the state $ |\Psi\rangle=|0\rangle $, we can obtain the reduced density matrix $ \rho_A $ and the second Rényi entropy S2, which have the same form of the cases in previous sections. The only difference is the expression of Ck. In the 3+1 dimensional spin-2 field with the light-cone gauge, the coefficients Ck also control the range of the interaction. The factor $ \sum_k C_k f^k_{nl} $ can be converted to an integral by taking a continuum limit with an IR cut-off $ \epsilon $ and UV cut-off K
with $ \omega=\sqrt{k_x^2+k_y^2+k_z^2} $. Numerical evaluation in the special case of x = y = z gives the result shown in Fig. 4. Figure4. (color online) Plots of integral (119) in 3+1 dimensional gravity with the light-cone gauge in the special case of x = y = z. Both the real and imaginary parts of the integral decrease quickly with distance, and the long range contribution can be neglected. $\epsilon=0.1$, K = 10 and $\alpha=1$ are used in this plot.
The figure shows that the interaction between sites once again diminishes over large distances. The sites near the boundary contribute most significantly to the entanglement entropy. Hence, an area law is expected in this model as well.