删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Effects of vector leptoquarks on \begin{document}${\Lambda_b \rightarrow \Lambda_c \ell\, \ov

本站小编 Free考研考试/2022-01-01

闂備胶绮崝妤呭箠閹捐鍚规い鏂垮⒔閸楁岸鎮楅敐搴濈盎缂佷緡鍣i弻鐔煎礂閼测晝鐓傞梺绋跨焿閹凤拷2濠电偞鍨堕幐绋棵洪妸鈺嬬稏闁圭儤顨嗛崵鈧梺鍛婂姦娴滅偤宕洪敓鐘崇厽闁靛繈鍊栧☉褔鏌i埄鍐噰闁诡啫鍥ч唶闁挎繂娲㈤崑鎺楁⒑閸濆嫬鈧綊鎮锋潏鈺傤潟闁跨噦鎷�
濠电姰鍨归悥銏ゅ炊瑜嶆慨銈夋⒑閸涘﹤绗掓俊顐g洴椤㈡棃濮€閵堝棭妫勯柣搴秵閸犳牠宕㈤幘顔界厸闁告洟娼ч悘锝嗐亜閹存繃澶勭紒瀣樀閸┾偓妞ゆ巻鍋撻柍璇查叄濡鹃亶鏌嶈閸撴瑩宕导瀛樺亯婵炲樊浜濋弲顒勬倶閻愮數鎽傞柛銈囧Т闇夋繝濠傚暣椤庢銇勯埞顓炲婵挳鏌¢崶鈺佹灁闁告瑢鍋撻梻浣哥秺濞佳嗐亹閻愮數绠旈柟鎯ь嚟閳绘梹鎱ㄥΟ璇插闁搞倧绠撻弻鐔虹矙閹稿孩鎮欓梺浼欑秮缁犳牕顕i鈶╂瀻闁归偊鍘剧粙鍕⒑閹稿海鈽夐柡鍫墴瀹曞綊濡歌婵ジ鏌涘☉姗堟敾缂佺姵甯為埀顒€鐏氬姗€鎮ч崱娴板洭宕稿Δ浣镐痪闂佺鎻梽鍕晬閺嶎厽鐓忛柛鈩冩礀椤b暜ee濠电姰鍨圭紞濠囧焵椤掍胶鈯曢柕鍡楀暣閺屾盯骞掗幋鐑嗘濡炪倖甯為崰鎰矙婵犲洦鍋愰柣銏㈡暩鏁堥梻浣稿悑濠㈡﹢宕导瀛樺亯闁告繂濯辨惔銏$秶妞ゆ劗鍠庢禍楣冩煛閸ャ劍鐨戦柣鐔叉櫅閳藉骞樼紙鐘卞濡炪倖娲濆▍鏇炨缚韫囨稑宸濇い鎾楀啯顔�20婵°倗濮烽崑鐘诲箵椤忓棙顫曟繝闈涱儏缁犳垿鏌ゆ慨鎰偓妤€鈻旈姀鐘嗙懓饪伴崘鈺婃%缂備礁顦顓㈠焵椤掆偓濠€閬嶅磻閻旂厧鏋侀柕鍫濐槹閸庡秹鏌涢弴銊ュ闁伙箑缍婇幃妤冩喆閸曨収鏆¢梺鍝勬閸嬫捇姊洪崫鍕垫Ч闁告梹鐗犻幃锟犳晬閸曨剙鐝伴梺闈涚箚閸撴繈鎮″▎鎰濠㈣泛顑嗙粈鈧悗娈垮櫍閺€鍗烆嚗閸曨偒鍚嬮柛鏇ㄥ幘濡叉垿姊洪崫鍕偓浠嬶綖婢跺本鍏滈柛顐f礃閺咁剟鎮橀悙闈涗壕缂佺姵甯″濠氬炊閿濆懍澹曢梺鑽ゅ枑濞叉垿鎳楃捄琛℃灁闁硅揪闄勯崕鎴︽倵閿濆骸骞樼紒鐘崇墵閺屸剝寰勫☉娆忣伓
K. Azizi 1,2,
, A. T. Olgun 3,
, Z. Tavuko?lu 3,
, 1.Department of Physics, University of Tehran, North Karegar Avenue, Tehran 14395-547, Iran
2.Department of Physics, Do?u? University, Ac?badem-Kad?k?y, 34722 Istanbul, Turkey
3.Vocational School, Tuzla Campus, Istanbul Okan University,Tuzla, 34959 Istanbul, Turkey
Received Date:2020-08-15
Available Online:2021-01-15
Abstract:Experimental data on $ R(D^{(*)}) $, $ R(K^{(*)}) $ , and $ R(J/\psi) $, provided by different collaborations, show sizable deviations from the standard model predictions. To describe these anomalies, many new physics scenarios have been proposed. One of them is the leptoquark model, which introduces the simultaneous coupling of vector and scalar leptoquarks to quarks and leptons. To look for similar possible anomalies in the baryonic sector, we investigate the effects of a vector leptoquark $U_3 (3,3, \frac{2}{3})$ on various physical quantities related to the tree-level $ \Lambda_b \rightarrow \Lambda_c \ell ~ \overline{\nu}_\ell$ decays ($ \ell=\mu, ~\tau $), which proceed via $ b \rightarrow c~\ell ~ \overline{\nu}_\ell$ transitions at the quark level. We calculate the differential branching ratio, forward-backward asymmetry, and longitudinal polarizations of leptons and $\Lambda_{c}$ baryons at the $ \mu $ and $ \tau $ lepton channels in the leptoquark model and compare their behavior to the predictions of the SM in terms of $ q^2 $. In the calculations, we use the form factors calculated in full QCD as the main input and account for all errors coming from the form factors and model parameters. We observe that at the $ \tau $ channel, the $ R_A $ fit solution to data related to the leptoquark model sweeps some regions out of the SM band; nevertheless, the fit has a considerable intersection with the SM predictions. The $ R_B$ type solution gives roughly the same results as the SM on $ DBR(q^2)-q^2$. At the $ \mu $ channel, the leptoquark model gives results that are consistent with the SM predictions and existing experimental data on the behavior of $ DBR(q^2)$ with respect to $ q^2 $. Concerning the $ q^2 $ behavior of the $ A_{FB}(q^2) $ , the two types of fits for $ \tau $ and the predictions at the $ \mu $ channel in the leptoquark model give exactly the same results as the SM. We also investigate the behavior of the parameter $ R(q^2) $ with respect to $ q^2 $ and the value of $ R(\Lambda_c) $ in both the vector leptoquark and SM models. Both fit solutions lead to results that deviate considerably from the SM predictions for $R(q^2)- q^2 $ and $ R(\Lambda_c) $. Future experimental data on $R(q^2)- q^2 $ and $ R(\Lambda_c) $, made available by measurements of the $ \Lambda_b \rightarrow \Lambda_c \tau ~ \overline{\nu}_\tau$ channel, will be particularly helpful. Any experimental deviations from the SM predictions in this channel would emphasize the importance of tree-level hadronic weak transitions as good probes of new physics effects beyond the SM.

