HTML
--> --> -->The quark combination model developed by the Shandong group (SDQCM) [9–11, 22–35] is a kind of exclusive or statistical hadronization model, which differs from the Lund string model and the coalescence model. The model first takes the constituent quark degrees of freedom as an effective description for the strongly-interacted quark gluon system at hadronization. Subsequently, the model adopts a quark combination rule (QCR) to combine the quarks and antiquarks in the neighborhood of the longitudinal phase space into baryons and mesons. Since the longitudinal phase space is easily described by the momentum rapidity, the correlation in rapidity is the basis of the QCR. This type of QCR in SDQCM has successfully explained many data of hadronic production in
The probability distributions of the particle numbers of baryons, antibaryons, and mesons is an important observable in high energy collisions and is closely related to hadronization dynamics. Especially, the particle number distributions are essential to the search for the critical end point of the QCD phase diagram in relativistic heavy-ion collisions [39–43]. In this study, we propose a new method to solve the baryon and meson number distribution in the context of the QCR in the SDQCM. The new method is significantly simpler and easier to generalize to more sophisticated cases than the original one [44]. We followingly employ these formula to calculate the multiplicity distribution and ratios of cumulants for net protons in relativistic heavy-ion collisions.
The paper is organized as follows. In Sec. 2, we briefly present the original QCR in the SDQCM. Then, we apply the generating function method to solve the particle number probability of baryons, antibaryons, and mesons for a given number of quarks and antiquarks. In Sec. 3, we generalize the original QCR and derive the corresponding particle number probability of baryons, antibaryons, and mesons using the generating function method. In Sec. 4, we compare the numerical difference between the original QCR and the generalized QCR in terms of moments of the antibaryon number. In Sec. 5, we formulate the fluctuation and correlation of identified hadrons. In Sec. 6 and 7, we study the effects of the quark number fluctuation and resonance decays. In Sec. 8, we provide an illustrative example of applying the QCR and generalized QCR to calculate the ratios of cumulants for net protons in heavy-ion collisions and compare it with the obtained data. Finally, we provide a summary and discussions in Sec. 9.
2
2.1.Original quark combination rule
In the QCM,1. Check if there are partons in the queue. If there are no partons, the process ends. Otherwise, start from the first parton (q or
2. Look at the second parton. If there is no second parton, the process ends. Otherwise, if the baryon number of the second parton in the queue is different from the first one, i.e., the first two partons are either
