删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Gluon-pair-creation production model of strong interaction vertices

本站小编 Free考研考试/2022-01-01

<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.2-beta.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type='text/x-mathjax-config'>MathJax.Hub.Config({tex2jax: {inlineMath: [['$', '$'], ['\\(', '\\)']]}});</script> Bing-Dong Wan 1,
, Cong-Feng Qiao 1,2,,
,
Corresponding author: Cong-Feng Qiao, qiaocf@ucas.ac.cn, Corresponding author
1.School of Physics, University of Chinese Academy of Science, Yuquan Road 19A, Beijing 10049, China
2.CAS Center for Excellence in Particle Physics, Beijing 10049, China
Received Date:2019-10-07
Accepted Date:2020-05-23
Available Online:2020-09-01
Abstract:By studying the $\eta_c$ exclusive decay to double glueballs, we introduce a model to phenomenologically mimic the gluon-pair-vacuum interaction vertices, namely the $0^{++}$ model. Based on this model, we study glueball production in pseudoscalar quarkonium decays, explicitly $\eta_c \to f_0(1500)\eta(1405)$, $\eta_b\to f_0(1500)\eta(1405)$ , and $\eta_b\to f_0(1710)\eta(1405)$ processes. Among them $f_0(1500)$ and $f_0(1710)$ are well-known scalars possessing large glue components, while $\eta(1405)$ is a potential candidate for a pseudoscalar glueball. The preliminary calculation results indicate that these processes are marginally accessible in the presently running experiments BES III, BELLE II, and LHCb.

HTML

--> --> -->
1.Introduction
According to the theory of the strong interaction, quantum chromodynamics (QCD) [1], gluons are able to interact with one another, which suggests the existence of a particle consisting solely of gluons, the glueball. The search for the glueball has a long history, however evidence of its existence is still vague. Being short of reliable glueball production and decay mechanisms makes the corresponding investigation rather difficult. Another hurdle hindering the search for the glueball lies in the fact that they usually mix heavily with the quark states, somehow with the exception of exotic glueballs [2].
Scalar glueballs which have the quantum numbers $ J^{PC} = 0^{++} $ are suggested to be the lightest glueballs by lattice calculation, displaying a mass of around $ 1600-1700 $ MeV with an uncertainty of about $ 100 $ MeV [3-6]. Experimentally, there exist three isosinglet scalars that exist in this mass range: $ f_0(1370) $, $ f_0(1500) $ , and $ f_0(1710) $. The absence of the $ \gamma\gamma\to K\bar{K} $ or $ \pi^+\pi^- $ pair production modes through $ f_0(1500) $ excludes the possibility of a large $ n\bar{n} $ content within $ f_0(1500) $ [7, 8]. On the other hand, the $ f_0(1500) $ has a small $ K\bar{K} $ decay branching rate [9-12], implying that its main content is unlikely to be $ s\bar{s} $. Various peculiar natures suggest that $ f_0(1500) $ might be a scalar glueball or a glue rich object [13]. In a large mixing model, as discussed in Refs. [13-16], glue is shared between $ f_0(1370) $, $ f_0(1500) $ , and $ f_0(1710) $. The isosinglet scalar $ f_0(1370) $ is mainly constructed of $ n\bar{n} $, $ f_0(1500) $ is thought to be glue predominant, and $ f_0(1710) $ has a high $ s\bar{s} $ content.
Evidence for pseudoscalar $ 0^{-+} $ glueballs is still weak [17]. $ E(1420) $ and $ \iota(1440) $ observed by Mark II were early candidates of pseudoscalar glueballs [18-21]. However, $ E(1420) $ was later considered to be $ 1^+ $ meson and renamed $ f_1(1420) $, while $ \iota(1440) $ is still thought to be a pseudoscalar, now known as $ \eta(1405) $ [22]. The mode $ \eta(1405)\to\eta\pi\pi $ was observed at BES II in $ J/\psi $ decay [23] and was confirmed in $ \bar{p}p $ annihilation [24]. It should be noted that $ \eta(1405) $ was observed in neither $ \eta\pi\pi $ nor $ K\bar{K}\pi $ channels in $ \gamma\gamma $ collisions by L3 [25]; this implies that $ \eta(1405) $ has a large glue component since glueball production is suppressed in $ \gamma\gamma $ collisions. It is also worth mentioning that the quenched lattice and QCD sum rule calculation predict that the $ 0^{-+} $ glueball mass might be above $ 2 $ GeV [4, 26, 27], though Gabadadze argued that the pseudoscalar glueball mass in full QCD could be much less than the quenched lattice result in Yang-Mills theory [28]. Furthermore, despite $ \eta(1405) $ fitting well with the fluxtube model [29] and roughly fitting with the $ \eta $-$ \eta' $-G mixing calculations [30], a recent triangle singularity mechanism analysis reveals that $ \eta(1405) $ and $ \eta(1475) $ might be the same state [31]. For further properties of pseudoscalar glueballs, readers may refer to recent studies [32, 33].
In this paper, motivated by studying the glueball production and decay mechanisms, we discuss glueball production in $ \eta_c $ decay by introducing a model for the gluon-pair-vacuum interaction vertices; namely the $ 0^{++} $ model, as shown in Fig. 1. We assume the gluon pair is created homogeneously in space with equal probability. Comparing to the $ ^3P_0 $ model [34-43], which models quark-antiquark pair creation in a vacuum, we formulate an explicit vacuum gluon-pair transition matrix and estimate the strength of the gluon-pair creation. Employing the $ 0^{++} $ model, we then investigate the $ \eta_c $ and $ \eta_b $ decays to scalar and pseudoscalar glueballs. Based on previous glueball studies, we take $ f_0(1710) $ and $ f_0(1500) $ as scalar glueball candidates, and $ \eta(1405) $ as a pseudoscalar glueball candidate. The corresponding decay widths and branching fractions are calculated.
Figure1. Schematic diagram for glueball production in $ \eta_c $ decay using the $ 0^{++} $ model.