HTML

--> --> -->
I.INTRODUCTION
The search for new physics (NP) effects beyond the standard model (BSM) constitutes one of the main research directions in particle physics. To date, the direct search for NP effects and the predicted new particles have yielded null results, and these effects have been excluded up to a few TeV. However, recently, significant deviations of the experimental data from the standard model (SM) predictions on some parameters of the weak decays of some hadrons have been recorded. These deviations may be considered signs of NP effects and are on the agenda of many experimental and theoretical groups. Weak and semileptonic hadronic decays are thus receiving special attention. Among these decays are the semileptonic mesonic $ B \rightarrow D^{(*)} \ell \overline{\nu}_{\ell} $ and $ B_c \rightarrow J/ \psi (\eta_c) \ell \overline{\nu}_{\ell} $ tree-level decays as well as the loop-level $ B \rightarrow K^{(*)} \ell^{+} \ell^{-} $ transitions. These channels provide a major opportunity for both re-testing the SM and investigating NP effects. In the SM, these decays occur by couplings to $ W^{\pm} $, $ Z $ , and $ \gamma $ , which are assumed to be universal for all leptons. Normally, different masses of charged leptons lead to different results in the branching fractions of the semileptonic decays that include these leptons. Extra discrepancies with the SM predictions on the parameters of these decays suggest the lepton flavor universality violation (LFUV), which may be considered evidence for the presence of new particles BSM. In particular, because of the larger mass of $ \tau $ , the $ \tau $ channel is highly sensitive to the contributions of hypothetical new particles, such as the charged Higgs boson, that appear in the leptoquark (LQ) model and other NP models.
Over the past two decades, the experimental measurements of different parameters related to the aforementioned decay channels have greatly improved at the B factories. The branching ratio of $ B \rightarrow D^{(*)}\ell^{-} \overline{\nu}_{\ell} $ decay, which is highly sensitive to NP scenarios, is considered one of the major sources of the LFUV. The parameters $ {\cal R }(D) $ and $ {\cal R }(D^{(*)}) $ defined as
$R(D^{(*)}) = \frac{{ \cal B}(B\rightarrow D^{(*)} \tau \overline{\nu}_{\tau})}{{\cal B}(B\rightarrow D^{(*)} e(\mu)\overline{\nu}_{e(\mu)})},$
(1)
with average values measured by BaBar, Belle, and LHCb Collaborations [1]:
$R(D) = 0.340\pm 0.027\pm 0.013,$
(2)
and
$R(D^{*}) = 0.295\pm 0.011\pm 0.008,$
(3)
indicate deviations of $ 1.4\sigma $ and $ 2.5\sigma $ , respectively, from the related SM predictions. Another source is
$R_{K^{(*)}}\equiv\frac{ BR(B\rightarrow K^{(*)}\mu^+\mu^-) }{BR(B\rightarrow K^{(*)}e^+e^-)}. $
(4)
The LHCb collaboration measured
$ R_{K} = 0.745^{+0.090}_{-0.074}({\rm{stat}})\pm 0.036({\rm{syst}}) $
(5)
in the interval $ q^2\epsilon[1,6] $ GeV2 [2],
$ R_{K^{*}} = 0.66^{+0.11}_{-0.07}({\rm{stat}})\pm 0.03({\rm{syst}})$
(6)
in the region $ q^2\epsilon[0.045,1.1] $ GeV2, and
$ R_{K^{*}} = 0.69^{+0.11}_{-0.06}({\rm{stat}})\pm 0.05({\rm{syst}}) $
(7)
for $ q^2\epsilon[1.1,6] $ GeV2 [3], indicating deviations from the SM expectations of $ (2.2-2.6) \sigma $ [4, 5]. Recent LHCb data on $ R (J/ \psi) $ for the decay of $ B_c \rightarrow J/ \psi \ell\overline{\nu}_{\ell} $ [6],
$R (J/ \psi) = 0.71 \pm 0.17({\rm stat}) \pm 0.18({\rm syst}), $
(8)
exhibits serious deviations from the SM predictions [6-12]. A recent, more precise SM prediction made in [13], $ R (J/ \psi) = 0.25\pm 0.01 $, supports the existing tension between the SM theoretical prediction and the experimental data. In this study, the authors also calculated $ R(\eta_c) $ in $ B_c \rightarrow J/ \eta_c \ell\overline{\nu}_{\ell} $ , which may be the subject of different experiments in the near future. Any deviations of the measured results from the SM predictions will further suggest the importance of tree-level charged weak decays as possible probes of NP effects (for further related studies see [14-22]).
Experiments have mainly focused on the tree-level mesonic transitions based on $ b \rightarrow c\; \ell \; \overline{\nu}_\ell $, while similar discrepancies may be detected at tree-level baryonic transitions that proceed via $ b \rightarrow c\; \ell \; \overline{\nu}_\ell $. The semileptonic $ \Lambda_b \rightarrow \Lambda_c \ell \; \overline{\nu}_\ell $ channel is an important channel that is expected to be the focus of experimental and theoretical work. The form factors of this transition as main inputs for the theoretical analysis of this mode in the SM and BSM are available via various methods and approaches. In Ref. [23], for example, the related form factors were calculated in full QCD. Using these form factors, $ R(\Lambda_c) = \dfrac{{ \cal B}(\Lambda_b\rightarrow \Lambda_c \tau \overline{\nu}_{\tau})}{{\cal B}(\Lambda_b\rightarrow \Lambda_c \mu\overline{\nu}_{\mu})} = 0.31\pm 0.11 $ was obtained; it needs to be verified experimentally.
Many new physics models have been proposed to explain the aforementioned experiment-SM anomalies. One of the most popular, currently researched new physics models that can play an important role in solving these anomalies is the LQ model [24, 25]. LQs, which naturally appear in several new physics models such as the extended technicolor model [26], compositeness [27], Pati-Salam model [28], and grand unification theories with SU$ (5) $ [29] and SO$ (10) $ [30], are hypothetical color-triplet bosons. LQs can carry both lepton (L) and baryon (B) quantum numbers with electric and color charges. These particles couple simultaneously to both leptons and quarks and, as a result, modify the amplitudes of the transitions to which they contribute. According to their properties under the Lorentz transformations, they can be divided into two main categories: spin 0 scalar leptoquarks and spin 1 vector leptoquarks. In this study, we consider a single vector leptoquark $ U_3 (3,3, \frac{2}{3}) $ , which can