3. Look at the third parton. If there is no third parton, the process ends. Otherwise, if the third parton is different in the baryon number from the first one, the first and third parton form a meson and are removed from the queue, repeat step 1; Otherwise, if the first three partons combine into a baryon or an antibaryon and are removed from the queue, go to step 1.
The following example demonstrates the function of the QCR.
$ \begin{split} &q_{1}\overline{q}_{2}q_{3}q_{4}q_{5}\overline{q}_{6}q_{7}q_{8}\overline{q}_{9}\overline{q}_{10}q_{11}\overline{q}_{12}\overline{q}_{13}\overline{q}_{14}\overline{q}_{15}q_{16}q_{17}q_{18}\overline{q}_{19}\overline{q}_{20} \rightarrow M(q_{1}\overline{q}_{2})B(q_{3}q_{4}q_{5})M(\overline{q}_{6}q_{7})M(q_{8}\overline{q}_{9})M(\overline{q}_{10}q_{11})\\&\quad \overline{B}(\overline{q}_{12}\overline{q}_{13}\overline{q}_{14})M(\overline{q}_{15}q_{16})M(q_{17}\overline{q}_{19})M(q_{18}\overline{q}_{20}). \end{split} $ ![]() | (1) |
2
2.2.Recursive relation for $ F(N_{M},N_{B},N_{\bar{B}},N_{r},N_{\bar{r}}) $![]()
![]()
We consider the system consisting of $ \begin{split} N_{M}+3N_{B}+N_{r} = &N_{q}, \\ N_{M}+3N_{\bar{B}}+N_{\bar{r}} =& N_{\bar{q}}. \end{split} $ ![]() | (2) |
$ \begin{split} (a) (N_{M}-1,N_{B},N_{\bar{B}},1,0)+\bar{q}, \\ (b) (N_{M}-1,N_{B},N_{\bar{B}},0,1)+q, \\ (c) (N_{M},N_{B}-1,N_{\bar{B}},2,0)+q, \\ (d) (N_{M},N_{B},N_{\bar{B}}-1,0,2)+\bar{q}. \end{split} $ ![]() | (3) |
$ \begin{split} S(N_{q},N_{\bar{q}}) = & \displaystyle\sum\limits_{\{N_{M},N_{B},N_{\bar{B}},N_{r},N_{\bar{r}}\}}F(N_{M},N_{B},N_{\bar{B}},N_{r},N_{\bar{r}}) \\ &\times\delta_{N_{M}+3N_{B}+N_{r},N_{q}}\delta_{N_{M}+3N_{\bar{B}}+N_{\bar{r}},N_{\bar{q}}} \\ =& \left(\begin{array}{c} N_{q}+N_{\bar{q}}\\ N_{q} \end{array}\right)\equiv\dfrac{(N_{q}+N_{\bar{q}})!}{N_{q}!N_{\bar{q}}!}, \end{split} $ ![]() | (4) |
For non-zero
$ F(N_{M},N_{B},N_{\bar{B}},N_{r},N_{\bar{r}}) = \sum\limits_{i = 0}^{N_{M}}F(i,N_{B},N_{\bar{B}},0,0). $ ![]() | (5) |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},1,0) =& F(N_{M},N_{B},N_{\bar{B}},0,0)\\&+F(N_{M}-1,N_{B},N_{\bar{B}},2,0) \\=& F(N_{M},N_{B},N_{\bar{B}},0,0)\\&+F(N_{M}-1,N_{B},N_{\bar{B}},1,0). \end{split} $ ![]() | (6) |
Using properties in Eq. (5) and Eq. (3), we obtain
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},0,0) =& F(N_{M}-1,N_{B},N_{\bar{B}},1,0)\\&+F(N_{M}-1,N_{B},N_{\bar{B}},0,1) \\&+F(N_{M},N_{B}-1,N_{\bar{B}},2,0)\\&+F(N_{M},N_{B},N_{\bar{B}}-1,0,2). \end{split} $ ![]() | (7) |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},0,0) =& 3F(N_{M}-1,N_{B},N_{\bar{B}},0,0) \\ &+F(N_{M},N_{B}-1,N_{\bar{B}},0,0)\\&+F(N_{M},N_{B},N_{\bar{B}}-1,0,0), \end{split} $ ![]() | (8) |
2
2.3.Solution to recursive equation by generating function method
First, we consider a special simple case: $ F(N_{M},0,0,0,0) = 3F(N_{M}-1,0,0,0,0), $ ![]() | (9) |
$ F(N_{M},0,0,0,0) = 2\times3^{N_{M}-1}, $ ![]() | (10) |
