HTML
--> --> -->The main inputs in the sum rule method are interpolating currents, which are written based on the general properties of the baryons and in terms of their quark contents. In the case of doubly heavy baryons, the symmetric and anti-symmetric interpolating fields for spin-1/2 particles are given as:
$ \begin{aligned}[b] \eta^{\cal S} =& \frac{1}{\sqrt{2}}\epsilon_{abc}\Bigg\{(Q^{aT}Cq^b)\gamma_{5}Q'^c+ (Q'^{aT}Cq^b)\gamma_{5}Q^c\\&+t (Q^{aT}C\gamma_{5}q^b)Q'^c +t(Q'^{aT}C \gamma_{5}q^b)Q^c\Bigg\}, \end{aligned} $ | (1) |
$ \begin{aligned}[b] \eta^{\cal A}=& \frac{1}{\sqrt{6}}\epsilon_{abc}\Bigg\{2(Q^{aT}CQ'^b)\gamma_{5}q^c+ (Q^{aT}Cq^b)\gamma_{5}Q'^c\\&-(Q'^{aT}Cq^b)\gamma_{5}Q^c +2t (Q^{aT}C \gamma_{5}Q'^b)q^c \\&+ t(Q^{aT}C\gamma_{5}q^b)Q'^c-t(Q'^{aT}C\gamma_{5}q^b)Q^c\Bigg\}, \end{aligned} $ | (2) |
Baryon | q | Q | |
u or d | |||
s |
Table1.Quark contents of the doubly heavy spin-1/2 baryons.
As an example, we demonstrate how the current of the doubly heavy baryons in its antisymmetric form is constructed considering all the quantum numbers. The simplest way of constructing a spin-
$ \eta_{\rm meson} = \bar{q_1}\Gamma q_2\; , $ | (3) |
$ \eta_{\rm diquark} = q_1^T C\Gamma q_2\; . $ | (4) |
$ \begin{aligned}[b] \eta^A \sim &\;\epsilon_{abc}\big\{ (Q^{aT} C\Gamma Q'^b) \Gamma' q^c +(Q^{aT} C\Gamma q^b) \Gamma' Q'^c\\&+(q^{aT} C\Gamma Q^b) \Gamma' Q'^c -\big( Q \leftrightarrow Q' \big)\big\}, \end{aligned}$ | (5) |
$ \begin{aligned}[b] [\epsilon_{abc} Q^{aT} C\Gamma Q'^b ]^T =& -\epsilon_{abc} Q'^{bT} \Gamma^T C^{-1} Q^a \\=& \;\epsilon_{abc} Q'^{bT} C(C\Gamma^T C^{-1}) Q^a. \end{aligned}$ | (6) |
$ C\Gamma^T C^{-1} = \begin{cases} \Gamma & {\rm{for}}\; \Gamma = 1, \gamma_5, \gamma_{\mu}\gamma_5 \; ,\\ -\Gamma & {\rm{for}}\; \Gamma = \gamma_{\mu}, \sigma_{\mu\nu}\; . \end{cases} $ | (7) |
$ [\epsilon_{abc} Q^{aT} C\Gamma Q'^b ]^T = \pm \epsilon_{abc} Q'^{aT} C\Gamma Q^b, $ | (8) |
$ [\epsilon_{abc} Q^{aT} C\Gamma Q'^b ]^T = \pm \epsilon_{abc} Q^{aT} C\Gamma Q'^b\; , $ | (9) |
As mentioned above, the simplest way of constructing spin-
The matrices
$ \eta^A\sim \epsilon_{abc}\big\{ (Q^{aT} C Q'^b) \gamma_5 q^c + t(Q^{aT} C \gamma_5 Q'^b)q^c -\big( Q \leftrightarrow Q' \big) \big\}, $ | (10) |
$ \begin{array}{l} \eta^A\sim 2 \epsilon_{abc}\big\{ (Q^{aT} C Q'^b) \gamma_5 q^c + t(Q^{aT} C \gamma_5 Q'^b) q^c \big\}. \end{array} $ | (11) |
The main goal in this section is to find the strong coupling constants among the doubly heavy baryons with spin-1/2,
$ \Pi(p,q) = {\rm i} \int {\rm d}^4x {\rm e}^{{\rm i}px} \left< {\cal P}(q) \vert {\cal T} \left\{ \eta (x) \bar{\eta} (0) \right\} \vert 0 \right>\; , $ | (12) |
In the LCSR approach, the cornerstone is the CF. It can be calculated in two different ways. In the timelike region, one can insert the complete set of hadronic states with the same quantum numbers as the interpolating currents to extract and isolate the ground states. It is called the phenomenological or physical side of the CF. In the spacelike region which is free of singularities, one can calculate the CF in terms of QCD degrees of freedom using OPE. It is known as the QCD or theoretical side. These two representations, which respectively are the real and imaginary parts of the CF, can be matched via a dispersion relation to find the corresponding sum rule. The divergences coming from the dispersion integral, as well as higher states and continuum, are suppressed using the well-known method of Borel transformation and continuum subtraction.