provide a simultaneous explanation of the anomalies in the $ b \rightarrow c $ and $ b \rightarrow s $ transitions. The numbers inside the bracket represent the SM gauge group $ SU(3) \times $$ SU(2)\times U(1) $ transformation properties: they refer to the color, weak, and hyper-charge representations, respectively. Vector leptoquarks were studied theoretically in [31-40]. Using the vector LQ $ U_3 (3,3, \dfrac{2}{3}) $, we calculate several observables such as the differential branching ratio, the lepton forward-backward asymmetry, the longitudinal polarization of the leptons and the $ \Lambda_{c} $ baryon, and the ratio of the differential branching ratios in the $ \tau $ and $ \mu (e) $ channels $ R(\Lambda_c ) $, for the $ \Lambda_b \rightarrow \Lambda_c \ell \; \overline{\nu}_\ell $ transition. Using the form factors calculated in the full theory, we numerically analyze the physical quantities in both the SM and vector LQ model and compare the obtained results. Future experimental data will help to determine whether a discrepancy with the SM predictions exists in the channels of interest and in this case, whether the anomalies can be described by the vector LQs. Note that in Ref. [34], a similar analysis on the tree-level $ \Lambda_b \rightarrow \Lambda_c \tau\; \overline{\nu}_\tau $ decay is performed in both scalar and vector leptoquark scenarios using the form factors calculated from the QCD sum rules in the HQET limit and lattice QCD with 2 + 1 dynamical flavors. Although there have been studies on the polarization of the parent baryon $ \Lambda_b $ as an observable in Refs. [41, 42], we do not discuss it here since it was found to be negligibly small by the LHCb setup [43].
The outline of the paper is as follows. In the next section, we present the effective Hamiltonian responsible for the transitions under consideration in both the standard and LQ models. In Section III, we depict the transition amplitude and matrix elements defining the transitions under study. In Section IV, we calculate some physical quantities related to the baryonic $ \Lambda_b \rightarrow \Lambda_c \ell \; \overline{\nu}_\ell $ channel and numerically analyze the obtained results. We compare the LQ model predictions with those of the SM in this section. We reserve the last section for the summary and conclusions.
II.THE EFFECTIVE HAMILTONIAN
The hadronic transition of $ \Lambda_b {\rightarrow} \Lambda_c \ell \overline{\nu}_{\ell} $ proceeds via $ b {\rightarrow} c \ell \overline{\nu}_{\ell} $ at tree-level. The low-energy effective Hamiltonian defining this transition in the SM can be written as
${\cal H}^{\rm eff}_{\rm SM} = {G_{\rm F} \over \sqrt{2} } V_{cb} \bar{c}\gamma_\mu (1-\gamma_5) b \, \bar{\ell} \gamma^\mu (1-\gamma_5) \nu_{\ell},$
(9)
where $ G_{\rm F} $ is the Fermi weak coupling constant, and $ V_{cb} $ is one of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Considering the LQ contributions of the exchange of vector multiplet $ U_{3}^{\mu} $ at tree level, the effective Hamiltonian including the SM contributions and LQ corrections can be written as [32, 33]
$\begin{aligned}[b]{\cal H}^{\rm eff}_{\rm SM+LQ} = & { G_{\rm F} V_{cb} \over \sqrt{2} } \Big[C_{V} [\bar{\ell}\gamma_\mu (1-\gamma_5) \nu_{\ell}]( \bar{c} \gamma^\mu b) {} \\ & - C_{A} [\bar{\ell}\gamma_\mu (1-\gamma_5) \nu_{\ell}]( \bar{c} \gamma^\mu \gamma_{5} b)\Big],\end{aligned}$
(10)
where $ C_{V} $ and $ C_{A} $ respectively represent the Wilson coefficients including the SM contributions and the contributions of the operators coming from vector and pseudo-vector type LQ interactions. At the $ \mu = M_{U} $ scale, $ C_{V} $ and $ C_{A} $ are written as
$C_{V} = C_{A} = 1+ {\sqrt{2} g_{b\tau}^ * ({\cal V}_{g})_{c\tau} \over 4G_{\rm F} V_{cb} M_{U}^2 } .$
(11)
In the $ \tau $ channel, we use two optimal solutions, called $ R_A $ and $ R_B $, obtained by fitting the parameters on the data in the $ B\rightarrow D^{(*)}\ell \nu $ channel [32, 44, 45]. Ref. [44], using a general operator analysis, identifies which four-fermion operators simultaneously fit the $ R(D) $ and $ R(D^*) $ results. According to [44], the values below yield the best fit values for the coefficients with acceptable $ q^2 $ spectra and $ \chi_{\rm min}^{2}<5 $; obtained from these analyses, the values for $ g _{b\tau}^{*}({\cal V}_g)_{c\tau} $ are [44]
$g _{b\tau}^{*}({\cal V}_g)_{c\tau} = \left(\frac{M_U}{\rm TeV}\right)^2 \left\{ \begin{array}{l} \; \; 0.18\pm 0.04\qquad R_{A} \\[1.2ex] -2.88\pm 0.04 \qquad R_{B} \, \end{array} \right.,$
(12)
where $ M_{U} $ is chosen as $ M_{U} = 1 \;{\rm TeV} $ at the scale $ \mu = M_{U} $ by considering the constraints on the vector LQ mass provided by CMS collaboration [46, 47]. Although the fit results of $ R_{A} $ and $ R_{B} $ are quite different, the $ C_{V} $ and $ C_{A} $ coefficients almost have the same absolute values as $ R_{A} $ and $ R_{B} $ are entered with different signs. It is thus difficult to distinguish between the two results as they lead to the same values for some physical observables. In the literature, these best fit values are used in the analysis of many physical quantities associated with different semileptonic channels. In [34], using the above best-fit solutions, the effects of vector LQs on some physical quantities defining the semileptonic $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ channel are analyzed. A recent work [45] investigates possible NP effects on the observables of the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ channel using the same fit values. For more details on these parameters and their effects on physical quantities, see, for instance, [31-34, 44, 45] and the references therein.
In Ref. [33], by attributing the difference between the experimental and indirect determinations of $ V_{cb} $ to the leptoquark contribution, the following constraint in the$ \mu $ channel is obtained:
$\mid V_{cb}\mid {\rm Re}\Bigg(\frac{g _{b\mu}^{*}({\cal V}_g)_{c\mu}}{V_{cb}}\Bigg)\in [-0.1, -0.01]\times 10^{-3} \left(\frac{M_{U}}{\rm TeV}\right)^2,$