The rest of the paper is arranged as follows. After the introduction, we construct a model for gluon-pair-vacuum interaction vertices in Sec. 2. The partial widths of $ \eta_c \to f_0(1500)\eta(1405) $, $ \eta_b\to f_0(1500)\eta(1405) $ and $ \eta_b\to f_0(1710)\eta(1405) $ are evaluated in Sec. 3. Last section is remained for summary and outlooks.
2.Construction of the $ { {0^{++}}} $ model
In quantum field theory, the physical vacuum is thought of as the ground state of energy, with constant particle field fluctuations. Therefore, there are certain probabilities for quark pairs and gluon pairs with vacuum quantum numbers to appear in the vacuum. It is reasonable to hypothesize that gluon pairs would be created with equal amplitude in space, akin to the quark-antiquark pairs in the $ ^3P_0 $ model. As they are created from the vacuum, the gluon pairs possess the quantum numbers $ J^{PC} = 0^{++} $.
We may argue the soundness of the $ 0^{++} $ scheme like this: in the language of Feynman diagram, the dominant contribution to the vacuum-gluon-pair coupling may stem from the processes where two additional gluons are produced from either a parent meson or the first two gluons. It should be noted that although by naive order counting of the strong coupling, one may presumably say these processes are dominant, in fact the nonperturbative effect may impair this analysis. The most straightforward way to configure the vacuum-gluon-pair coupling is to attribute various contributions to an effective constant, analogous to the $ ^3P_0 $ model. This is somewhat similar to the case of hadron production, where only limited hadron production processes have been proved to be factorizable, while all other processes are usually evaluated via assumptions or models.
In the remainder of our study, we investigate glueball pair production in pseudoscalar quarkonium decay using the $ {0}^{++} $ model. The transition amplitude of $ \eta_c $ exclusive decay to double glueballs for instance, as shown in Fig. 1, can be formulated as
$ \langle G_1G_2|T|\eta_c\rangle = \gamma_g \langle G_1G_2 |T_2 \otimes ({G_{\rho\sigma}^c G^{c\rho\sigma}})| \eta_c\rangle\ . $
(1)
Here, $ G_1 $ and $ G_2 $ represent glueballs, while $ \gamma_g $ denotes the strength of gluon pair creation in the vacuum, which in principle can be extracted by fitting to the experimental data. The $ {G_{\rho\sigma}^c G^{c\rho\sigma}} $ term creates the gluon pair in the vacuum. $ T_2 $ is the transition operator for $ \eta_c $ annihilating to two gluons. The state $ |\eta_c\rangle $ and $ T_2 $ can be expressed as
$\begin{split} |\eta_c \rangle =& \sqrt{2 E_{\eta_c}} \int {\rm{d}}^3 {\bf{k}}_{\rm{c}}{\rm{d}}^3 {\bf{k}}_{\bar{{\rm{c}}}} \delta^3\left({\bf{K}}_{\eta_{\rm{c}}}-{\bf{k}}_{\rm{c}}-{\bf{k}}_{\bar{{\rm{c}}}}\right)\\& \times \sum\limits_{M_{L_{\eta_c}},M_{S_{\eta_c}}} \left\langle L_{\eta_c} M_{L_{\eta_c}} S_{\eta_c} M_{S_{\eta_c}} | J_{\eta_c} M_{J_{\eta_c}} \right\rangle \\&\times \psi_{n_{\eta_c} L_{\eta_c} M_{L_{\eta_c}}}\left({\bf{k}}_c,{\bf{k}}_{\bar{c}}\right) \chi^{c \bar{c}}_{S_{\eta_c} M_{S_{\eta_c}}} \left|c \bar{c} \right\rangle\;, \end{split} $
(2)
$ T_2 = g_s^2 \bar{c}_i t_{i j}^a \gamma_{\mu} c_j A_a^{\mu} \bar{c}_m t_{m n}^b \gamma_{\nu} c_n A_b^{\nu}\ . $
(3)
Here, $ {{\bf{k}}}_c $ and $ {{\bf{k}}}_{\bar{c}} $ represent the $ 3 $-momenta of quarks c and $ \bar{c} $; $ \psi_{n_{\eta_c} L_{\eta_c} M_{L_{\eta_c}}} \left({\bf{k}}_c, {\bf{k}}_{\bar{c}}\right) $ is the spatial wavefunction with n, L, S, and J the principal quantum number, orbital angular momentum, total spin and the total angular momentum of $ |\eta_c \rangle $, respectively; $ \chi^{c \bar{c}} $ is the corresponding spin state; $ \langle L_G M_{L_G} S_G M_{S_G} | J_G M_{J_G} \rangle $ is the Clebsch-Gordan (C-G) coefficient; $ g_s $ denotes the strong coupling constant; $ c_i $, $ A^\mu_a $ and $ t^a $ respectively represent the quark fields, gluon fields and Gell-Mann matrices.
Inserting the completeness relation $ \sum_{G}| G \rangle\langle G | = 2E_G $ into Eq. (1), we get
$ \begin{split} \langle G_1G_2|T|\eta_c\rangle =& \frac{1}{2 E_G} \sum\limits_{G} \gamma_g \langle G_1G_2 |{G_{\rho\sigma}^c G^{c\rho\sigma}}| G \rangle \langle G |T_2 | \eta_c\rangle \\ \equiv & \frac{1}{2 E_G} \sum\limits_{G} \gamma_g \langle G_1G_2 | T_1 | G \rangle \langle G | T_2 | \eta_c\rangle\\& {+{\rm{high\;order\;terms}}}\ , \end{split}$
(4)
where $ | G \rangle $ is the shorthand notation for gluons $ g_1 $ and $ g_2 $ emitted from $ \eta_c $ and the phase space integration is implied, as given in Eq. (8). $ T_1 $represents the operator responsible for the $ G\to G_1 G_2 $ transition.
Noticing that the evaluation of the gluon-pair-vacuum interaction from first principles (QCD) is currently beyond our capability, we assume the interaction vertex shown in Fig. 2 can be modeled phenomenologically, in such a way that the transition matrix $ T_1 $ decomposes to:
Figure2. The schematic Feynman diagram of a pseudoscalar quarkonium transition to a glueball pair.