On the phenomenological side, after inserting the complete sets of hadronic states with the same quantum numbers as the interpolating currents and performing the Fourier integration over x, we get
$ \begin{array}{l} \Pi^{\rm{Phys.}}(p,q) = \dfrac{\langle 0\vert \eta\vert B_2(p,r)\rangle \langle B_2(p,r){\cal P}(q)\vert B_1(p+q,s)\rangle\langle B_1(p+q,s) \vert \bar{\eta}\vert 0\rangle}{(p^2-m_1^2)[(p+q)^2-m_2^2]} +\cdots\; , \end{array} $ | (13) |
$ \langle 0\vert \eta\vert B_i(p,s)\rangle = \lambda_{B_i}u(p,s), $ | (14) |
$ \langle B_2(p,r){\cal P}(q)\vert B_1(p+q,s)\rangle = g_{B_1 B_2{\cal P}} \bar{u}(p,r)\gamma_5 u(p+q,s) \; , $ | (15) |
$ \begin{array}{l} \Pi^{\rm{Phys.}}(p,q) = \dfrac{ g_{B_1 B_2{\cal P}}\lambda_{B_1}\lambda_{B_2}}{(p^2-m_{B_2}^2)[(p+q)^2-m_{B_1}^2]}[{\not \!\!q} {\not \!\!p}\gamma_5 +\cdots\; ] +\cdots, \end{array} $ | (16) |
To kill the higher states and continuum contributions we apply the double Borel transformation with respect to the square of the doubly heavy baryon momenta
$ \begin{align} {\cal B}_{p_1}(M_1^2){\cal B}_{p_2}(M_2^2)\Pi^{\rm{Phys.}}(p,q) \equiv \Pi^{\rm{Phys.}}(M^2) = g_{B_1 B_2 {\cal P}} \lambda_{B_1} \lambda_{B_2} {\rm e}^{-m_{B_1}^2/M_1^2} {\rm e}^{-m_{B_2}^2/M_2^2}\not\!\!q \not\!\!p\gamma_5\; + \cdots\; , \end{align} $ | (17) |
On the QCD side, choosing the corresponding structure to Eq. (16), one can express the CF function as:
$ \Pi^{\rm{QCD}}(p,q) = \Pi\big(p,q\big) \not\!\!q \not\!\!p\gamma_5, $ | (18) |
$ \begin{aligned}[b] \Pi^{\rm{QCD}}_{(\cal{S})\rho\sigma}(p,q) =&\; \frac{\rm i}{2}\epsilon_{abc}\epsilon_{a'b'c'} \int {\rm d}^4 x {\rm e}^{{\rm i} q.x} \langle {\cal P}(q) \vert \bar{q}^{c^\prime}_{\alpha}(0)q^{c}_{\beta}(x)\vert 0\rangle \Bigg\{ \Bigg[ \Big(\tilde{S}^{aa^{\prime}}_{Q}(x) \Big)_{\alpha\beta}\Big( \gamma_5 S^{bb^{\prime}}_{Q^{\prime}}(x) \gamma_5\Big)_{\rho\sigma} + \Big(\gamma_5 S_{Q^{\prime}}^{bb^{\prime}}(x)C\Big)_{\rho\alpha}\Big(CS^{aa^{\prime}}_{Q}(x)\gamma_5 \Big)_{\beta\sigma} \\ &+ t\Big\{\Big(\gamma_5 \tilde{S}_{Q}^{aa^{\prime}}(x)\Big)_{\alpha\beta}\Big(\gamma_5 S^{bb^{\prime}}_{Q^{\prime}}(x) \Big)_{\rho\sigma} + \Big( \tilde{S}_{Q}^{aa^{\prime}}(x)\gamma_5\Big)_{\alpha\beta}\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma_5 \Big)_{\rho\sigma} +\Big(\gamma_5 S_{Q^{\prime}}^{bb^{\prime}}(x)C\gamma_5\Big)_{\rho\alpha}\Big(CS^{aa^{\prime}}_{Q}(x)\Big)_{\beta\sigma} -\Big( S_{Q^{\prime}}^{bb^{\prime}}(x)C\Big)_{\rho\alpha}\\ &\times\Big(\gamma_5CS^{aa^{\prime}}_{Q}(x)\gamma_5\Big)_{\beta\sigma} \Big\}+ t^2 \Big\{\Big(\gamma_5 \tilde{S}_{Q}^{aa^{\prime}}(x)\gamma_5\Big)_{\alpha\beta}\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\rho\sigma}- \Big( S_{Q^{\prime}}^{bb^{\prime}}(x)C\gamma_5\Big)_{\rho\alpha}\Big(\gamma_5CS^{aa^{\prime}}_{Q}(x)\Big)_{\beta\sigma} \Big\}\Bigg]+\Bigg(Q \longleftrightarrow Q^{\prime}\Bigg)\Bigg\}, \end{aligned} $ | (19) |
$ \begin{aligned}[b] \Pi^{\rm{QCD}}_{(\cal A)\rho\sigma}(p,q) =& \; \frac{\rm i}{6}\epsilon_{abc}\epsilon_{a'b'c'} \int {\rm d}^4 x {\rm e}^{{\rm i} q.x} \langle {\cal P}(q) \vert \bar{q}^{c^\prime}_{\alpha}(0)q^{c}_{\beta}(x)\vert 0\rangle \Bigg\{ 4 {\rm{Tr}}\big[ \tilde{S}^{aa^{\prime}}_{Q}(x)S^{bb^{\prime}}_{Q^{\prime}}(x)\big]\gamma^{5}_{\alpha\sigma}\gamma^{5}_{\rho\beta}-2\Big( \tilde{S}^{aa^{\prime}}_{Q}(x)S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\alpha\sigma}\gamma^{5}_{\rho\beta}\\ & -2\Big(\gamma^5 S^{bb^{\prime}}_{Q^{\prime}}(x)\tilde{S}^{aa^{\prime}}_{Q}(x) \Big)_{\rho\beta}\gamma^5_{\alpha\sigma}-2\Big(\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)S^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\alpha\sigma}\gamma^5_{\rho\beta}-2\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\rho\beta}\gamma^5_{\alpha\sigma} +\Big(\tilde{S}^{aa^{\prime}}_{Q}(x)\Big)_{\alpha\beta}\Big(\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5 \Big)_{\rho\sigma}\\ & +\Big(\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\alpha\beta}\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\rho\sigma}+\Big(\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)C\Big)_{\rho\alpha}\Big(CS^{aa^{\prime}}_{Q}(x)\gamma^5 \Big)_{\beta\sigma}+\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)C\Big)_{\rho\alpha}\Big(CS^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\beta\sigma} \\ &+t\Bigg[ 