(13)
which will be used in our analyses.
III.THE TRANSITION AMPLITUDE AND FORM FACTORS
The amplitude of the decay $ \Lambda_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell} $ is obtained by sandwiching the effective Hamiltonian between the initial and final baryonic states:
${\cal M}^{ { \Lambda}_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell}} = \langle { \Lambda}_{c}, \lambda_2 \mid{\cal H}^{\rm eff}_{\rm SM+LQ}\mid {\Lambda}_{b}, \lambda_1 \rangle\; , $
(14)
where $ \lambda_1 $ and $ \lambda_2 $ are the helicities of the parent and daughter baryons, respectively. The hadronic matrix elements of the axial and vector currents, inside the Hamiltonian, are parameterized by six hadronic form factors ($ f_{1,2,3} $ and $ g_{1,2,3} $) [48, 49]:
$\begin{aligned}[b]{\cal M}^{V}_{\mu} &= \langle \Lambda_c, \lambda_2 \mid V^{\mu} \mid \Lambda_b, \lambda_1 \rangle \\&= \bar {u}_{\Lambda_c} (p_2, \lambda_2)\Bigg[\gamma_{\mu}f_{1}(q^{2}) {} \\& \;\;\;\; +{\rm i}\sigma_{\mu\nu}q^{\nu}f_{2}(q^{2})+ q^{\mu}f_{3}(q^{2})\Bigg] u_{\Lambda_b}(p_1, \lambda_1) ,\end{aligned}$
(15)
and
$\begin{aligned}[b]{\cal M}^{A}_{\mu} &= \langle \Lambda_c, \lambda_2 \mid A^{\mu} \mid \Lambda_b, \lambda_1 \rangle \\&= \bar {u}_{\Lambda_c} (p_2, \lambda_2) \Bigg[\gamma_{\mu}g_{1}(q^{2}){} \\ &\;\;\;\;+{\rm i}\sigma_{\mu\nu}q^{\nu}g_{2}(q^{2})+ q^{\mu}g_{3}(q^{2})\Bigg] \gamma_5 u_{\Lambda_b}(p_1, \lambda_1),\end{aligned}$
(16)
where $ \sigma_{\mu \nu} = \dfrac{i}{2}[\gamma_\mu,\gamma_\nu] $ and $ q^{\mu} = (p_1 -p_2)^{\mu} $ is the four momentum transfer. Here, $ V^{\mu} = \bar {c}\gamma_{\mu}b $ and $ A^{\mu} = \bar {c}\gamma_{\mu}\gamma_5 b $ represent the vector and axial vector parts of the transition current, respectively, and $ \bar {u}_{\Lambda_c} (p_2, \lambda_2) $ and $ u_{\Lambda_b}(p_1, \lambda_1) $ are the corresponding Dirac spinors for the final and initial baryonic states, respectively. The transition matrix elements can also be parameterized in terms of the four-vector velocities $ \upsilon_{\mu} $ and $ \upsilon_{\mu}' $:
$\begin{aligned}[b]{\cal M}^{V}_{\mu} =& \langle \Lambda_c, \lambda_2 \mid V^{\mu} \mid \Lambda_b, \lambda_1 \rangle \\ =& \bar {u}_{\Lambda_c} (p_2, \lambda_2)\Bigg[\gamma_{\mu}F_{1}(q^{2}) {} \\ & +F_{2}(q^{2}) \upsilon_{\mu}+ F_{3}(q^{2}) \upsilon_{\mu}'\Bigg] u_{\Lambda_b}(p_1, \lambda_1) ,\end{aligned}$
(17)
and
$\begin{aligned}[b]{\cal M}^{A}_{\mu} =& \langle \Lambda_c, \lambda_2 \mid A^{\mu} \mid \Lambda_b, \lambda_1 \rangle \\ =& \bar {u}_{\Lambda_c} (p_2, \lambda_2) \Bigg[\gamma_{\mu}G_{1}(q^{2}){} \\ &+G_{2}(q^{2}) \upsilon_{\mu}+ G_{3}(q^{2}) \upsilon_{\mu}'\Bigg] \gamma_5 u_{\Lambda_b}(p_1, \lambda_1).\end{aligned}$
(18)
As we previously mentioned, the form factors $ F_{1,2,3} $ and $ G_{1,2,3} $ have been calculated in full QCD and are available [23]. The following relations describe the two sets of form factors in terms of each other (see also [23, 32, 48, 49]):
$\begin{aligned}[b]f_{1}(q)^2 =& F_{1}(q)^2 + (m_{\Lambda_b} + m_{\Lambda_c}) \Bigg[ {F_2(q)^2 \over 2m_{\Lambda_b} } + {F_3(q)^2 \over 2m_{\Lambda_c} } \Bigg], {} \\ f_{2}(q)^2 =& {F_2(q)^2 \over 2m_{\Lambda_b} } + {F_3(q)^2 \over 2m_{\Lambda_c} }, {} \end{aligned}$
$\begin{aligned}[b] f_{3}(q)^2 =& {F_2(q)^2 \over 2m_{\Lambda_b} } - {F_3(q)^2 \over 2m_{\Lambda_c}}, {} \\ g_{1}(q)^2 =& G_{1}(q)^2 + (m_{\Lambda_c} - m_{\Lambda_b}) \Bigg[ {G_2(q)^2 \over 2m_{\Lambda_b} } + {G_3(q)^2 \over 2m_{\Lambda_c}} \Bigg], {} \\ g_{2}(q)^2 =& {G_2(q)^2 \over 2m_{\Lambda_b} } + {G_3(q)^2 \over 2m_{\Lambda_c} }, {} \\ g_{3}(q)^2 =& {G_2(q)^2 \over 2m_{\Lambda_b} } - {G_3(q)^2 \over 2m_{\Lambda_c} }.\end{aligned}$
(19)
We introduce the helicity amplitudes in terms of the various form factors and the NP couplings:
$\begin{aligned}[b]&\quad\quad\quad H_{\lambda_2 ,\lambda_W}^{V(A)} = \epsilon^{\dagger\mu} (\lambda_W) \langle \Lambda_c, \lambda_2 \mid V(A)^{\mu}\mid \Lambda_b, \lambda_1 \rangle, {} \\& \rm{and}{} \\& \quad\quad\quad H_{\lambda_2 ,\lambda_W} = H_{\lambda_2 ,\lambda_W}^{V} - H_{\lambda_2 ,\lambda_W}^{A}, \end{array}$
(20)
where $ \lambda_W $ indicates the helicity of $ W^{-}_{\rm off-shell} $. The expressions of the helicity amplitudes are defined as follows [23, 32, 49, 50]:
$\begin{aligned}[b]H_{1/2,0}^V = & {\sqrt{(m_{\Lambda_b} - m_{\Lambda_c})^2 -q^2} \over \sqrt{q^2} } [(m_{\Lambda_b} + m_{\Lambda_c}) f_1 (q^2) - q^2 f_2 (q^2)],{} \\ H_{1/2,0}^A = & {\sqrt{(m_{\Lambda_b} + m_{\Lambda_c})^2 -q^2} \over \sqrt{q^2} } [(m_{\Lambda_b} - m_{\Lambda_c}) g_1 (q^2) + q^2 g_2 (q^2)] ,{} \\ H_{1/2,1}^V =& \sqrt{2[(m_{\Lambda_b} - m_{\Lambda_c})^2 -q^2]} [- f_1 (q^2) + (m_{\Lambda_b} + m_{\Lambda_c}) f_2 (q^2)] ,{} \\ H_{1/2,1}^A =& \sqrt{2[(m_{\Lambda_b} + m_{\Lambda_c})^2 -q^2]} [- g_1 (q^2) + (m_{\Lambda_b} - m_{\Lambda_c}) g_2 (q^2)], {} \\ H_{1/2,t}^V = & {\sqrt{(m_{\Lambda_b} + m_{\Lambda_c})^2 -q^2} \over \sqrt{q^2} } [(m_{\Lambda_b} - m_{\Lambda_c}) f_1 (q^2) + q^2 f_3 (q^2)] ,{} \\ H_{1/2,t}^A = & {\sqrt{(m_{\Lambda_b} - m_{\Lambda_c})^2 -q^2} \over \sqrt{q^2} } [(m_{\Lambda_b} + m_{\Lambda_c}) g_1 (q^2) - q^2 g_3 (q^2)], \end{aligned}$
(21)
where $ H_{\lambda_2 ,\lambda_W}^V = H_{- \lambda_2 , - \lambda_W}^V $ and $ H_{\lambda_2 ,\lambda_W}^A = - H_{- \lambda_2 , - \lambda_W}^A $. We use these helicity amplitudes to calculate the desired physical quantities in terms of the hadronic form factors.
IV.PHYSICAL OBSERVABLES
Using the helicity amplitudes in terms of the hadronic transition form factors discussed in the previous section, we introduce some physical observables, such as the differential decay width and branching ratio, the lepton forward-backward asymmetry, and $ R (\Lambda_c) $, that define the transition under consideration . Using the form factors from full QCD, we discuss the behavior of these quantities with respect to $ q^2 $ and compare the SM predictions with those of SM+LQ to search for possible shifts.
2
A.The differential decay width
-->