$ {T_1} = I_1 \otimes I_2 \otimes {T}_{\rm vac}\ , $
(5)
where $T_{\rm vac}$ signifies the vacuum-gluon pair transition operator, and $ I_i $ are identity matrices indicating the quasi-free propagations of $ g_1 $ and $ g_2 $. The gluons $ g_3 $ and $ g_4 $ are created in the vacuum, with their spin states $ |m_{s_3},m_{s_4} \rangle $ having two different combinations. Please note that the gluons in the transition matrix $ T_1 $ turn out to be massive, after experiencing nonperturbative evolutions.
The total spin state of the gluon pair produced in the vacuum, $ |S,M_S \rangle $, possessing the vacuum quantum number, being a singlet, can be formulated as
$ \chi_{{0,0}}^{34} = \frac{1}{\sqrt{2}}\bigg(|1,-1 \rangle_{m_{s_3}m_{s_4}}+|-1,1 \rangle_{m_{s_3}m_{s_4}}\bigg)\ . $
(6)
Subsequently, ${T}_{\rm vac}$ can then be expressed as
$\begin{split} {T}_{\rm vac} = & \gamma_g \int\!{{\rm{d}}^3}{{\bf{k}}}_3\; {{\rm{d}}^3}{{\bf{k}}}_4 \delta^3({{\bf{k}}}_3+{{\bf{k}}}_4) {\cal Y}_{00} \left(\frac{{{\bf{k}}}_3-{{\bf{k}}_4}}{2} \right)\\&\times \chi^{3 4}_{0, 0}\; \delta_{cd} a^\dagger_{3c}({{\bf{k}}}_3) \; a^\dagger_{4d}({{\bf{k}}}_4) \ . \end{split}$
(7)
Here, $ {{\bf{k}}}_3 $ and $ {{\bf{k}}}_4 $ represent the $ 3 $-momenta of the gluons $ g_3 $ and $ g_4 $ respectively, $ a^\dagger_{3c} $ and $ a^\dagger_{4d} $ are creation operators of gluons with color indices, and $ {\cal{Y}}_{\ell m}({\bf{k}})\equiv |{\bf{k}}|^{\ell}Y_{\ell m}(\theta_{k},\phi_{k}) $ is the $ \ell $th solid harmonic polynomial that gives out the momentum-space distribution of the produced gluon pairs.
The state $ | G \rangle $ should possess the quantum numbers of $ | \eta_c\rangle $, i.e. $ J^{PC}_G = 0^{-+} $. As discussed in previous studies [44-47], the state might mix with $ \eta_c $, and thus can be parameterized as
$ \begin{split} |G \rangle =& \sqrt{2 E_G} \int {\rm{d}}^3 {\bf{k}}_1{\rm{d}}^3 {\bf{k}}_2 \delta^3\left({\bf{K}}_{\rm{G}}-{\bf{k}}_1-{{\bf{k}}}_2\right)\\ &\times \sum\limits_{M_{L_G},M_{S_G}} \left\langle L_G M_{L_G} S_G M_{S_G} | J_G M_{J_G} \right\rangle \\&\times\psi_{n_G L_G M_{L_G}}\left({\bf{k}}_1,{\bf{k}}_2\right) \chi^{1 2}_{S_G M_{S_G}}\delta_{ab} \left|g_1^a g_2^b \right\rangle\ , \end{split}$
(8)
where $ {{\bf{k}}}_1 $ and $ {{\bf{k}}}_2 $ represent the $ 3 $-momenta of the gluons $ g_1 $ and $ g_2 $, $ \psi_{n_G L_G M_{L_G}} \left({\bf{k}}_1, {\bf{k}}_2\right) $ is the spatial wavefunction with n, L, S, J the principal quantum number, orbital angular momentum, total spin and the total angular momentum of $ |G \rangle $, respectively. $ \chi^{1 2} $ is the corresponding spin state, later on expressed as $ |S_G M_{S_G} \rangle $ for the sake of calculation transparency. $ \langle L_G M_{L_G} S_G M_{S_G} | J_G M_{J_G} \rangle $ is the C-G coefficient and reads $ \langle 1m;1-m | 00 \rangle $ for the state $ |G \rangle $. The associated normalization conditions are
$ \langle G({\bf{K}}_G)|G({\bf{K}}'_G) \rangle = 2E_G\delta^3({\bf{K}}_G-{\bf{K}}'_G)\ , $
(9)
$ \langle g_i^a({\bf{k}}_i)|g_j^b({\bf{k}}_j)\rangle = \delta_{ij}\delta^{ab}\delta^3({\bf{k}}_i-{\bf{k}}_j)\ , $
(10)
$ \int \! {\rm{d}}^3 {\bf{k}}_1 {\rm{d}}^3 {\bf{k}}_2 \delta^3({\bf{K}}_{\rm{G}}\!\!-\!\!{\bf{k}}_1\!\!-\!\!{\bf{k}}_2) \psi_{\rm{G}}({\bf{k}}_1,{\bf{k}}_2)\psi_{{\rm{G}}'}({\bf{k}}_1\!,{\bf{k}}_2) \!=\! \delta_{{\rm{G}}'{\rm{G}}},\; $
(11)
with $ {{\bf{K}}_G} $ and $ {{\bf{K}}'_G} $ the corresponding $ 3 $-momenta. We have similar expressions for the $ G_1 $ and $ G_2 $ states.
Equipped with the gluon-to-glueball transition operator $ T_1 $ and expressions for the initial and final states, we are now capable of evaluating the transition matrix element:
$ \begin{split} \langle G_1 G_2|T_1|G\rangle =& \gamma_g\;\;\sqrt{8 E_G E_{G_1} E_{G_2}} \sum\limits_{\begin{array}[t]{l} (M_{L_G}, M_{S_G}), ( M_{L_{G_1}}, M_{S_{G_1}}), ( M_{L_{G_2}}, M_{S_{G_2}}) \end{array}} \\ &\times \langle L_G M_{L_G} S_G M_{S_G} | J_G M_{J_G} \rangle\langle L_{G_1} M_{L_{G_1}} S_{G_1} M_{S_{G_1}} | J_{G_1} M_{J_{G_1}} \rangle\\ &\times \langle L_{G_2} M_{L_{G_2}} S_{G_2} M_{S_{G_2}} | J_{G_2} M_{J_{G_2}} \rangle \langle \chi^{1 3}_{S_{G_1} M_{S_{G_1}}}\chi^{2 4}_{S_{G_2} M_{S_{G_2}}} | \chi^{1 2}_{S_G M_{S_G}} \chi^{3 4}_{0 0} \rangle I_{M_{L_G},M_{L_{G_1}},M_{L_{G_2}}}({{\bf{K}}})(\delta_{ab}\delta_{cd}\delta_{ac}\delta_{bd})_{\rm color\text{-}octet} \; . \end{split}$
(12)
Here, the momentum space integral $ I_{M_{L_G},M_{L_{G_1}},M_{L_{G_2}}}({{\bf{K}}}) $ can be written as
$ \begin{split}I_{M_{L_G},M_{L_{G_1}},M_{L_{G_2}}}({{\bf{K}}}) =& \int\!{\rm{d}}^3 {\bf{k}}_1{\rm{d}}^3 {\bf{k}}_2{\rm{d}}^3 {\bf{k}}_3{\rm{d}}^3 {\bf{k}}_4\,\delta^3({\bf{k}}_1+{\bf{k}}_2 - {\bf{K}}_{\rm{G}}) \delta^3({\bf{k}}_3+{\bf{k}}_4)\delta^3 ({\bf{K}}_{{\rm{G}}_1}-{\bf{k}}_1-{\bf{k}}_3)\\ &\times \delta^3({\bf{K}}_{G_2}-{\bf{k}}_2-{\bf{k}}_4) \psi^*_{n_{G_1} L_{G_1} M_{L_{G_1}}}({\bf{k}}_1,{\bf{k}}_3) \psi^*_{n_{G_2} L_{G_2} M_{L_{G_2}}}({\bf{k}}_2\ ,{\bf{k}}_4) \\ &\times \psi_{n_G L_G M_{L_G}}({\bf{k}}_1,{\bf{k}}_2) {\cal{Y}}_{00}\Big(\frac{{\bf{k}}_3-{\bf{k}}_4}{2}\Big)\ . \end{split} $
(13)
For simplicity, it is reasonable to assume that the glueball and $ |G\rangle $ state wavefunctions to be in a harmonic oscillator (HO) form;
$ \psi_{nLM}({\bf{k}}) = {\cal{N}}_{nL}\exp\left(-\frac{R^2{\bf{k}}^2}{2}\right) {\cal{Y}}_{LM} ({\bf{k}})\,{\cal{P}}({\bf{k}}^2)\ , $
(14)
where $ {\bf{k}} $ is the relative momentum between two gluons inside the states, $ {\cal{N}}_{nL} $ is the normalization coefficient and $ {\cal{P}}({\bf{k}}^2) $ is a polynomial of $ {\bf{k}}^2 $ [38]. $ \langle\chi^{1 3}_{S_{G_1} M_{S_{G_1}}}\chi^{2 4}_{S_{G_2} M_{S_{G_2}}} |\chi^{1 2}_{S_G M_{S_G}} \chi^{3 4}_{00} \rangle $ which represents the spin coupling can be expressed using Wigner's $ 9j $ symbol [36]
$ \begin{split} \langle\chi^{1 3}_{S_{G_1} M_{S_{G_1}}}\chi^{2 4}_{S_{G_2} M_{S_{G_2}}}|\chi^{1 2}_{S_G M_{S_G}} \chi^{3 4}_{00} \rangle =& (-1)^{S_{G_2}+1}\Big{[}(2S_{G_1}+1)(2S_{G_2}+1)(2S_G+1)\Big{]}^{1/2}\\ &\times\sum\limits_{S,M_s}\langle S_{G_1}M_{S_{G_1}};S_{G_2}M_{S_{G_2}}|SM_s \rangle \langle SM_s|S_GM_{S_G};00 \rangle \left\{ \begin{array}{ccc} s_1 & s_3 & S_{G_1} \\ s_2 & s_4 & S_{G_2}\\ S_G & 0 & S \end{array} \right \} \;.\end{split} $
(15)
Here, $ s_i $ is the spin of the gluon $ g_i $, with $ i = 1, 2, 3, 4$, and $ \sum_{S,M_s}|SM_s \rangle \langle SM_s| $ is the completeness relation.
The helicity amplitude $ {\cal{M}}^{M_{J_G}M_{J_{G_1}}M_{J_{G_2}}} $ may be read off from
$ \langle G_1 G_2|T_1|G\rangle = \delta^3({\bf{K}}_{G_1}+{\bf{K}}_{G_2}- {\bf{K}}_G){\cal{M}}_1^{M_{J_G}M_{J_{G_1}}M_{J_{G_2}}}\ , $
(16)
allowing the $ \eta_c\to G_1G_2 $ decay width to be readily obtained [38]:
$ \Gamma = \pi^2 \frac{{|{\bf{K}}|}}{M_{\eta_c}^2}\sum_{JL}\Big|{\cal{M}}^{J L}\Big|^2\ . $
(17)
Here, $ {\cal{M}}^{J L} = \dfrac{{\cal{M}}_1^{J L} {\cal{M}}_2}{2 E_G} $, $ {\cal{M}}_2 $ is the amplitude of the $ \eta_c \to g g $ reaction, and $ {\cal{M}}_1^{J L} $ is the partial wave amplitude, obtainable from the helicity amplitude $ {\cal{M}}_1^{M_{J_G}M_{J_{G_1}}M_{J_{G_2}}} $ via the Jacob-Wick formula [48], i.e.
$ \begin{split} {{\cal{M}}}_1^{J L} =& \frac{\sqrt{2 L+1}}{2 J_G +1} \!\! \sum\limits_{M_{G_1},M_{G_2}} \langle L 0 J M_{J_G}|J_G M_{J_G}\rangle \\ &\times \langle J_{G_1} M_{J_{G_1}} J_{G_2} M_{J_{G_2}} | J M_{J_G} \rangle {\cal{M}}_1^{M_{J_G} M_{J_{G_1}} M_{J_{G_2}}} \end{split} $
(18)
with $ J = J_{G_1}+J_{G_2} $ and $ L = J_{G}-J $.
3.Glueball pair production in pseudoscalar quarkonium decay
In this section, we estimate the scalar and the pseudoscalar glueball production in $ \eta_c $ and $ \eta_b $ decays via the $ 0^{++} $ model, by taking scalars $ f_0(1710) $ and $ f_0(1500) $, and pseudoscalar $ \eta(1405) $ as the corresponding candidates, namely $ G_1 $ and $ G_2 $ respectively. The quantum numbers of the states involved in these processes are presented in Table 1; $ |G\rangle $ and $ |\eta_Q\rangle $ have the same quantum numbers.
$J^{PC}$L$M_L$S$M_S$
$\eta_Q $$0^{-+}$$1$$M_0$$1$$-M_0$
$G_1$$0^{++}$$0$$0$$0$$0$
$G_2$$0^{-+}$$1$$M_2$$1$$-M_2$


Table1.Quantum numbers of $\eta_Q$, $G_1$, and $G_2$. The values of $M_0$ and $M_2$ can be $-1$, $0$, and $1$.