4{\rm{Tr}}\big[\tilde{S}^{aa^{\prime}}_{Q}(x)S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\big]\gamma^5_{\rho\beta}\delta_{\alpha\sigma} +4{\rm{Tr}}\big[S^{bb^{\prime}}_{Q^{\prime}}(x)\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5\big]\gamma^5_{\alpha\sigma}\delta_{\rho\beta}+2\Big(\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5S^{aa^{\prime}}_{Q}(x)C\gamma^5\Big)_{\alpha\sigma}\delta_{\beta\rho}\\ & -2\Big(S^{aa^{\prime}}_{Q}(x)\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\beta\rho}\gamma^5_{\alpha\sigma} -2\Big(\gamma^5 \tilde{S}^{aa^{\prime}}_{Q}(x)S^{bb^{\prime}}_{Q^{\prime}}(x) \Big)_{\alpha\sigma}\gamma^5_{\rho\beta} -2\Big(\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5 \tilde{S}^{aa^{\prime}}_{Q}(x)\Big)_{\rho\beta}\delta_{\sigma\alpha} \\ &-2\Big(\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)S^{aa^{\prime}}_{Q}(x)\Big)_{\alpha\sigma}\gamma^5_{\rho\beta}-2\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\rho\beta}\delta_{\alpha\sigma}-2\Big(\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5 \Big)_{\alpha\sigma}\delta_{\rho\beta}\\ & -2\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\rho\beta}\gamma^5_{\alpha\sigma}+\Big(\gamma^5\tilde{S}^{aa^{\prime}}_{Q}(x)\Big)_{\alpha\beta}\Big(\gamma^5 S^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\rho\sigma} +\Big(\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)C\gamma^5\Big)_{\rho\alpha}\Big(C S^{aa^{\prime}}_{Q}(x)\Big)_{\beta\sigma}\\ &+\Big(\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\alpha\beta}\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\rho\sigma} +\Big(\gamma^5CS^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\beta\sigma}\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)C\Big)_{\rho\alpha} +\Big(S^{aa^{\prime}}_{Q}(x)C\Big)_{\rho\alpha}\Big(\gamma^5CS^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\beta\sigma} \\ &+\Big(\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\alpha\beta}\Big(S^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\rho\sigma} +\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)C\gamma^5\Big)_{\rho\alpha}\Big( CS^{bb^{\prime}}_{Q^{\prime}}(x) \Big)_{\beta\sigma} +\Big(\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\alpha\beta}\Big(\gamma^5S^{aa^{\prime}}_{Q}(x)\Big)_{\rho\sigma} \Bigg] \\ &+ t^2\Bigg[ 4{\rm{Tr}}\big[\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\big] \delta_{\alpha\sigma}\delta_{\beta\rho} -2\Big(\gamma^5\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5S^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\alpha\sigma}\delta_{\rho\beta} +2\Big(S^{aa^{\prime}}_{Q}(x)\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\rho\beta}\delta_{\alpha\sigma} \\ &-2\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\rho\beta}\delta_{\alpha\sigma}+2\Big(\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5S^{aa^{\prime}}_{Q}(x)\Big)_{\alpha\sigma}\delta_{\beta\rho} +\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\rho\sigma}\Big(\gamma^5\tilde{S}^{aa^{\prime}}_{Q}(x)\gamma^5\Big)_{\alpha\beta} \\ & +\Big(S^{aa^{\prime}}_{Q}(x)\Big)_{\rho\sigma}\Big(\gamma^5\tilde{S}^{bb^{\prime}}_{Q^{\prime}}(x)\gamma^5\Big)_{\alpha\beta} +\Big(S^{bb^{\prime}}_{Q^{\prime}}(x)C\gamma^5\Big)_{\sigma\alpha}\Big(\gamma^5CS^{aa^{\prime}}_{Q}(x)\Big)_{\beta\rho} +\Big(S^{aa^{\prime}}_{Q}(x)C\gamma^5\Big)_{\rho\alpha}\Big(\gamma^5CS^{bb^{\prime}}_{Q^{\prime}}(x)\Big)_{\beta\sigma}\Bigg]\Bigg\}. \end{aligned} $ | (20) |
The explicit expression for the heavy quark propagator is given as (see Ref. [65]):
$ \begin{aligned}[b] S_Q^{aa^{\prime}}(x) =&\; {m_Q^2 \over 4 \pi^2} {K_1(m_Q\sqrt{-x^2}) \over \sqrt{-x^2}}\delta^{aa^{\prime}} - {\rm i} {m_Q^2 \rlap/{x} \over 4 \pi^2 x^2} K_2(m_Q\sqrt{-x^2})\delta^{aa^{\prime}} \\& - {\rm i}g_s \int {{\rm d}^4k \over (2\pi)^4} {\rm e}^{-{\rm i}kx} \int_0^1 {\rm d}u \Bigg[ {\rlap/k+m_Q \over 2 (m_Q^2-k^2)^2} \sigma^{\mu\nu} G_{\mu\nu}^{aa^{\prime}} (ux) \\ &+ {u \over m_Q^2-k^2} x^\mu \gamma^\nu G_{\mu\nu}^{aa^{\prime}}(ux) \Bigg]+\cdots. \end{aligned} $ | (21) |
$ G^{aa^{\prime}}_{\mu \nu }\equiv G^{A}_{\mu \nu }t^{aa^{\prime}}_{A}, $ | (22) |
Inserting the heavy quark propagator (21) into the CFs (19) and (20) would lead to several kinds of contributions each representing a different Feynman diagram. There are two heavy quark propagators in each term of the CFs. The leading order contribution consists of a bare loop, depicted in Fig. 1. To calculate that, every heavy quark propagator is replaced by its perturbative terms. The non-perturbative part of this contribution comes from the non-local matrix elements of the pseudoscalar meson which are defined in terms of distribution amplitudes (DAs) of twist two and higher.