A.The differential decay width

Making use of the amplitude and standard prescriptions, the differential angular distributions for the $ \Lambda_b \rightarrow \Lambda_c \ell \; \overline{\nu}_\ell $ decay channel can be written as [23, 32, 48, 49, 51]
$\begin{aligned}[b] {{\rm d}\Gamma (\Lambda_b {\rightarrow} \Lambda_c \ell \overline{\nu}_{\ell} ) \over {\rm d}q^2{\rm dcos}\Theta_l} =& { G_{\rm F}^2 \vert V_{cb} \vert ^2 q^2 \vert \overrightarrow{p}_{\Lambda_{c}} \vert \over 512 \pi^3 m_{\Lambda_{b}}^2 } \Bigg(1- {m_l^2 \over q^2} \Bigg)^2 {} \Bigg[ A_1 + {m_l^2 \over q^2} A_2 \Bigg], \end{aligned}$
(22)
where
$\begin{aligned}[b]A_1 =& C_{V}^2 [2 {\rm sin}^2\Theta_l (H_{1/2,0}^2 + H_{-1/2,0}^2) + (1 - {\rm cos}\Theta_l)^2{} \\&\times H_{1/2,1}^2 + (1 + {\rm cos}\Theta_l)^2 H_{-1/2,-1}^2] ,{} \\ A_2 = & C_{V}^2 [2 {\rm cos}^2\Theta_l (H_{1/2,0}^2 + H_{-1/2,0}^2) + {\rm sin}^2\Theta_l {} \\ & \times(H_{1/2,1}^2 + H_{-1/2,-1}^2) + 2 (H_{1/2,t}^2 + H_{-1/2,t}^2) {} \\ & - 4 {\rm cos}\Theta_l (H_{1/2,t} H_{1/2,0} + H_{-1/2,t} H_{-1/2,0}) ] ,{} \\& \vert \overrightarrow{p}_{\Lambda_{c}} \vert = {\sqrt{\Delta } \over 2m_{ \Lambda_b} },{} \\ \Delta =& (m_{ \Lambda_b}^2)^2 + (m_{ \Lambda_c}^2)^2 + (q^2)^2 - 2(m_{ \Lambda_b}^2 m_{ \Lambda_c}^2 {} + m_{ \Lambda_c}^2 q^2 + m_{ \Lambda_b}^2 q^2). \end{array}$
(23)
Here, $ \Theta_l $ indicates the angle between the momenta of the lepton and the baryon $ {\Lambda}_c $ in the $ q^2 $ rest frame.
2
B.The differential branching ratio
-->

B.The differential branching ratio

In this subsection, we perform a numerical analysis of the differential branching ratio and discuss its dependence on $ q^2 $ at the $ \mu $ and $ \tau $ channels. To this end, we need the values of the input parameters presented in Table 1 [52]. Moreover, we need the fit functions of the form factors calculated via light cone QCD sum rules in full theory as the main inputs in the SM and BSM. As mentioned, these fits are available in Ref. [23]. They are given in terms of $ q^2 $ as
Input parameter Value
$ m_{\Lambda_b} $ $ 5.6196 \; {\rm GeV} $
$ m_{\Lambda_c} $ $ 2.2864 \; {\rm GeV} $
$ \tau_{\Lambda_b} $ $ 1.47\times 10^{-12} \; {\rm s} $
$ G_{\rm F} $ $ 1.166\times 10^{-5}\; {\rm GeV}^{-2} $
$ | V_{cb}| $ $ 0.0422$
$ m_{\mu} $ $ 0.1056\; {\rm GeV} $
$ m_{\tau} $ $ 1.7768 \; {\rm GeV} $


Table1.The values of input parameters used in our calculations [52]. Note that in this table we provide only the central values of the input parameters, while in the numerical calculations, we also take into account their uncertainties.

$ {\cal F}(q^2) = \dfrac{{\cal F}(0)}{\left(1-\xi_1 \dfrac{q^2}{m_{\Lambda_b}^{2}}+\xi_2 \dfrac{q^4}{m_{\Lambda_b}^{4}}+\xi_3 \dfrac{q^6}{m_{\Lambda_b}^{6}}+\xi_4 \dfrac{q^8}{m_{\Lambda_b}^{8}}\right)} ,$
(24)
where $ \xi_1 $, $ \xi_2 $, $ \xi_3 $ and $ \xi_4 $ are fit parameters; and $ {\cal F}(0) $ denotes the value of the related form factor at $ q^2 = 0 $. The numerical values of these parameters are presented in Table 2.
$ {\rm Form\; factor} $ $ {\cal F}(q^2=0) $ $ \xi_1 $ $ \xi_2 $ $ \xi_3 $ $ \xi_4 $
$ F_{1} (q^2) $ $ 1.220\pm0.293 $ $ 1.03 $ $ -4.60 $ $ 28 $ $ -53 $
$ F_{2} (q^2) $ $ -0.256\pm0.061 $ $ 2.17 $ $ -8.63 $ $ 51.40 $ $ -85.2 $
$ F_{3} (q^2) $ $ -0.421\pm0.101 $ $ 2.18 $ $ -1.02 $ $ 18.12 $ $ -32 $
$ G_{1} (q^2) $ $ 0.751\pm0.180 $ $ 1.41 $ $ -3.30 $ $ 21.90 $ $ -40.10 $
$ G_{2} (q^2) $ $ -0.156\pm0.037 $ $ 1.46 $ $ -6.50 $ $ 41.20 $ $ -74.82 $
$ G_{3} (q^2) $ $ 0.320\pm0.077 $ $ 2.36 $ $ -2.90 $ $ 28.20 $ $ -45.20 $


Table2.Parameters of the fit functions for different form factors for $ \Lambda_b {\rightarrow} \Lambda_c $ decay [23].