2
3.1.The evaluation of $ T_1 $
-->

3.1.The evaluation of $ T_1 $

In Eq. (12), the color contraction is equal to eight, and for scalar glueballs, the spin and orbital angular momentum coupling causes the C-G coefficient to be $ \langle 00;00| 00\rangle = 1 $. Therefore, from these results, Eq. (12) can be rewritten as
$ \begin{split} \langle G_1 G_2|T_1|G\rangle = & \sum\limits_{M_G,M_{G_2}}8 \gamma_g \sqrt{8 E_G E_{G_1} E_{G_2}} \langle 1M_0;1-M_0 | 00 \rangle \\&\times\langle 1M_2;1-M_2 | 00 \rangle \\ &\times \langle\chi^{1 3}_{0 0}\chi^{2 4}_{1 -M_2} | \chi^{1 2}_{1 -M_0} \chi^{3 4}_{0 0} \rangle I_{M_0,0,M_2}({{\bf{K}}})\;. \end{split}$
(19)
The spin coupling term $ \langle\chi^{1 3}_{0 0}\chi^{2 4}_{1 -M_2} | \chi^{1 2}_{1 -M_0} \chi^{3 4}_{0 0} \rangle $ is characterized by the Wigner's $ 9j $ symbol, a representation of $ 4 $-particle spin coupling, which can be expanded as series of $ 2 $-particle spin couplings represented by Wigner's $ 3j $ symbols [36], shown in Appendix A.
By substituting the spin couplings provided in Appendix A into Eq. (19), we can then reduce the $ T_1 $ matrix element,
$ \begin{split} \langle G_1 G_2|T_1|G\rangle = & -\frac{1}{6}\gamma_g \sqrt{8 E_G E_{G_1} E_{G_2}} \Big(|\langle11,1-1|00\rangle|^2 I_{1,0,1}({\bf{K}}) +|\langle10,10|00\rangle|^2 I_{0,0,0} +|\langle1-1,11|00\rangle|^2 I_{-1,0,-1}({\bf{K}})\Big)\\ =& -\frac{\gamma_g}{18}\sqrt{8 E_G E_{G_1} E_{G_2}} \Big(I_{1,0,1}({\bf{K}})+I_{0,0,0}({\bf{K}})+I_{-1,0,-1}({\bf{K}})\Big)\ . \end{split}$
(20)
With a lengthy calculation (some details are given in Appendix B) the momentum space integrals are obtained, of which $ I_{1,0,1} = I_{-1,0,-1} = 0 $, and $ I_{0,0,0} $ is given by Eq. (B8). Writing $ \delta^3({\bf{K}}_G-{\bf{K}}_{G_1}-{\bf{K}}_{G_2})I \equiv I_{0,0,0} $ and considering Eqs. (16), (20) and (B8), we have
$ \begin{split} \langle G_1 G_2| {T_1}|G\rangle =& \delta^3({\bf{K}}_G-{\bf{K}}_{G_1}- {\bf{K}}_{G_2}){\cal{M}}_1^{M_{J_G}M_{J_{G_1}}M_{J_{G_2}}}\\ =& -\frac{\gamma_g}{18}\sqrt{8 E_G E_{G_1} E_{G_2}}I_{0,0,0}\\ =& -\frac{\gamma_g}{18}\sqrt{8 E_G E_{G_1} E_{G_2}}\delta^3({\bf{K}}_G-{\bf{K}}_{G_1}-{\bf{K}}_{G_2})\ I\ , \end{split}$
(21)
from which $ {\cal{M}}_1^{M_{J_G}M_{J_{G_1}}M_{J_{G_2}}} = {\cal{M}}_1^{000} $ can be extracted out, i.e.
$ {\cal{M}}_1^{000} = -\frac{\gamma_g}{18}\ I\ \sqrt{8 E_G E_{G_1} E_{G_2}}\ \ . $
(22)
The probable radius R of the HO wavefunction is estimated by the relation $ R = 1/\alpha $, with $ \alpha = \sqrt{\mu \omega /\hbar} $. Here, $ \mu $ denotes the reduced mass, $ \omega $ is the angular frequency of the HO satisfying $ M = (2n+L+3/2)\hbar\omega $, with M being the glueball mass, n the radial quantum number, and L the orbital angular momentum. As discussed in Refs. [49, 50], the effective mass of the constituent gluon is about $ 0.6 $ GeV, which means $ \mu \sim 0.3 $ GeV for glueballs. In the calculation, the inputs we adopt are: $ M_{\eta_c} = 2.98 $ GeV, $ M_{\eta_b} = 9.40 $ GeV, $ M_{f_0(1500)} = 1.50 $ GeV, $ M_{f_0(1710)} = 1.71 $ GeV and $ M_{\eta(1405)} = 1.41 $ GeV [51]. Therefore, using the equations above, we can calculate the corresponding radii:$ R_{\eta_c} = 2.24\;{\rm{GeV}}^{-1} $, $ R_{\eta_b} = 1.26\;{\rm{GeV}}^{-1} $, $ R_{f_0(1500)} = 2.79 {\rm{GeV}}^{-1} $, $ R_{f_0(1710)} = 2.61\;{\rm{GeV}}^{-1} $ and $ R_{\eta(1405)} = 3.26\;{\rm{GeV}}^{-1} $.
With above discussion and inputs, we can readily get I and $ {\cal{M}}_1^{000} $. Please note that, when
$ \langle L 0 J M_{J_G}|J_G M_{J_G}\rangle = \langle L 0 J 0|0 0\rangle = \langle 0 0 0 0|0 0\rangle = 1\, , $
(23)
$ \langle J_{G_1}M_{J_{G_1}}J_{G_2} M_{J_{G_2}} | J M_{J_G}\rangle = \langle0 0 0 0|00 \rangle = 1 \, , $
(24)
$ {\cal{M}}_1^{0 0} $ can be obtained according to Eq. (18), as shown in Table 2.
I $({\rm{GeV}})^{-3/2}$${\cal{M}}_1^{0 0}$
$\eta_c\to f_0(1500)\eta(1405)$$0.409$$-0.166\gamma_g$
$\eta_b\to f_0(1500)\eta(1405)$$-0.398$$0.901\gamma_g$
$\eta_b\to f_0(1710)\eta(1405)$$-0.396$$0.897\gamma_g$


Table2.The I and ${\cal{M}}_1^{0 0}$ values for different processes.

2
3.2.The evaluation of $ T_2 $
-->

3.2.The evaluation of $ T_2 $

The calculation of the process $ \eta_Q \to gg $ is quite straightforward. At the leading order of perturbative QCD, there are only two types of decay paths, represented using Feynman diagrams in Fig. 3. Their decay amplitudes can be written as:
Figure3. The Feynman diagrams of the $ \eta_Q \to gg $ decay process.

$\begin{split} i {\cal{A}}^{\mu\nu,ab}_1 \epsilon^{\ast}_{\mu}(k_1)\epsilon^{\ast}_{\nu}(k_2) =& (ig_s)^2 \bar{v}(p_2)\gamma^\nu t^b \frac{i}{{p\!\!\!/}_1-{k\!\!\!/}_1-m_Q} \\&\times\gamma^\mu t^a u(p_1)\epsilon^{\ast}_{\mu}(k_1)\epsilon^{\ast}_{\nu}(k_2)\; , \end{split}$
(25)
$\begin{split} i {\cal{A}}^{\mu\nu,ab}_2 \epsilon^{\ast}_{\mu}(k_1)\epsilon^{\ast}_{\nu}(k_2) =& (ig_s)^2 \bar{v}(p_2)\gamma^\mu t^a \frac{i}{{p\!\!\!/}_1-{k\!\!\!/}_2-m_Q} \\&\times\gamma^\nu t^b u(p_1)\epsilon^{\ast}_{\mu}(k_1)\epsilon^{\ast}_{\nu}(k_2)\; , \end{split}$
(26)
where u and $ \bar{v} $ stand for heavy quark spinors, $ \epsilon_\mu $ denotes the gluon polarization, and $ g_s $ is the strong coupling constant. For a quark pair to form a pseudoscalar quarkonium, one can realize it by performing the following projection [52]:
$ u(p)\bar{v}(-p)\to{i\gamma_5 R_{\eta_Q}(0)\over 2 \sqrt{2\pi\times m_Q}} \,(p\!\!\!/+ m_Q)\,\otimes \left( {{\bf 1}_c\over \sqrt{N_c}}\right)\ \ . $
(27)
Here, $ m_Q $ is the heavy quark mass, $ R_{\eta_Q}(0) $ denotes the radial wavefunction at the origin, and in a $ \eta_Q $ center-of-mass system $ p_1 = p_2\equiv p $. The $ \eta_Q \to gg $ matrix element squared may be obtained through a straightforward calculation, i.e.
$ |{\cal{M}}_2|^2 = \frac{4 g_s^4 |R(0)_{\eta_Q}|^2}{3 \pi m_Q}\;. $
(28)

2
3.3.The estimation of $ \gamma_g $
-->

3.3.The estimation of $ \gamma_g $

We estimate the strength of gluon-pair-vacuum coupling analogously to the $ ^3P_0 $ model, where the strength of quark pair creation in vacuum is represented by $ \gamma_q $ with dimensions of energy [40]. To avoid constructing a new model to mimic the nonperturbative process of the gluon pair production in the vacuum, we simply infer $ \gamma_g $ by comparing the relative strength of processes $ q\bar{q}\to gg $ and $ q\bar{q} \to q\bar{q} $, as shown in Fig. 4. The value $ \gamma_g^2/\gamma_q^2 $ is assumed to be the same order of magnitude as the relative interaction rate of these two processes.
Figure4. The coupling of $ q\bar{q}q\bar{q} $ and $ q\bar{q}gg $.