Figure1. (color online) The leading order diagram contributing to
Multiplication of the perturbative part of one heavy quark propagator and the gluon interaction part of another one leads to contributions which can be calculated using the pseudoscalar meson three-particle DAs. It is responsible for the exchange of one gluon between one of the heavy quarks and the outgoing meson, as shown in Fig. 2. The higher order contributions corresponding to at least four-particle DAs, which are not available yet, are neglected in this work. However, we take into account the two-gluon condensates contributions
Figure2. (color online) The one-gluon exchange diagrams.
$ \overline{q}_{\alpha }^{c^{\prime }}(0)q_{\beta }^{c}(x)\rightarrow \frac{1}{\rhhzbr 3}\delta^{cc^{\prime }}\overline{q}_{\alpha }(0)q_{\beta }(x), $ | (23) |
$ \overline{q}_{\alpha }(0)q_{\beta }(x)\equiv \frac{1}{4}\Gamma_{\beta \alpha }^{J}\overline{q}(0)\Gamma_{J}q(x), $ | (24) |
$ \Gamma ^{J} = {{\bf{1}},\ }\gamma _{5},\ \gamma _{\mu },\ i\gamma _{5}\gamma _{\mu },\ \sigma _{\mu \nu }/\sqrt{2}. $ | (25) |
In the following, we would like to briefly explain how the contributions of, for instance, the diagrams in Fig. 1 and Fig. 2 are calculated. For a symmetric current and Fig. 1, we get
$ \begin{aligned}[b] \Pi^{{\rm{QCD}}({1})}_{(\cal{S})\rho\sigma}(p,q) =& \; \frac{\rm i}{4}\int {\rm d}^4 x {\rm e}^{{\rm i} q.x} \langle {\cal P}(q) \vert \bar{q}(0)\Gamma^Jq(x)\vert 0\rangle \Bigg\{\Bigg[ {\rm{Tr}}\big[ \Gamma_J\tilde{S}^{({\rm{pert.}})}_{Q}(x) \big]\Big( \gamma_5 S^{({\rm{pert.}})}_{Q^{\prime}}(x) \gamma_5\Big)_{\rho\sigma} + \Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x)\tilde{\Gamma}_JS_{Q}^{({\rm{pert.}})}(x)\gamma_5 \Big)_{\rho\sigma} \\ &+ t\Big\{ {\rm{Tr}}\big[\Gamma_J\gamma_5 \tilde{S}_{Q}^{({\rm{pert.}})}(x)\big]\Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x) \Big)_{\rho\sigma}+ {\rm{Tr}}\big[\Gamma_J \tilde{S}_{Q}^{({\rm{pert.}})}(x)\gamma_5\big]\Big(S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5 \Big)_{\rho\sigma} +\Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5\tilde{\Gamma}_JS_{Q}^{({\rm{pert.}})}(x)\Big)_{\rho\sigma} \\ &-\Big( S_{Q^{\prime}}^{({\rm{pert.}})}(x)\tilde{\Gamma}_J\gamma_5S_{Q}^{({\rm{pert.}})}(x)\gamma_5\Big)_{\rho\sigma} \Big\} + t^2 \Big\{ {\rm{Tr}}\big[\Gamma_J\gamma_5 \tilde{S}_{Q}^{({\rm{pert.}})}(x)\gamma_5\big]\Big(S_{Q^{\prime}}^{({\rm{pert.}})}(x)\Big)_{\rho\sigma} \\ &- \Big( S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5\tilde{\Gamma}_J\gamma_5S_{Q}^{({\rm{pert.}})}(x)\Big)_{\rho\sigma} \Big\}\Bigg] + \Bigg( Q \leftrightarrow Q^{\prime}\Bigg) \Biggr\}, \end{aligned} $ | (26) |
$ S_Q^{({\rm{pert.}})}(x) = {m_Q^2 \over 4 \pi^2} {K_1(m_Q\sqrt{-x^2}) \over \sqrt{-x^2}} - {\rm i} {m_Q^2 \rlap/{x} \over 4 \pi^2 x^2} K_2\left(m_Q\sqrt{-x^2}\right).$ | (27) |
$ S^{aa^{\prime}(\rm non-p.)}_{Q}(x) =- {\rm i}g_s \int {{\rm d}^4k \over (2\pi)^4} {\rm e}^{-{\rm i}kx} \int_0^1 {\rm d}u G^{aa^{\prime}}_{\mu\nu}(ux) \Delta^{\mu\nu}_{Q}(x), $ | (28) |
$ \Delta^{\mu\nu}_{Q}(x) = \dfrac{1}{2 (m_Q^2-k^2)^2}\Big[({\not\!\!k}+m_Q)\sigma^{\mu\nu} + 2u (m_Q^2-k^2)x^\mu \gamma^\nu\Big]. $ | (29) |