The differential branching ratio as a function of $ q^2 $ is obtained as
$\begin{array}{l}DBR(q^2) = \Bigg( \displaystyle \int_{-1}^{1} \dfrac{{\rm d}\Gamma(\Lambda_{b}\rightarrow \Lambda_{c} \ell \overline{\nu}_\ell)}{{\rm d}q^2 {\rm dcos}\Theta_l} {\rm d cos}\Theta_l \Bigg) / \Gamma_{\rm tot},\end{array}$
(25)
where $ \Gamma_{\rm tot} = \dfrac{\hbar}{ \tau_{\Lambda_b} } $. In order to see how the predictions of the vector LQ model deviate from those of the SM, we plot the differential branching ratio of the $ \Lambda_{b}\rightarrow \Lambda_{c} \ell \overline{\nu}_\ell $ transition at the $ \mu $ and $ \tau $ channels in the SM and vector LQ models in Figs. 1 and 2. Figure 1 depicts $ DBR(q^2)-q^2 $ at the $ \mu $ channel including all errors coming from the LQ model parameters, form factors, and other input parameters. Note that the main errors result from the uncertainties of the form factors and that the errors coming from the LQ model parameters are very small at the $ \mu $ channel. This figure also includes the data provided by the LHCb Collaboration [53]. It is evident that the LQ model and SM produce the same predictions for the differential branching ratio at the $ \mu $ channel and that they include the data. The $ q^2 $-behavior of the $ DBR $ in both models is consistent with the data: the $ DBR $ increases as the $ q^2 $ increases and then starts to decrease after reaching a maximum.
Figure1. (color online) The dependence of the $ DBR $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu \overline{\nu}_\mu $ transition in the SM and vector LQ models with all errors. The experimental data come from the LHCb Collaboration, Ref. [53].

Figure2. (color online) The dependence of the $ DBR $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ transitions in the SM and vector LQ models (separately and together) with all errors.

For the $ DBR(q^2)-q^2 $ at $ \tau $ channel, Fig. 2 shows that there are considerable deviations of the $ R_A $ type LQ model predictions from the SM band. The band of the $ R_B $ type LQ model predictions also shows a shift from the SM band but the violation is relatively small compared to that for the $ R_A $ type LQ model.
In Table 3, we present the branching ratios in the $ \mu $ and $ \tau $ channels obtained in the SM and LQ scenarios. We also present the experimental data from PDG available for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu \overline{\nu}_\mu $ a transitions and the predictions of Ref. [34] in the $ \tau $ channel. We see that the SM and LQ predictions in the $ \mu $ channel are consistent with the experimental value. Note that as mentioned for the differential branching ratio, the SM and LQ model have the same predictions for the branching ratio in the $ \mu $ channel. However, in the $ \tau $ channel, as also discussed in the case of differential branching ratio, the predictions of both the $ R_A $ and $ R_B $ type LQ models differ considerably from the SM result, with the violation for the $ R_A $ type model being larger. The values of the branching ratios from Ref. [34] and the $ \tau $ channel were obtained using the form factors calculated via lattice QCD with 2 + 1 dynamical flavors in the HQET limit. For comparison, there is consistency between our results and those of Ref. [34] for the branching ratios of the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau^{-} \overline{\nu}_\tau $ transition in both the SM and vector LQ scenarios witin the errors presented here.
Present work (%) Exp. [52] (%) Ref. [34] (%)
$ BR^{\rm SM}(\Lambda_{b}\rightarrow \Lambda_{c} \mu^{-} \overline{\nu}_\mu) $ $ 5.89^{+2.22}_{-1.14} $ $ 6.2^{+1.4}_{-1.3} $ ?
$ BR^{\rm SM}(\Lambda_{b}\rightarrow \Lambda_{c} \tau^{-} \overline{\nu}_\tau) $ $ 1.86^{+0.70}_{-0.32} $ ? $ 1.77^{+0.09}_{-0.09} $
$ BR^{\rm LQ}(\Lambda_{b}\rightarrow \Lambda_{c} \mu^{-} \overline{\nu}_\mu) $ $ 5.89^{+2.22}_{-1.14} $ ? ?
$ BR^{\rm LQ}_{R_A}(\Lambda_{b}\rightarrow \Lambda_{c} \tau^{-} \overline{\nu}_\tau) $ $ 2.38^{+0.98}_{-0.44} $ ? $ 2.27^{+0.17}_{-0.17} $
$ BR^{\rm LQ}_{R_B}(\Lambda_{b}\rightarrow \Lambda_{c} \tau^{-} \overline{\nu}_\tau) $ $ 2.10^{+0.69}_{-0.24} $ ? $ 2.24^{+0.17}_{-0.17} $


Table3.Values of the branching ratios for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu^{-} \overline{\nu}_\mu $ and $ \Lambda_{b}\rightarrow \Lambda_{c} \tau^{-} \overline{\nu}_\tau $ transitions.

2
C.The lepton forward-backward asymmetry
-->

C.The lepton forward-backward asymmetry

In this subsection, we address the lepton forward-backward asymmetry ($ A_{\rm FB} $), which is one of the important parameters sensitive to the new physics. It is defined as
$A_{\rm FB}(q^2) = \dfrac{\int_{0}^{1} \dfrac{{\rm d}\Gamma}{{\rm d} q^2 {\rm d cos}\Theta_l } {\rm d cos}\Theta_l - \int_{-1}^{0} \dfrac{{\rm d}\Gamma}{{\rm d} q^2 {\rm d cos}\Theta_l } {\rm d cos}\Theta_l }{\int_{0}^{1} \dfrac{{\rm d}\Gamma}{{\rm d} q^2 {\rm d cos}\Theta_l } {\rm d cos}\Theta_l +\int_{-1}^{0} \dfrac{{\rm d}\Gamma}{{\rm d} q^2 {\rm d cos}\Theta_l } {\rm d cos}\Theta_l }. $
(26)
We plot the dependence of the lepton forward-backward asymmetry on $ q^2 $ at the $ \mu $ and $ \tau $ channels in both the SM and vector LQ model in Figs. 3 and 4 considering all errors encountered in the calculations. From these figures, we conclude that the predictions of the two models are roughly consistent for all the possible cases at all lepton channels. In the case of $ \mu $, the $ A_{\rm FB} $ changes its sign at very small values of $ q^2 $, whereas this point is shifted toward the average values of $ q^2 $ in the case of $ \tau $ . Future data on the values and signs of $ A_{\rm FB} $ at different lepton channels and comparison with the predictions of the present study would provide useful knowledge about the decay modes under study and the internal structure of the participating baryons as well as restrict the parameters of the models BSM.
Figure3. (color online) The dependence of the $ A_{\rm FB} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu \overline{\nu}_\mu $ transition in the SM and vector LQ models with all errors.