It is well known that at the tree level
$ |\bar{M}({q\bar{q}\to q\bar{q}})|^2 = \frac{4 g_s^4}{9} \left(\frac{s^2+u^2}{t^2}+\frac{t^2+u^2}{s^2}-\frac{2 u^2}{3 s t}\right) , $
(29)
$ |\bar{M}({q\bar{q}\to gg})|^2 = \frac{32 g_s^4}{27} \left(-\frac{9 \left(t^2+u^2\right)}{4 s^2}+\frac{t}{u}+\frac{u}{t}\right)\,. $
(30)
Considering the relationship between Mandelstam variables, we find that
$ {\gamma_g^2}/{\gamma_q^2} \approx \frac{\sigma({q\bar{q}\to gg})}{\sigma ({q\bar{q}\to q\bar{q}})}\approx (1.10\pm0.37)\times 10^{-2}\ , $
(31)
where the interaction energy is set to be $ \mu_{\eta_c} $, the reduced mass of the quark$ - $antiquark in the decaying meson. In the $ ^3P_0 $ model, $ \gamma_q (\mu_{\eta_c}) = 0.299\times 2 m_q \sqrt{96\pi} $ [40] with $ m_q = 220 $ MeV [39] the value of the light quark constituent mass. Hence we find that $ \gamma_g^2(\mu_{\eta_c}) \approx (5.74\pm1.93)\times 10^{-2}\ {\rm{GeV}}^{2} $. By the same method, we obtain $ \gamma_g^2(\mu_{\eta_b}) \approx (2.57\pm0.86)\times 10^{-3}\ {\rm{GeV}}^{2} $.
2
3.4.Glueball production rate in $ 0^{++} $ model
-->

3.4.Glueball production rate in $ 0^{++} $ model

Using Eq. (4) and the relation $ {\cal{M}}^{J L} = \dfrac{{\cal{M}}_1^{J L} {\cal{M}}_2}{2 E_G} $, we find that $ {\cal{M}}^{J L} $ has only one nonzero matrix element, $ {\cal{M}}_1^{00} = -\dfrac{\gamma_g}{18}I\sqrt{8 E_G E_{G_1} E_{G_2}} $, and that $ |{\cal{M}}_2|^2 = \dfrac{4 g_s^4 |R(0)_{\eta_Q}|^2}{3 \pi m_Q} $. Substituting these values into Eq. (17), we can then calculate the decay width of $ \eta_c \to f_0(1500) \eta(1405) $,
$ \begin{split} \Gamma =& \pi^2 \frac{{|{\bf{K}}|}}{M_{\eta_c}^2}\sum\limits_{JL}\Big|{\cal{M}}^{J L}\Big|^2 = \pi^2\frac{|{\bf{K}}|}{4 M_{\eta_c}^4}|{\cal{M}}_1^{0 0}|^2 |{\cal{M}}_2|^2 \\ =& \frac{{2} \pi^2 g_s^4 |R(0)_{\eta_c}|^2 \gamma_g^2 |{\bf{K}}| E_G E_{G_1} E_{G_2} I^2}{{3^5} \pi m_c {M_{\eta_c}^4 }}\\ =& {27.41^{+11.02}_{-10.12}\ {\rm{keV}}}\;. \end{split}$
(32)
In the above calculation, we set the charm quark mass to be $ m_c = (1.27 \pm 0.03)\ {\rm{GeV}} $ [51], strong coupling constant to be $ \alpha_s(\eta_c) = 0.25 $, and the $ \eta_c $ radial wavefunction at the origin squared to be $ |R(0)_{\eta_c}|^2 = 0.527\pm0.013 $ $ {\rm{GeV}}^{3} $ [52]. The branching fraction of the $ \eta_c \to f_0(1500)\eta(1405) $ process is then
$ Br_{\eta_c \to f_0(1500)\eta(1405)} = \frac{\Gamma_{\eta_c \to f_0(1500) \eta(1405)}}{\Gamma_{\rm total}} = {8.62^{+3.77}_{-3.32}\times10^{-4}}\ .\; \; \; $
(33)
Analogous to the $ \eta_c $ decay, the $ \eta_b $ exclusive decay to glueball pairs can similarly be evaluated by the $ 0^{++} $ model. We notice that $ f_0(1710) $ is glue rich [12, 53, 54], and evaluate the process $ \eta_b\to f_0(1710)\eta(1405) $ as well. Using the same procedure as for $ \eta_c $, we have
$ \begin{split} \Gamma_{\eta_b\to f_0(1500)\eta(1405)} =& {7.57^{+2.68}_{-2.60}} \ {\rm{keV}}\ ,\;\\ Br_{\eta_b\to f_0(1500)\eta(1405)} =& {7.57^{+9.50}_{-4.26}\times 10^{-4}}\ \; , \end{split} $
(34)
$ \begin{split} \Gamma_{\eta_b\to f_0(1710)\eta(1405)} =& {7.34^{+2.60}_{-2.53}} \ {\rm{keV}}\ ,\;\\ Br_{\eta_b\to f_0(1710)\eta(1405)} =& { 7.35^{+9.23}_{-4.14}\times 10^{-4}}\ \; . \end{split}$
(35)
For these calculations, we took the bottom quark mass to be $ m_b = (4.18 \pm 0.03)\ {\rm{GeV}} $ [51], the strong coupling constant to be $ \alpha_s(\eta_b) = 0.18 $, and the $ \eta_b $ radial wavefunction at the origin squared to be $ |R(0)_{\eta_b}|^2 = 4.89\pm0.07 $ $ {\rm{GeV}}^{3} $ [52]. It is worthwhile to mention that although there are mixings among the $ f_0(1370) $, $ f_0(1500) $ and $ f_0(1710) $ states [12], they do not have significant influence on our calculation results.
Moreover, from lattice QCD calculations [3-6, 26], we know that there might be scalar and pseudoscalar glueball candidates with masses of $ 1.75 $ GeV and $ 2.39 $ GeV, respectively. For these potential glueball candidates, we can readily calculate the branching fraction
$ \Gamma_{\eta_b\to G^{0^{++}}G^{0^{-+}}} = {4.56^{+1.61}_{-1.57}} \ {\rm{keV}}\ ,\; Br_{\eta_b\to G^{0^{++}}G^{0^{-+}}} = {4.56^{+5.72}_{-2.56}\times 10^{-4}}\ \; . $
(36)