$ \begin{aligned}[b] \Pi^{\rm{QCD(2a)}}_{({\cal S})\rho\sigma}(p,q) =& - \frac{g_s}{12}\int {\rm d}^4 x \int {{\rm d}^4k \over (2\pi)^4} \int_0^1 {\rm d}u {\rm e}^{{\rm i} (q-k).x} \langle {\cal P}(q) \vert \bar{q}(x)\Gamma^J G_{\mu\nu}(ux)q(0)\vert 0\rangle \times \Bigg\{ \Bigg[ {\rm{Tr}}\big[ \Gamma_J\tilde{\Delta}^{\mu\nu}_{Q}(x) \big]\Big( \gamma_5 S^{({\rm{pert.}})}_{Q^{\prime}}(x) \gamma_5\Big)_{\rho\sigma}\\ &+ \Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x)\tilde{\Gamma}_J\Delta^{\mu\nu}_{Q}(x)\gamma_5 \Big)_{\rho\sigma} + t\Big\{ {\rm{Tr}}\big[\Gamma_J\gamma_5 \tilde{\Delta}^{\mu\nu}_{Q}(x)\big]\Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x) \Big)_{\rho\sigma} + {\rm{Tr}}\big[\Gamma_J \tilde{\Delta}^{\mu\nu}_{Q}(x)\gamma_5\big]\Big(S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5 \Big)_{\rho\sigma} \\ &+ \Big(\gamma_5 S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5\tilde{\Gamma}_J\Delta^{\mu\nu}_{Q}(x)\Big)_{\rho\sigma} - \Big( S_{Q^{\prime}}^{({\rm{pert.}})}(x)\tilde{\Gamma}_J\gamma_5\Delta^{\mu\nu}_{Q}(x)\gamma_5\Big)_{\rho\sigma} \Big\} + t^2 \Big\{ {\rm{Tr}}\big[\Gamma_J\gamma_5 \tilde{\Delta}^{\mu\nu}_{Q}(x)\gamma_5\big]\Big(S_{Q^{\prime}}^{({\rm{pert.}})}(x)\Big)_{\rho\sigma} \\ &- \Big( S_{Q^{\prime}}^{({\rm{pert.}})}(x)\gamma_5\tilde{\Gamma}_J\gamma_5\tilde{\Delta}^{\mu\nu}_{Q}(x)\Big)_{\rho\sigma} \Big\}\Bigg] + \Bigg( \Delta^{\mu\nu}_{Q}(x) \leftrightarrow S^{({\rm{pert.}})}_{Q^{\prime}}(x) \Bigg) \Bigg\}, \end{aligned} $ | (30) |
From Eqs. (26) and (30) it is clear that the non-perturbative nature of the interaction is represented by the non-local matrix elements:
$ \begin{aligned}[b]& \langle {\cal P}(q) \vert \bar{q}(x)\Gamma^J q(0)\vert 0\rangle\; ,\\ &\langle {\cal P}(q) \vert \bar{q}(x)\Gamma^J G_{\mu\nu}(ux)q(0)\vert 0\rangle\; ,& \end{aligned} $ | (31) |
Inserting the heavy quark propagators (21) and the expressions for non-local matrix elements (31) from Appendix A into the CFs (26) and (30), one obtains the version of CF that is ready for performing the Fourier and Borel transformations as well as continuum subtraction. At this stage the CF contains several kinds of configurations with the general form:
$ \begin{aligned}[b] T_{[\; \; ,\alpha,\alpha\beta]}(p,q) =& \;{\rm i} \int {\rm d}^4 x \int_{0}^{1} {\rm d}v \int {\cal D}\alpha {\rm e}^{{\rm i}p.x} \big(x^2 \big)^n \\& \times [{\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha _g) q.x} \mathcal{G}(\alpha_{i}) , {\rm e}^{{\rm i}q.x} f(u)] [1 , x_{\alpha} , x_{\alpha}x_{\beta}] \\& \times K_{\mu}\left(m_Q\sqrt{-x^2}) K_{\nu}(m_Q\sqrt{-x^2}\right). \end{aligned} $ | (32) |
$ \int \mathcal{D}\alpha = \int_{0}^{1}{\rm d}\alpha _{q}\int_{0}^{1}{\rm d}\alpha _{\bar{q}}\int_{0}^{1}{\rm d}\alpha _{g}\delta (1-\alpha _{q}-\alpha _{\bar{q}}-\alpha _{g}). $ |
$ K_\nu(m_Q\sqrt{-x^2}) = \frac{\Gamma(\nu+ 1/2)\; 2^\nu}{\sqrt{\pi}m_Q^\nu}\int_0^\infty {\rm d}t\; \cos(m_Qt)\frac{(\sqrt{-x^2})^\nu}{(t^2-x^2)^{\nu+1/2}}, $ | (33) |
$ \begin{aligned}[b] (x^2)^n =& \; (-1)^n \frac{{\rm d}^n}{{\rm d} \beta^n}\big({\rm e}^{- \beta x^2}\big)\uparrowvert_{\beta = 0}, \\ x_{\alpha} {\rm e}^{{\rm i} P.x} =& \; (-{\rm i}) \frac{\rm d}{{\rm d} P^{\alpha}} {\rm e}^{{\rm i} P.x}. \end{aligned} $ | (34) |
$ \begin{aligned}[b] {\cal Z}_{\alpha\beta}(p,q) = & \; {\rm i} \int {\rm d}^4 x \int_{0}^{1} {\rm d}v \int {\cal D}\alpha {\rm e}^{{\rm i}[p+ (\alpha_{\bar q} + v \alpha _g)q].x} \\& \times\mathcal{G}(\alpha_{\rm i}) \big(x^2 \big)^n x_\alpha x_\beta \\& \times K_{\mu}\left(m_Q\sqrt{-x^2}\right) K_{\nu}\left(m_Q\sqrt{-x^2}\right). \end{aligned} $ | (35) |
$ {\cal B}_{p_1}(M_{1}^{2}){\cal B}_{p_2}(M_{2}^{2}){\rm e}^{b (p + u q)^2} = M^2 \delta\left(b+\frac{1}{M^2}\right)\delta(u_0 - u) {\rm e}^{\frac{-q^2}{M_{1}^{2}+M_{2}^{2}}}, $ | (36) |