Figure4. (color online) The dependence of the $ A_{\rm FB} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ transition in the SM and vector LQ models with all errors.

2
D.The parameter $ R(q^2) $
-->

D.The parameter $ R(q^2) $

In this part, we present the results of the differential branching ratios in the $ \tau $ and $ \mu $ channels, i. e.,
$R(q^2) = \dfrac{DBR(q^2)(\Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau)}{DBR(q^2)(\Lambda_{b}\rightarrow \Lambda_{c} \mu\overline{\nu}_\mu)},$
(27)
which is one of the most important probes for searching for new physics effects. Experiments have shown serious deviations from the SM predictions on this parameter in some mesonic channels, and we have witnessed serious violations of the lepton flavor universality in mesonic channels. The $ \Lambda_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell} $ transition is an important tree-level baryonic transition that is accessible in experiments like the LHCb. Testing the experimental data on $ R(\Lambda_c) $ and comparing them with theoretical predictions are critical. We plot the dependence of $ R(q^2) $ on $ q^2 $ in the SM and vector LQ model in Fig. 5. From these plots, we see that the results obtained using both the $ R_A $ and $ R_B $ type fit solutions in the LQ model deviate considerably from the SM predictions. Only at higher values of $ q^2 $ does the $ R_B $ type fit solution show some intersection with the SM predictions.
Figure5. (color online) The dependence of $ R(q^2) $ on $ q^2 $ in the SM and vector LQ models (separately and together) with all errors.

It is instructive to give the values for $ R(\Lambda_c) $ in both the SM and LQ scenarios. By performing the integrals over $ q^2 $ in the allowed limits, we find
$R(\Lambda_c) = \frac{{ \cal B}(\Lambda_b\rightarrow \Lambda_c \tau \overline{\nu}_{\tau})}{{\cal B}(\Lambda_b\rightarrow \Lambda_c \mu\overline{\nu}_{\mu})} = \left\{ \begin{array}{l} (0.314-0.339) \quad {\rm SM}\\ (0.410-0.421)\quad {\rm LQ}\; \; R_{A} \\ (0.335-0.445)\quad {\rm LQ} \; R_{B} \, \end{array} \right. .$
(28)
From the obtained results, we conclude that for both the $ R_A $ and $ R_B $ type solutions, the LQ model predictions deviate considerably from the SM predictions. The band related to the $ R_B $ type LQ model shows only a very small overlap with the SM predictions. We compare our results for $ R(\Lambda_c) $ with the predictions of Ref. [34] in Table 4. It is clear that our results and the prediction of Ref. [34] for $ R(\Lambda_c) $ are close to each other, and the ranges overlap. Future experimental data will indicate whether there are LFUV in the $ \Lambda_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell} $ channel.
Present work Ref. [34]
$ R(\Lambda_c )^{\rm SM} $ $ 0.314 - 0.339 $ $ 0.320 - 0.340 $
$ R(\Lambda_c )^{\rm LQ} $ (for $ R_A $) $ 0.410 - 0.421 $ $ 0.410 - 0.450 $
$ R(\Lambda_c )^{\rm LQ} $ (for $ R_B $) $ 0.335 - 0.445 $ $ 0.400 - 0.440 $


Table4.Results for $ R(\Lambda_c ) $ compared with the predictions of Ref. [34].

2
E.Longitudinal polarization of $ \Lambda_{c} $ baryon and $ l $ lepton
-->

E.Longitudinal polarization of $ \Lambda_{c} $ baryon and $ l $ lepton

In this subsection, we present the $ \Lambda_{c} $ baryon and lepton ($ \mu $ and $ \tau $ or) polarizations, which are important parameters for searching for new physics effects. These parameters are defined as
$P_{\Lambda_c}(q^2) = \frac{{\rm d}\Gamma^{\lambda_2 = 1/2}/{\rm d}q^2- {\rm d}\Gamma^{\lambda_2 = -1/2}/{\rm d}q^2}{{\rm d}\Gamma/{\rm d}q^2},$
(29)
and
$ P_{\ell}(q^2) = \frac{{\rm d}\Gamma^{\lambda_{\ell} = 1/2}/{\rm d}q^2- {\rm d}\Gamma^{\lambda_{\ell} = -1/2}/{\rm d}q^2}{{\rm d}\Gamma/{\rm d}q^2}\,, $
(30)
where
$\begin{aligned}[b]\frac{{\rm d}\Gamma^{\lambda_2 = 1/2}}{{\rm d}q^2} =& \frac{m_\ell^2}{q^2}\Big[\frac{4}{3}C_V^2\big(H_{1/2,1}^2+H_{1/2,0}^2+ 3H_{1/2,t}^2\big)\Big]{} \\ & +\frac{8}{3}C_V^2\big(H_{1/2,0}^2+H_{1/2,1}^2\big),{} \\ \frac{{\rm d}\Gamma^{\lambda_2 = -1/2}}{{\rm d}q^2} =& \frac{m_\ell^2}{q^2}\Big[\frac{4}{3}C_V^2\big(H_{-1/2,-1}^2\!+\!H_{-1/2,0}^2{} +3H_{-1/2,t}^2\big)\Big]\\ &+\frac{8}{3}C_V^2\big(H_{-1/2,-1}^2+H_{-1/2,0}^2\big),{} \\ \frac{{\rm d}\Gamma^{\lambda_\ell = 1/2}}{{\rm d}q^2} =& \frac{m_\ell^2}{q^2}C_V^2\Big[\frac{4}{3}\big(H_{1/2,1}^2\!+\!H_{1/2,0}^2\!+\! H_{-1/2,-1}^2\!{} +\!H_{-1/2,0}^2\big)\! \\ &+\!4\big(H_{1/2,t}^2\!+\!H_{-1/2,t}^2\big)\Big],{} \\ \frac{{\rm d}\Gamma^{\lambda_\ell = -1/2}}{{\rm d}q^2} =& \frac{8C_V^2}{3}\big(H_{1/2,1}^2\!+\!H_{1/2,0}^2\!+\!H_{-1/2,-1}^2\!{}+\!H_{-1/2,0}^2\big)\,.\end{aligned}$
(31)
The dependence of the $ \Lambda_{c} $ baryon and lepton polarizations on $ q^2 $ at the $ \mu $ and $ \tau $ channels in the SM and vector LQ models with all errors are presented in Figs. 6, 7, 8 , and 9. We observe that the LQ and SM predictions show considerable differences in $ P_{\Lambda_{c}} -q^2 $ in the $ \mu $ channel. However, in the $ \tau $ channel, the SM and both the LQ scenarios have roughly the same predictions for $ P_{\Lambda_{c}}-q^2 $. In the case of $ P_{\mu} $, in some regions, we see small shifts between the SM and LQ predictions. For $ P_{\tau} $ , the $ R_A $ and $ R_B $ type LQ scenarios yield almost the same predictions, but both deviate considerably from the SM prediction.
Figure6. (color online) The dependence of $ P_{\Lambda_{c}} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu \overline{\nu}_\mu $ transition in the SM and vector LQ models with all errors.