4.Summary
In this work, we analyzed the processes of exclusive glueball pair production in quarkonium decays by introducing a $ 0^{++} $ model. This model was employed to phenomenologically mimic the gluon-pair-vacuum interaction vertices and is applicable to studies of glueball and hybrid state production. It was assumed that a gluon pair is created homogeneously in space with equal probability. By virtue of the $ ^3P_0 $ model, we formulated an explicit vacuum gluon-pair transition matrix and estimated the strength of the gluon-pair creation. We subsequently applied this method and the results for the calculation of the $ \eta_c $ to $ f_0(1500) $ $ \eta(1405) $ decay process, where $ f_0(1500) $ and $ \eta(1405) $ are respective scalar and pseudoscalar glueball candidates. We found that the decay width and branching fraction of this decay process are $ {27.41} $ keV and $ {8.62\times 10^{-3}} $ respectively.
In light of the $ \eta_c $ decay, we also evaluated the $ \eta_b\to f_0(1500)\eta(1405) $ and $ \eta_b\to f_0(1710)\eta(1405) $ processes; using the same method, we found that the decay widths and branching fractions are $ 7.57 $ keV and $ 7.57\times 10^{-4} $, and $ 7.34 $ keV and $ 7.35\times 10^{-2} $, respectively. Having supposed that there exist heavier scalar and pseudoscalar glueballs with masses $ 1.75 $ GeV and $ 2.39 $ GeV, as per the lattice QCD calculation, we calculated that the corresponding decay width and branching fraction is $ {4.56} $ keV and $ {4.56\times 10^{-4}} $. Our results in this work indicate that glueball pair production in pseudoscalar quarkonium decays is marginally accessible in the presently running experiments BES III, BELLE II, and LHCb.
It should be mentioned that the hadronic two-body decay modes of the scalar-isoscalar $ f_0(1370) $, $ f_0(1500) $ and $ f_0(1710) $ were investigated in Ref. [55], where the leading order process $ G_0\to G_0G_0 $ was also proposed, but neglected in the practical calculations. We believe that in future studies, the combination of the $ 0^{++} $ model with the analysis in Ref. [55] would no doubt inform us further on the properties of glueballs and isoscalar mesons.
Lastly, we acknowledge that the gluon-pair-vacuum coupling estimate here is quite premature, hence the estimation for pseudoscalar quarkonium exclusive decay to glueballs is far from accurate. However, qualitatively the physical picture of such a decay is reasonably sound. To make the $ 0^{++} $ mechanism trustworthy in a phenomenological study, or in other words to ascertain the coupling strength, an experimental measurement should first focus on the $ \eta_c \to \eta'(958) + f_0(1500) $ process, since we know that $ \eta'(958) $ is also a glue-rich object. With an increase in experimental measurements on glueball production and decay, this model will be refined, hence improving upon its predictability. Although the refining process of the model will no doubt require a copious amount of work, due to the importance of glueball physics, we believe this research avenue deserves further exploration.
The authors are grateful to the anonymous reviewers' comments and suggestions, which are important and responsible for the completeness and improvement of the paper.
Appendix A: Wigner’s symbols
In Eq. (19), the Wigner's $ 3j $ and $ 9j $ symbols are
$\tag{A1} \left\{ {\begin{array}{*{20}{c}}{{j_1}}&{{j_2}}&j\\{{m_1}}&{{m_2}}&m\end{array}} \right\} = \frac{{{{( - 1)}^{{j_1} - {j_2} - m}}}}{{\sqrt {2j + 1} }}\langle {j_1}{j_2}{m_1}{m_2}|j, - m\rangle $
(A1)
and
$\tag{A2}\begin{split}\left\{ {\begin{array}{*{20}{c}}{{j_1}}&{{j_2}}&{{j_{12}}}\\{{j_3}}&{{j_4}}&{{j_{34}}}\\{{j_{13}}}&{{j_{24}}}&j\end{array}} \right\} =& \sum\limits_m {\left\{ {\begin{array}{*{20}{c}}{{j_1}}&{{j_2}}&{{j_{12}}}\\{{m_1}}&{{m_2}}&{{m_{12}}}\end{array}} \right\}} \left\{ {\begin{array}{*{20}{c}}{{j_3}}&{{j_4}}&{{j_{34}}}\\{{m_3}}&{{m_4}}&{{m_{34}}}\end{array}} \right\}\left\{ {\begin{array}{*{20}{c}}{{j_{13}}}&{{j_{24}}}&j\\{{m_{13}}}&{{m_{24}}}&m\end{array}} \right\}\\& \times \left\{ {\begin{array}{*{20}{c}}{{j_1}}&{{j_3}}&{{j_{13}}}\\{{m_1}}&{{m_3}}&{{m_{13}}}\end{array}} \right\}\left\{ {\begin{array}{*{20}{c}}{{j_2}}&{{j_4}}&{{j_{24}}}\\{{m_2}}&{{m_4}}&{{m_{24}}}\end{array}} \right\}\left\{ {\begin{array}{*{20}{c}}{{j_{12}}}&{{j_{34}}}&j\\{{m_{12}}}&{{m_{34}}}&m\end{array}} \right\}\;,\end{split}$
(A2)
respectively. Applying them to Eq. (15) reduces the spin coupling term to
$\tag{A3} \langle \chi _{00}^{13}\chi _{1 - {M_2}}^{24}|\chi _{1 - {M_0}}^{12}\chi _{00}^{34}\rangle = 3\sum\limits_{S,{M_S}} {\langle 00;1 - {M_2}|S{M_S}\rangle \langle S{M_S}|1 - {M_0};00\rangle } \left\{ {\begin{array}{*{20}{c}}1&1&0\\1&1&1\\1&0&S\end{array}} \right\}\;. $
(A3)
In the above equation, evidently $ \langle00;1-M_2|SM_S\rangle $ and $ \langle SM_S|1-M_0;00 \rangle $ become nonzero only when $ S = 1 $, which means $ M_S $ can be any of $ 1 $, $ 0 $ or $ -1 $. Thus, the possible $ |SM_S\rangle $states are $ |1,-1\rangle $, $ |1,0\rangle $, and $ |1,1\rangle $. On the other hand, $ \langle00;1-M_2|SM_S\rangle $ and $ \langle SM_S|1-M_0;00\rangle $ will be zero unless $ M_0 = M_2 = -M_S $.
Given $ M \equiv M_S $ , Wigner's $ 9j $ symbol can then be calculated as follows:
$\tag{A4} \begin{split}\left\{ {\begin{array}{*{20}{c}}1&1&0\\1&1&1\\1&0&1\end{array}} \right\} =& \sum\limits_M {\left\{ {\begin{array}{*{20}{c}}1&1&0\\{{m_1}}&{{m_3}}&0\end{array}} \right\}} \left\{ {\begin{array}{*{20}{c}}1&1&1\\{{m_2}}&{{m_4}}&{ - M}\end{array}} \right\}\\&\times\left\{ {\begin{array}{*{20}{c}}1&0&1\\M&0&{ - M}\end{array}} \right\} \left\{ {\begin{array}{*{20}{c}}1&1&1\\{{m_1}}&{{m_2}}&{ - M}\end{array}} \right\}\\&\times\left\{ {\begin{array}{*{20}{c}}1&1&0\\{{m_3}}&{{m_4}}&0\end{array}} \right\}\left\{ {\begin{array}{*{20}{c}}0&1&1\\0&M&{ - M}\end{array}} \right\}\\ =& \frac{1}{9}\langle 1{m_1};1{m_3}|00\rangle \langle 1{m_2};1{m_4}|1M\rangle \langle 1M;00|1M\rangle \\&\times \langle 1{m_1};1{m_2}|1M\rangle \langle 1{m_3};1{m_4}|00\rangle \langle 00;1M|1M\rangle \;.\end{split}$
(A4)
Provided only the transverse polarization exists, every term in the above equation can be evaluated by a normal C-G coefficient. That is,
$\tag{A5} \langle1m_1;1m_3|00\rangle = \sqrt{\frac{1}{2}}(\delta_{m_1 1}\delta_{m_3, -1} - \delta_{m_1, -1}\delta_{m_3 1})\ ,\; \; $
(A5)
$\tag{A6} \langle1M;00|1M\rangle = \frac{\sqrt{2}}{2}\ , $
(A6)
$\tag{A7} \langle00;1M|1M\rangle = \frac{\sqrt{2}}{2}\ , $
(A7)
$\tag{A8} \langle1m_3;1m_4|00\rangle = \sqrt{\frac{1}{2}}(\delta_{m_3 1} \delta_{m_4, -1}-\delta_{m_3, -1}\delta_{m_4 1})\; ,\; \; \; $
(A8)
$\tag{A9} \langle1m_2;1m_4|1-1\rangle = 0 \ , $
(A9)
$\tag{A10} \langle1m_1;1m_2|1-1\rangle = 0 \ , $
(A10)
$\tag{A11} \langle1m_2;1m_4|10\rangle = \frac{\sqrt{2}}{2}(\delta_{m_2 1}\delta_{m_4, -1}-\delta_{m_2, -1}\delta_{m_4 1})\ , $
(A11)
$\tag{A12} \langle1m_1;1m_2|10\rangle = \frac{\sqrt{2}}{2}(\delta_{m_1 1}\delta_{m_2, -1}-\delta_{m_1, -1}\delta_{m_2 1})\ , $
(A12)
$\tag{A13} \langle1m_2;1m_4|11\rangle = 0\ , $
(A13)
$\tag{A14} \langle1m_1;1m_2|11\rangle = 0\ . $
(A14)
After inserting the above results into Eq. (A3), we discover there is only one nonzero spin coupling
$\tag{A15} \begin{split}\langle \chi^{1 3}_{0 0}\chi^{2 4}_{1 0} | \chi^{1 2}_{1 0} \chi^{3 4}_{0 0} \rangle = & \frac{1}{48}(\delta_{m_1 1}\delta_{m_3, -1}-\delta_{m_1, -1}\delta_{m_3 1}) (\delta_{m_3 1}\delta_{m_4, -1}-\delta_{m_3, -1}\delta_{m_4 1})\\ &\times (\delta_{m_2 1}\delta_{m_4, -1}-\delta_{m_2, -1}\delta_{m_4 1}) (\delta_{m_1 1}\delta_{m_2, -1}-\delta_{m_1, -1}\delta_{m_2 1})\;, \end{split} $
(A15)
which equals $ -\frac{1}{48} $ for $ m_1 = -1 $, $ m_2 = 1 $, $ m_3 = 1 $, $ m_4 = -1 $ or $ m_1 = 1 $, $ m_2 = -1 $, $ m_3 = -1 $, $ m_4 = 1 $, and $ 0 $ for all other cases.
Appendix B: The momentum space integrals
For a non-trivial situation, that is $ M_0 = M_2 = -M $, the momentum integral $ I_{M_{L_G},M_{L_{G_1}},M_{L_{G_2}}}({{\bf{K}}}) $ in Eq. (20) reduces to
$\tag{B1} \begin{split}I_{M,0,M}({\bf{K}}) =& \int\!{\rm{d}}^3 {\bf{k}}_1{\rm{d}}^3 {\bf{k}}_2{\rm{d}}^3 {\bf{k}}_3{\rm{d}}^3 {\bf{k}}_4\,\delta^3({\bf{k}}_1+{\bf{k}}_2) \delta^3({\bf{k}}_3+{\bf{k}}_4)\\&\times\delta^3({\bf{K}}_{{\rm{G}}_1}-{\bf{k}}_1-{\bf{k}}_3) \delta^3({\bf{K}}_{{\rm{G}}_2}-{\bf{k}}_2-{\bf{k}}_4)\\&\times \psi^*_{n_1 0 0}({\bf{k}}_1,{\bf{k}}_3) \psi^*_{n_2 1 M}({\bf{k}}_2,{\bf{k}}_4) \psi_{n_0 1 M}({\bf{k}}_1,{\bf{k}}_2){\cal{Y}}_{00}\Big(\frac{{\bf{k}}_3-{\bf{k}}_4}{2}\Big)\ . \end{split} $
(B1)
Provided the ground state dominance holds, namely the principal numbers $ n_0 $, $ n_1 $, and $ n_2 $ are equal to $ 1 $, the wavefunction $ \psi $ then turns to
$\tag{B2} \psi_{100}({\bf{k}}) = \frac{1}{\pi^{3/4}}R^{3/2}\exp\left(-\frac{R^2{\bf{k}}^2}{2}\right)\ , $
(B2)
$\tag{B3} \psi_{11M}({\bf{k}}) = i\frac{\sqrt{2}}{\pi^{3/4}}R^{5/2}k_M\exp\left(-\frac{R^2{\bf{k}}^2}{2}\right)\ , $
(B3)
where $ k_M $, $ k_{\pm1} = \mp(k_x\pm{}ik_y)/\sqrt{2} $, and $ k_{0} = k_z $ are the spherical components of the vector $ {\bf{k}} $.
Integrating out those dummy variables, we can simplify Eq. (B1),
$ \tag{B4} \begin{split}I_{M,0,M}({\bf{K}}) = & \delta^3({\bf{K}}_G-{\bf{K}}_{G_1}- {\bf{K}}_{G_2}) \int\!{\rm{d}}^3 {\bf{k}}_1 \psi^{1*}_{1 0 0}({\bf{k}}_1,{\bf{K}}-{\bf{k}}_1) \\ &\times \psi^{2*}_{1 1 M}(-{\bf{k}}_1,-{\bf{K}}+{\bf{k}}_1)\psi^G_{1 1 M}({\bf{k}}_1,-{\bf{k}}_1) {\cal{Y}}_{00}({\bf{k}}_1)\;. \end{split} $
(B4)
In addition, in the $ \eta_Q $ center-of-mass system which implies $ {\bf{K}}_G = {\bf{K}}_{\eta_Q} = 0 $ and $ {\bf{K}}_{G_1} = -{\bf{K}}_{G_2} = {\bf{K}} $, the spatial wavefunctions given in (B2) and (B3) may be written as
$\tag{B5} \psi^{1*}_{1 0 0} = \frac{R_1^{3/2}}{\pi^{3/4}}{\rm exp}\left(-\frac{R_1^2(2{\bf{k}}_1-{\bf{K}})^2}{8}\right)\ , $
(B5)
$\tag{B6} \psi^{2*}_{1 1 M} = -i\frac{R_2^{5/2}}{\sqrt{2}\pi^{3/4}}(2{\bf{k}}_1-{\bf{K}})_M \ {\rm exp}\left(-\frac{R_2^2(2{\bf{k}}_1-{\bf{K}})^2}{8}\right)\ , $
(B6)
$\tag{B8} \psi^G_{1 1 M} = i\frac{\sqrt{2}R_0^{5/2}}{\pi^{3/4}}({\bf{k}}_1)_M\ {\rm exp}\left(-\frac{R_0^2({\bf{k}}_1)^2}{2}\right)\ , $
(B7)
with $ {\cal{Y}}_{00} = \frac{1}{\sqrt{4\pi}} $. Here, $ R_0 $, $ R_1 $, and $ R_2 $ are the most probable radii of $ \eta_c $, $ f_0(1500) $, and $ \eta(1405) $, respectively. After performing the integration, one finds that the states $ M = 1 $ and $ M = -1 $ do not make any contribution to the total value, i.e. $ I_{1,0,1} = I_{-1,0,-1} = 0 $, while
$\tag{B8} \begin{split} I_{0,0,0} =& -\delta^3({\bf{K}}_G-{\bf{K}}_{G_1}-{\bf{K}}_{G_2})\frac{R_1^{3/2}R_2^{5/2}R_0^{5/2}}{6 \sqrt{2}\pi^{5/4}(R_0^2+R_1^2+R_2^2)^{9/2}} \\&\times\exp\bigg(-\frac{{\bf{K}}^2R_0^2(R_1^2+R_2^2)}{8(R_0^2+R_1^2+R_2^2)}\bigg)\\ &\times\bigg\{R_0^2 \left(R_1^2+R_2^2\right) \left[{\bf{K}}^4 \left(R_1^2+R_2^2\right)^2-96\right] +12 R_0^4 \left[{\bf{K}}^2 \left(R_1^2+R_2^2\right)-4\right]\\ &-12 \left(R_1^2+R_2^2\right)^2 \left[{\bf{K}}^2 \left(R_1^2+R_2^2\right)+4\right]\bigg\}\;. \end{split}$
(B8)