$ \begin{aligned}[b] {\cal Z}_{\alpha\beta}(M^2) =& \; \frac{{\rm i} \pi^2 2^{4-\mu-\nu} {\rm e}^{\frac{-q^2}{M_1^2+M_2^2}}}{M^2 m_{Q_1}^{2\mu} m_{Q_2}^{2\nu}}\int \mathcal{D}\alpha \int_{0}^{1} {\rm d}v \int_{0}^{1} {\rm d}z \frac{\partial^n }{\partial \beta^n} {\rm e}^{-\frac{m_1^2 \bar{z} + m_2^2 z}{z \bar{z}(M^2 - 4\beta)}} z^{\mu-1}\bar{z}^{\nu-1} (M^2 - 4\beta)^{\mu+\nu-1} \\&\times \delta[u_0 - (\alpha_{q} + v \alpha_{g})] \Big[ p_\alpha p_\beta + (v \alpha_{g} +\alpha_{q})(p_\alpha q_\beta +q_\alpha p_\beta ) + (v \alpha_{g} +\alpha_{q})^2 q_\alpha q_\beta + \frac{M^2}{2}g_{\alpha\beta} \Big]. \end{aligned} $ | (37) |
According to Eq. (20), we choose the structure
$ \Pi^{\rm{QCD}}_{{ B}_1 { B}_2 {\cal P}}(M^2) = \Pi_{{ B}_1 { B}_2 {\cal P}}(M^2) {\not\!\!q} {\not\!\!p} \gamma_{5}, $ | (38) |
$ \begin{aligned}[b] \Pi_{\Omega_{bb}\Xi_{bb}\bar{K}^0}(M^2) =&\; \dfrac{{\rm e}^{-\frac{m_{\bar{K}^0}^2}{4M^2}}}{6912\pi^2M^6m_b}\int_{0}^{1}{\rm d}z\dfrac{{\rm e}^{-\frac{m_b^2}{M^2 z \bar{z}}}}{z^2 \bar{z}^2} \Bigg\{ 72 m_b M^6 z \bar{z}^2 \Bigg( 3f_{\bar{K}^0}m_{\bar{K}^0}^2m_b(t^2-1)\big(m_b^2+2M^2z\bar{z}\big){\mathbb A}(u_0) \\ &+2M^2z\Big[ -6f_{\bar{K}^0}m_bM^2(t^2-1)\bar{z}\varphi_{\bar{K}^0}(u_0) +\mu_{\bar{K}^0}(\tilde \mu_{\bar{K}^0}^2 -1)\Big( 2m_b^2(1+t^2)+3M^2(t-1)^2 z\bar{z}\Big)\varphi_{\sigma}(u_0)\Big] \Bigg)\\ &+432m_b M^8 z\bar{z}^2\int_{0}^{1}{\rm d}v\int \mathcal{D}\alpha \Bigg( f_{\bar{K}^0}m_{\bar{K}^0}^2m_b(t^2-1)\delta[u_0-(\alpha_{q}+v\alpha_{g})] \times \Big( (2v-1)z{\cal A}_\parallel (\alpha_i)\\ &+(2z-3){\cal V}_\parallel(\alpha_i) +2\bar{z}{\cal V}_\perp(\alpha_i)\Big) -\mu_{\bar{K}^0}M^2(t-1)^2z\bar{z}\delta^{\prime}[u_0-(\alpha_{q}+v\alpha_{g})] {\cal T}(\alpha_i)\Bigg) \\ &+ g_s^2\langle GG \rangle\Bigg[ -3f_{\bar{K}^0}m_{\bar{K}^0}^2(t^2-1)\Big( 2m_b^6-3m_b^4 M^2\bar{z}^2 -6m_b^2M^4z \bar{z}^3-6M^6z^2\bar{z}^4{\mathbb A}(u_0) \Big)\\ &+4M^2\bar{z}\Big[-3f_{\bar{K}^0}(t^2-1)z\Big(-2m_b^4-m_b^2M^2(5z-3)\bar{z}+6M^4z\bar{z}^3 \Big)\varphi_{\bar{K}^0}(u_0)-\mu_{\bar{K}^0}(\tilde \mu_{\bar{K}^0}^2 -1)m_b\Big( 2m_b^4(1+t^2)\\ &+m_b^2M^2\big[(1+t^2)(1-4z)-6t \big]z +M^4\big[ (1+t^2)(1-4z)-6t\big]z^2\bar{z}\varphi_{\sigma}(u_0)\Big) \Big]\\ &+6\int_{0}^{1}{\rm d}v\int\mathcal{D}\alpha \Bigg(-f_{\bar{K}^0}m_{\bar{K}^0}^2M^2(t^2-1)\bar{z}\delta[u_0-(\alpha_{q}+v\alpha_{g})]\\ &\times \Big\{ (2v-1)\Big[m_b^4-m_b^2M^2z(1+2z)-M^4z^2(1+2z)\bar{z}\Big]{\cal A}_\parallel (\alpha_i) \\ &+\Big[ -4m_b^2+m_b^2M^2z(1+2z)+M^4z^2(1+z-2z^2) \Big]{\cal V}_\parallel(\alpha_i)+2m_b^4{\cal V}_\perp(\alpha_i) \Big\}\\ &+ m_b M^4\mu_{\bar{K}^0}(t-1)2(2v-1)z\bar{z}(m_b^2+M^2z\bar{z})\delta^{\prime}[u_0-(\alpha_{q}+v\alpha_{g})] {\cal T}(\alpha_i) \Bigg) \Bigg]\Bigg\}. \end{aligned} $ | (39) |
The next step is the continuum subtraction. To this end, we set the argument in
$ \int_{0}^{1}{\rm d}z \rightarrow \int_{z_{\min}}^{z_{\max}}{\rm d}z, $ | (40) |
$ \begin{aligned}[b] z_{{\max}({\min})} =&\;\frac{1}{2s_0}\Big[(s_0+m_1^2-m_2^2)\\&+(-)\sqrt{(s0+m_1^2-m_2^2)^2-4m_1^2s_0}\Big]. \end{aligned} $ | (41) |
After performing continuum subtraction, the invariant function becomes
$ \begin{array}{l} g_{B_1 B_2 {\cal P}}(M^2,s_0,t) = \dfrac{1}{\lambda_{B_1}\lambda_{B_2}} {\rm e}^{\frac{m_{B_1}^2+m_{B_2}^2}{2M^2}}\Pi_{B_1 B_2 {\cal P}}(M^2,s_0,t). \end{array} $ | (42) |
Parameters | Values/MeV |
Table2.Meson masses and leptonic decay constants along with heavy quark masses [67-70].