Figure7. (color online) The dependence of $ P_{\Lambda_{c}} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ transition in the SM and vector LQ models with all errors.

Figure8. (color online) The dependence of $ P_{\mu} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \mu \overline{\nu}_\mu $ transition in the SM and vector LQ models with all errors.

Figure9. (color online) The dependence of $ P_{\tau} $ on $ q^2 $ for the $ \Lambda_{b}\rightarrow \Lambda_{c} \tau \overline{\nu}_\tau $ transition in the SM and vector LQ models with all errors.

V.SUMMARY AND CONCLUSIONS
Thus far, the direct search for NP effects has only yielded null results. There is hope that these effects can be hunted indirectly in some hadronic decay channels. Recent experimental data on $ R(D^{(*)}) $, $ R(K^{(*)}) $ , and $ R(J/\psi) $ have shown sizable deviations from the SM predictions. Testing for similar possible deviations in the baryonic sector is crucial. Different experiments may focus on this question in the near future. In this situation, theoretical and phenomenological studies can play an important role before experimental results are available. The anomalies between the data and SM predictions in the aforementioned mesonic channels can be removed by introducing some NP scenarios BSM. Among these models are the vector and scalar leptoquark models. We have investigated the tree-level $ \Lambda_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell} $ in the SM and vector leptoquark models and compared their results. Our aim is to provide results from different models that can then be compared with future experimental data.
In particular, we calculated the (differential) branching ratios and forward-backward asymmetries at the $ \mu $ and $ \tau $ lepton channels and saw no deviations of the LQ results from the SM predictions or from the existing experimental data in the $ \mu $ channel. In the calculations, we used the form factors calculated in full QCD as the main input and accounted for the errors coming from the form factors and model parameters. At the $ \tau $ channel, the results of both models on $ A_{\rm FB} $ also agree. This result is expected since in the LQ model, the NP effects are encountered via Wilson coefficients that appear in both the numerator and denominator in the $ A_{\rm FB} $ formula, and their effects are canceled. However, we observed that at the $ \tau $ channel, the leptoquark models, especially the $ R_A $ type fit solution, sweep some regions out of the SM band on the $ DBR(q^2)-q^2 $ graph.
We also investigated the behavior of $ R(q^2) $ with respect to $ q^2 $ and extracted the values of the parameter $ R(\Lambda_c) $ in different scenarios. We observed that the LQ predictions for $ R(q^2)-q^2 $ and $ R(\Lambda_c) $ using both the $ R_A $ and $ R_B $ type fit solutions deviate considerably from the SM predictions.
Finally, we considered the $ \Lambda_{c} $ baryon and lepton polarizations, which are also important parameters for searching for new physics effects. We observed that the LQ and SM predictions show considerable differences in $ P_{\Lambda_{c}} -q^2 $ in the $ \mu $ channel. However, in the $ \tau $ channel, the SM and both the LQ scenarios yield roughly the same predictions for $ P_{\Lambda_{c}}-q^2 $. In the case of lepton polarization, $ P_{\mu} $, we see small shifts in some regions between the SM and LQ predictions. As far as the $ P_{\tau} $, the $ R_A $ and $ R_B $ type LQ scenarios produce almost the same predictions, but their results deviate considerably from the SM prediction.
The overall differences between the LQ and SM predictions for the parameters related to the tree-level $ \Lambda_{b} \rightarrow {\Lambda}_{c} \ell \overline{\nu}_{\ell} $s transition detected in the present study indicate that this mode is an important baryonic $ b\rightarrow c $ based transition that may be considered a good probe to search for NP effects. Future data on the physical quantities considered in the present study, which will be available after measurements of the $ \Lambda_b \rightarrow \Lambda_c \tau \; \overline{\nu}_\tau $ channel, will be very useful in this regard.
闂備礁缍婂ḿ褔顢栭崱妞绘敠闁逞屽墴閻擃偊宕剁捄杞板枈闂侀€炲苯澧伴柛鐘查叄瀹曘垽濡堕崶銊ヮ伕闁荤喐鐟ョ€氼參寮抽崼銉︾厱闁归偊鍓欓〃娆戠磼閸欐ê宓嗙€规洏鍔戦弫鎾绘晸閿燂拷闂備焦瀵х粙鎴︽儔婵傚憡鍋熸繛鎴欏灩绾偓闁诲骸婀辨慨瀵哥不椤栫偞鐓曟繛鍡樺姉婢ь剚绻濋埀顒勫箥椤旀儳宕ュ┑鐐叉鐢偤濡堕锔界厸闁稿本绋撻幊鍡欐偖濞嗘挻鐓曟俊顖欒閸庢垹绱撻崒姘兼Ш闁逞屽墴濞佳兾涘☉銏″亯婵犲﹤鐗婇弲顒勬煥閻曞倹瀚�
相关话题/Effects vector leptoquarks

闂備礁缍婂ḿ褔顢栭崱妞绘敠闁逞屽墴閻擃偊宕剁捄杞板枈闂侀€炲苯澧伴柛鐘查叄瀹曘垽濡堕崶銊ヮ伕闁荤喐鐟ョ€氼參寮抽崼銉︾厱闁归偊鍓欓〃娆戠磼閸欐ê宓嗙€规洏鍔戦弫鎾绘晸閿燂拷闂備焦瀵х粙鎴︽儔婵傚憡鍋熸繛鎴欏灩绾偓闁诲骸婀辨慨瀵哥不椤栫偞鐓曟繛鍡樺姉婢ь剚绻濋埀顒勫箥椤旀儳宕ュ┑鐐叉鐢偤濡堕锔界厸闁稿本绋撻幊鍡欐偖濞嗘挻鐓曟俊顖欒閸庢垹绱撻崒姘兼Ш闁逞屽墴濞佳兾涘☉銏″亯婵犲﹤鐗婇弲顒勬煥閻曞倹瀚