相关话题/Gluoncreation production model

闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶愭煙閻戞ɑ鈷愰悗姘煼閺岋綁寮崒姘闁诲孩纰嶅畝鎼佸蓟濞戞ǚ鏋庣€广儱鎳庢慨搴ㄦ⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闁哄鐗冮弲娑氭暜閵娧呯=濞达絼绮欓崫铏圭磼鐠囪尙澧曢柣锝呭槻椤繄鎹勯崫鍕偓鍧楁⒑閸濆嫭鍌ㄩ柛銊ヮ煼瀹曪綁骞囬悧鍫㈠幗闂佺粯锚瀵爼骞栭幇顒夌唵鐟滃瞼鍒掑▎鎾虫槬闁靛繈鍊栭崵鍐煃閸濆嫬鈧悂鎯冮锔解拺闁告稑锕ユ径鍕煕閹炬潙鍝洪柟顔斤耿楠炲洭鎮ч崼姘闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊ゅ嵆椤㈡岸顢橀悢渚锤闂佸憡绋戦敃銉х礊閸ャ劊浜滈柟鎵虫櫅閻忊晜顨ラ悙宸剶婵﹥妞藉畷妤呮偂鎼粹€承戦梻浣规偠閸ㄨ偐浜搁鍫澪﹂柟鎵閺呮悂鏌ㄩ悤鍌涘40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼崸妤€鎽甸柣蹇撶箰鐎涒晠骞堥妸銉庣喖宕归鎯у缚闂佽绻愬ù姘椤忓牆钃熼柕濞垮劗濡插牓鏌ц箛锝呬簻妞ゅ骏鎷�
闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁逞屽墰閸掓帞鎷犲顔兼倯闂佹悶鍎崝宀勬儍椤愨懇鏀芥い鏃囶潡瑜版帒鏄ラ柡宥庡亗閻掑﹥銇勮箛鎾跺闁绘挻绋戦…璺ㄦ崉閻氭潙浼愰梺鍝勬閸犳劗鎹㈠☉娆忕窞婵☆垰鎼猾宥嗙節绾版ê澧查柟绋垮暱閻g兘骞掗幋鏃€鏂€闂佸綊鍋婇崜姘额敊閺囩偐鏀介柣鎰▕閸ょ喎鈹戦姘煎殶缂佽京鍋ら崺鈧い鎺戝閻撳繘鏌涢埄鍐炬當闁哄棴绲块埀顒冾潐濞测晝绱炴笟鈧妴浣糕槈閵忊€斥偓鐑芥煃鏉炵増顦峰瑙勬礀閳规垿顢欓惌顐簽婢规洟顢橀悩鍏哥瑝闂佸搫绋侀悘鎰版偡閹靛啿鐗氶梺鍛婃处閸嬪棝顢栭崟顒傜閻庣數枪瀛濋梺缁橆殔缁绘帒危閹版澘绫嶉柛顐g箘椤撴椽姊虹紒妯忣亪鎮樺璺虹畾闁挎繂顦伴埛鎺戙€掑顒佹悙濞存粍绻堥弻锛勪沪鐠囨彃顬嬪┑鐐叉閸ㄤ粙骞冨▎鎴斿亾閻㈢數銆婇柡瀣墵濮婅櫣绱掑Ο铏逛桓闁藉啴浜堕弻鐔兼偪椤栨瑥鎯堢紓浣介哺鐢€愁嚕椤曗偓閸┾偓妞ゆ帒瀚崑锟犳煥閺冨倸浜鹃柡鍡樼矌閹叉悂鎮ч崼婵堫儌閻庤鎸风欢姘跺蓟濞戔懇鈧箓骞嬪┑鍥╁蒋闂備礁鎲¢懝楣冨箠鎼淬劍绠掗梻浣稿悑缁佹挳寮插☉婧惧彺闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐粹拺闁兼亽鍎遍埛濂濆┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆鍠楅崵灞轿旈敐鍛殭缂佺姷鍠栭弻鐔煎箚閻楀牜妫勯梺璇茬箺濞呮洜鎹㈠┑瀣瀭妞ゆ劧绲介弳妤冪磽娴f彃浜炬繝銏e煐閸旀牠鎮¢悢鍏肩厓鐟滄粓宕滃▎鎰箚濞寸姴顑嗛悡鏇㈡煃閸濆嫬鈧煤閹绢喗鐓涢悘鐐跺Г閸h銇勯锝囩畵闁伙絿鍏樺畷鍫曞煛閸愨晜鐦掗梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崼娑楁睏闂佺粯鍔曢幖顐︽嚋鐟欏嫨浜滈柟鐑樺灥閳ь剙缍婂畷鎴濐潨閳ь剟寮婚弴鐔虹鐟滃秶鈧凹鍣e鎶芥偐缂佹ǚ鎷洪梺鍛婄☉閿曘倗绮幒鎾茬箚妞ゆ劧绲鹃ˉ鍫熶繆椤愩垺鍤囬柛鈺嬬節瀹曘劑顢欓幆褍鍙婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鍔曠欢鐐碘偓骞垮劚椤︿即鎮″▎鎾村€垫繛鎴炵憽缂傛艾顭胯閸撶喖寮婚悢鍏煎剬闁告縿鍎宠ⅵ婵°倗濮烽崑娑㈡煀閿濆棔绻嗛柣鎴f鎯熼梺闈涱檧婵″洦绂嶅畡鎵虫斀闁绘劖娼欓悘锔芥叏婵犲嫭鍤€妞ゎ厼鐏濋~婊堝焵椤掑嫮宓侀柛鎰╁壆閺冨牆宸濇い鏃囧Г閻濐偊鏌f惔鈥冲辅闁稿鎹囬弻娑㈠箛椤撶偛濮㈠┑鐐茬墢閸嬫挾鎹㈠☉姘e亾閻㈢櫥褰掝敁閹惧墎纾界€广儰绀佹禍楣冩⒒娓氣偓濞佳兾涘Δ鍛柈闁圭虎鍠栫粻鐘绘煏韫囨洖啸闁哄棗顑夐弻鈩冨緞鎼淬垻銆婇梺璇″櫙閹凤拷40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼幐搴c€愰弶鈺傜箞濮婅櫣绮欓幐搴㈡嫳缂備浇顕х粔鐟扮暦閻㈠憡鏅濋柍褜鍓熷﹢渚€姊虹紒妯兼噧闁硅櫕鍔楃划鏃堫敆閸曨剛鍘梺绯曞墲椤ㄥ懘寮抽悢鍏肩厵鐎瑰嫭澹嗙粔鐑樸亜閵忊埗顏堝煘閹达箑鐐婄憸婊勫閸℃稒鈷掑ù锝呮啞閹牓鏌eΔ浣虹煉鐎规洘绮岄埥澶愬閳ュ厖鎴锋俊鐐€栭悧妤冪矙閹炬眹鈧懘鎮滈懞銉ヤ化婵炶揪绲介幗婊堟晬瀹ュ洨纾煎璺猴功娴犮垽妫佹径瀣瘈鐟滃繑鎱ㄩ幘顔肩柈妞ゆ牜鍋涚粻姘舵煕瀹€鈧崑鐐烘偂閵夛妇绠鹃柟瀵稿€戦崷顓涘亾濮樺崬顣肩紒缁樼洴閹剝鎯旈埥鍡楀Ψ缂傚倷绀侀崐鍝ョ矓瑜版帇鈧線寮撮姀鐙€娼婇梺缁樶缚閺佹瓕鈪�9闂傚倸鍊烽懗鍫曘€佹繝鍥ф槬闁哄稁鍓欑紞姗€姊绘笟鈧埀顒傚仜閼活垱鏅堕鈧弻娑欑節閸愨晛鈧劙鏌熼姘殻濠殿喒鍋撻梺闈涚墕閹虫劙藝椤愶附鈷戠紒顖涙礀婢у弶绻涢懠顒€鏋涢柟顕嗙節閸╋繝宕ㄩ瑙勫闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊╀憾楠炴劙鎼归锛勭畾闁诲孩绋掕摫濠殿垱鎸抽幃宄扳枎韫囨搩浠奸梻鍌氬亞閸ㄨ泛顫忛搹瑙勫厹闁告侗鍨伴悧姘舵⒑缁嬪潡顎楃€规洦鍓熷﹢浣糕攽椤斿浠滈柛瀣崌閺岀喖顢欓妸銉︽悙闁绘劕锕弻宥夊传閸曨偅娈查梺璇″灲缂嶄礁顫忓ú顏勭閹艰揪绲哄Σ鍫ユ⒑閸忓吋銇熼柛銊ф暬婵$敻骞囬弶璺紲闂佺粯鍔樼亸娆撍囬锔解拺闁告繂瀚峰Σ瑙勩亜閹寸偟鎳囩€规洘绻堝畷銊р偓娑欋缚閸樻悂鎮楃憴鍕鞍闁告繂閰e畷鎰板Χ婢跺﹦鏌堥梺鍓插亖閸庢煡鎮¢弴鐘冲枑閹艰揪绲块惌娆撶叓閸ャ劎鈽夐柣鎺戠仛閵囧嫰骞嬮敐鍛Х闂佺ǹ绻愰張顒傛崲濞戙垹宸濇い鎰╁灩椤姊虹拠鈥崇仭婵☆偄鍟村顐﹀礃閳哄倸顎撶紓浣割儓濞夋洘绂掗銏♀拻濞达絽鎲¢崯鐐烘煟閵婏妇鐭嬮柟宄版嚇楠炴捇骞掑鍜佹婵犵數鍋犻幓顏嗙礊娓氣偓瀵煡鎳犻鍐ㄐ¢梺瑙勫劶婵倝鎮¢弴鐔剁箚闁靛牆瀚ˇ锕傛煙閸忓吋鍊愰柡灞界Х椤т線鏌涜箛鏃傘€掔紒顔肩墛閹峰懘宕烽褎閿ら梻浣告惈濞层劑宕伴幘璇茬厴鐎广儱顦粻鎶芥煙閹増顥夐柣鎺戠仛閵囧嫰骞嬪┑鍫滆檸闂佺ǹ锕ュΣ瀣磽閸屾艾鈧绮堟笟鈧鐢割敆閳ь剟鈥旈崘顔藉癄濠㈠厜鏅滈惄顖氱暦缁嬭鏃堝焵椤掑啰绠芥繝鐢靛仩閹活亞绱為埀顒佺箾閸滃啰绉€规洩缍侀崺鈧い鎺嶈兌缁犻箖鏌熺€电ǹ浠﹂柣鎾卞劤缁辨帡濡搁敂濮愪虎闂佺硶鏂侀崑鎾愁渻閵堝棗鐏﹂悗绗涘懐鐭堝ù鐓庣摠閻撶喐銇勮箛鎾村櫤閻忓骏绠撻弻鐔碱敊閼恒儯浠㈤梺杞扮劍閸旀瑥鐣烽崼鏇炵厸闁稿本绋戦崝姗€姊婚崒娆戭槮闁硅绻濋幊婵嬪礈瑜夐崑鎾愁潩閻撳骸鈷嬫繝纰夌磿閺佽鐣烽崼鏇ㄦ晢闁稿本姘ㄩ妶锕傛⒒娴e憡鍟為柛鏃€鐗為妵鎰板礃椤旂晫鍘愰梻渚囧墮缁夌敻鎮¤箛娑欑厱闁宠棄妫楅獮妤呮倵濮樼偓瀚