meson | |||||
0.44 | ?3 | 10 | 0.2 | ||
K | 0.16 | ?3 | 0.6 | 0.2 | |
0.2 | 0.013 | ?3 | 0.5 | 0.2 |
Table3.Input parameters for twist 2, 3 and 4 DAs at the renormalization scale
Baryon | Mass/GeV | Residue/GeV3 |
Table4.Baryon masses and residues [18].
The sum rules for the strong coupling constants also depend on three auxiliary parameters
The continuum threshold depends on the energy of the first excited state in each channel. Unfortunately, we have no experimental information on the first excited doubly heavy baryons. We choose it in the interval
Figure3. (color online) The strong couplings
For
$\begin{aligned}[b] R = \dfrac{\int_{(m_Q+m_{Q^{\prime}})^2}^{s_0}{\rm d}s \rho(s) {\rm e}^{-s/M^2}}{\int_{(m_Q+m_{Q^{\prime}})^2}^{\infty}{\rm d}s \rho(s) {\rm e}^{-s/M^2}}\geqslant \frac{1}{2}.\end{aligned}$ | (43) |
Figure4. (color online) The strong couplings
Channel | strong coupling constant | ||
Decays to | |||
Decays to K | |||
Decays to | |||
Decays to | |||
Table5.Working regions of the Borel mass
The final results for the strong coupling constants under study are also presented in Table 5. The errors in the presented results are due to the uncertainties in determinations of the working intervals for the auxiliary parameters, the intrinsic uncertainties of the method, the errors in the masses and residues of the doubly heavy baryons, and the uncertainties coming from the DA parameters as well as other inputs. As we previously said, in Ref. [60] we investigated the symmetric
$ \tag{A1}\begin{aligned}[b] \langle {\pi}(p)| \bar q(x) \gamma_\mu \gamma_5 q(0)| 0 \rangle =& \; -{\rm i} f_{\pi} p_\mu \int_0^1 {\rm d}u {\rm e}^{{\rm i} \bar u p x} \left( \varphi_{\pi}(u) + \frac{1}{16} m_{\pi}^2 x^2 {\mathbb A}(u) \right) -\frac{\rm i}{2} f_{\pi} m_{\pi}^2 \frac{x_\mu}{px} \int_0^1 {\rm d}u {\rm e}^{{\rm i} \bar u px} {\mathbb B}(u), \\ \langle {\pi}(p)| \bar q(x) i \gamma_5 q(0)| 0 \rangle =&\; \mu_{\pi} \int_0^1 {\rm d}u {\rm e}^{{\rm i} \bar u px} \varphi_P(u), \\ \langle {\pi}(p)| \bar q(x) \sigma_{\alpha \beta} \gamma_5 q(0)| 0 \rangle =& \; \frac{\rm i}{6} \mu_{\pi} \left( 1 - \tilde \mu_{\pi}^2 \right) \left( p_\alpha x_\beta - p_\beta x_\alpha\right) \int_0^1 {\rm d}u {\rm e}^{{\rm i} \bar u px} \varphi_\sigma(u), \\ \langle {\pi}(p)| \bar q(x) \sigma_{\mu \nu} \gamma_5 g_s G_{\alpha \beta}(v x) q(0)| 0 \rangle =& \; {\rm i} \mu_{\pi} \left[ p_\alpha p_\mu \left( g_{\nu \beta} - \frac{1}{px}(p_\nu x_\beta + p_\beta x_\nu) \right) \right. -p_\alpha p_\nu \left( g_{\mu \beta} - \frac{1}{px}(p_\mu x_\beta + p_\beta x_\mu) \right) \\ &\;-p_\beta p_\mu \left( g_{\nu \alpha} - \frac{1}{px}(p_\nu x_\alpha + p_\alpha x_\nu) \right) +p_\beta p_\nu \left. \left( g_{\mu \alpha} - \frac{1}{px}(p_\mu x_\alpha + p_\alpha x_\mu) \right) \right] \\ &\;\times \int {\cal D} \alpha {\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha_g) px} {\cal T}(\alpha_i), \\ \langle {\pi}(p)| \bar q(x) \gamma_\mu \gamma_5 g_s G_{\alpha \beta} (v x) q(0)| 0 \rangle =& \; p_\mu (p_\alpha x_\beta - p_\beta x_\alpha) \frac{1}{px} f_{\pi} m_{\pi}^2 \int {\cal D}\alpha {\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha_g) px} {\cal A}_\parallel (\alpha_i) + \left[ p_\beta \left( g_{\mu \alpha} - \frac{1}{px}(p_\mu x_\alpha + p_\alpha x_\mu) \right) \right. \\ &\;-p_\alpha \left. \left(g_{\mu \beta} - \frac{1}{px}(p_\mu x_\beta + p_\beta x_\mu) \right) \right] f_{\pi} m_{\pi}^2 \times \int {\cal D}\alpha {\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha _g) p x} {\cal A}_\perp(\alpha_i), \\ \langle {\pi}(p)| \bar q(x) \gamma_\mu i g_s G_{\alpha \beta} (v x) q(0)| 0 \rangle =&\; p_\mu (p_\alpha x_\beta - p_\beta x_\alpha) \frac{1}{px} f_{\pi} m_{\pi}^2 \int {\cal D}\alpha {\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha_g) px} {\cal V}_\parallel (\alpha_i) + \left[ p_\beta \left( g_{\mu \alpha} - \frac{1}{px}(p_\mu x_\alpha + p_\alpha x_\mu) \right) \right. \\ &\;-p_\alpha \left. \left(g_{\mu \beta} - \frac{1}{px}(p_\mu x_\beta + p_\beta x_\mu) \right) \right] f_{\pi} m_{\pi}^2 \times \int {\cal D}\alpha {\rm e}^{{\rm i} (\alpha_{\bar q} + v \alpha _g) p x} {\cal V}_\perp(\alpha_i). \end{aligned} $ |
$ \begin{aligned}[b] \phi_{\pi}(u) =& \; 6 u \bar u \Big( 1 + a_1^{\pi} C_1(2 u -1) + a_2^{\pi} C_2^{3 \over 2}(2 u - 1) \Big), \\ {\cal T}(\alpha_i) =& \; 360 \eta_3 \alpha_{\bar q} \alpha_q \alpha_g^2 \Big( 1 + w_3 \frac12 (7 \alpha_g-3) \Big), \\ \phi_P(u) =& \;1 + \Big( 30 \eta_3 - \frac{5}{2} \frac{1}{\mu_{\pi}^2}\Big) C_2^{1 \over 2}(2 u - 1) \\& +\Big( -3 \eta_3 w_3 - \frac{27}{20} \frac{1}{\mu_{\pi}^2} - \frac{81}{10} \frac{1}{\mu_{\pi}^2} a_2^{\pi} \Big) C_4^{1\over2}(2u-1), \end{aligned} $ |
$ \begin{aligned}[b] \phi_\sigma(u) =& \; 6 u \bar u \Big[ 1 + \Big(5 \eta_3 - \frac12 \eta_3 w_3 - \frac{7}{20} \mu_{\pi}^2 - \frac{3}{5} \mu_{\pi}^2 a_2^{\pi} \Big) C_2^{3\over2}(2u-1) \Big], \\ {\cal V}_\parallel(\alpha_i) = & \;120 \alpha_q \alpha_{\bar q} \alpha_g \Big( v_{00} + v_{10} (3 \alpha_g -1) \Big), \\ {\cal A}_\parallel(\alpha_i) =& 120\; \alpha_q \alpha_{\bar q} \alpha_g \Big( 0 + a_{10} (\alpha_q - \alpha_{\bar q})\Big), \\ {\cal V}_\perp (\alpha_i) =& \;- 30 \alpha_g^2\Big[ h_{00}(1-\alpha_g) + h_{01} (\alpha_g(1-\alpha_g)- 6 \alpha_q \alpha_{\bar q}) \\&\;+ h_{10}(\alpha_g(1-\alpha_g) - \frac32 (\alpha_{\bar q}^2+ \alpha_q^2)) \Big], \\ {\cal A}_\perp (\alpha_i) = & \;30 \alpha_g^2(\alpha_{\bar q} - \alpha_q) \Big[ h_{00} + h_{01} \alpha_g + \frac12 h_{10}(5 \alpha_g-3) \Big],\\ B(u) =&\; g_{\pi}(u) - \phi_{\pi}(u),\\ g_{\pi}(u) =& \; g_0 C_0^{\frac12}(2 u - 1) + g_2 C_2^{\frac12}(2 u - 1) + g_4 C_4^{\frac12}(2 u - 1), \end{aligned} $ |
$ \tag{B1}\begin{aligned}[b] {\mathbb A}(u) = & \;6 u \bar u \left[\frac{16}{15} + \frac{24}{35} a_2^{\pi}+ 20 \eta_3 + \frac{20}{9} \eta_4\right. \\ &+ \Big( - \frac{1}{15}+ \frac{1}{16}- \frac{7}{27}\eta_3 w_3 - \frac{10}{27} \eta_4 \Big) C_2^{3 \over 2}(2 u - 1) \\ & +\Big( - \frac{11}{210}a_2^{\pi} - \frac{4}{135} \eta_3w_3 \Big)C_4^{3 \over 2}(2 u - 1)\Bigg] \\ &+ \Big( -\frac{18}{5} a_2^{\pi} + 21 \eta_4 w_4 \Big)\Big[ 2 u^3 (10 - 15 u + 6 u^2) \ln u \\ & + 2 \bar u^3 (10 - 15 \bar u + 6 \bar u ^2) \ln\bar u + u \bar u (2 + 13 u \bar u) \Big], \end{aligned} $ |
$ \begin{aligned}[b] h_{00}& = v_{00} = - \frac13\eta_4, \end{aligned} $ |
$\tag{B2} \begin{aligned}[b] a_{10} & = \frac{21}{8} \eta_4 w_4 - \frac{9}{20} a_2^{\pi}, \quad v_{10} & = \frac{21}{8} \eta_4 w_4, \\ h_{01} & = \frac74 \eta_4 w_4 - \frac{3}{20} a_2^{\pi}, \\ h_{10} & = \frac74 \eta_4 w_4 + \frac{3}{20} a_2^{\pi}, \\ g_0 & = 1, \\ g_2 & = 1 + \frac{18}{7} a_2^{\pi} + 60 \eta_3 + \frac{20}{3} \eta_4, \\ g_4 & = - \frac{9}{28} a_2^{\pi} - 6 \eta_3 w_3. \end{aligned} $ |