Now, we consider the general case for
$ \begin{split} A\left(x,y,z\right) =& \sum\limits_{N_{M} = 0}^{\infty}\sum\limits_{N_{B} = 0}^{\infty}\sum\limits_{N_{\bar{B}} = 0}^{\infty}\\&\times F(N_{M},N_{B},N_{\bar{B}},0,0)x^{N_{M}}y^{N_{B}}z^{N_{\bar{B}}}, \end{split} $ ![]() | (11) |
To solve
$ A(x;N_{B},N_{\bar{B}}) = \sum\limits_{N_{M} = 0}^{\infty}F(N_{M},N_{B},N_{\bar{B}},0,0)x^{N_{M}}. $ ![]() | (12) |
$ \begin{split} \left(1-3x\right)A(x;N_{B},N_{\bar{B}})-F(0,N_{B},N_{\bar{B}},0,0) = A(x;N_{B}-1,N_{\bar{B}})+A(x;N_{B},N_{\bar{B}}-1) -F(0,N_{B}-1,N_{\bar{B}},0,0)-F(0,N_{B},N_{\bar{B}}-1,0,0). \end{split} $ ![]() | (13) |
$ \begin{split} A(x;0,N_{\bar{B}}) =&\frac{1}{(1-3x)^{N_{\bar{B}}}}A(x;0,0) \\ =& \frac{2x}{(1-3x)^{N_{\bar{B}}+1}}+\frac{1}{(1-3x)^{N_{\bar{B}}}}, \end{split} $ ![]() | (14) |
$ A(x;N_{B},0) = \frac{2x}{(1-3x)^{N_{B}+1}}+\frac{1}{(1-3x)^{N_{B}}}. $ ![]() | (15) |
$ \sum\limits_{N_{B} = 0}^{\infty}A(x;N_{B},0)y^{N_{B}} = \frac{1-x}{1-3x-y}, $ ![]() | (16) |
$ \sum\limits_{N_{\bar{B}} = 0}^{\infty}A(x;0,N_{\bar{B}})z^{N_{\bar{B}}} = \frac{1-x}{1-3x-z}, $ ![]() | (17) |
We now multiply Eq. (13) by
$ A(x,y,z) = \frac{1-x}{1-3x-y-z}. $ ![]() | (18) |
$ C(z^{N_{\bar{B}}}) = \frac{1-x}{(1-3x-y)^{N_{\bar{B}}+1}}. $ ![]() | (19) |
$ C(z^{N_{\bar{B}}}y^{N_{B}}) = \left(\begin{array}{c} N_{B}+N_{\bar{B}}\\ N_{B} \end{array}\right)\frac{1-x}{(1-3x)^{N_{B}+N_{\bar{B}}+1}}, $ ![]() | (20) |
$ (1\pm w)^{-n} = \sum\limits_{k = 0}^{\infty}\left(\begin{array}{c} n-1+k\\ k \end{array}\right)(\mp1)^{k}w^{k}, $ ![]() | (21) |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},0,0) = 3^{N_{M}}\left(\begin{array}{c} N_{B}+N_{\bar{B}}\\ N_{B} \end{array}\right) \left[\left(\begin{array}{c} N_{M}+N_{B}+N_{\bar{B}}\\ N_{M} \end{array}\right)-\frac{1}{3}\left(\begin{array}{c} N_{M}-1+N_{B}+N_{\bar{B}}\\ N_{M}-1 \end{array}\right)\right], \end{split} $ ![]() | (22) |
$ \begin{split}F({N_M},{N_B},{N_{\bar B}},0,0) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{(2{N_M} + 3{N_B} + 3{N_{\bar B}})({N_M} + {N_B} + {N_{\bar B}} - 1)!}}{{{N_M}!{N_B}!{N_{\bar B}}!}}{3^{{N_M} - 1}}}&{{\rm{for}}\;{N_M} > 0,}\\{\left( {\begin{array}{*{20}{c}}{{N_B} + {N_{\bar B}}}\\{{N_B}}\end{array}} \right)}&{{\rm{for}}\;{N_M} = 0.}\end{array}} \right.\end{split}$ ![]() | (23) |
$ P(N_{M},N_{B},N_{\bar{B}}) = \frac{F(N_{M},N_{B},N_{\bar{B}},0,0)}{\left(\begin{array}{c} N_{B}+N_{\bar{B}}\\ N_{B} \end{array}\right)}. $ ![]() | (24) |
3.1.Generalized quark combination rule
The ratio of baryons to mesons (B/M) given by QCR in Sect. 2.1 is larger than the observation of heavy-ion collisions [52, 53]. To suppress the B/M ratio, we can generalize the QCR in Sect. 2.1 to decrease the formation probability of baryons relative to mesons. The generalized QCR (gQCR) reads:1. Check if there are partons in the queue. If there are no partons, the process ends. Otherwise, start from the first parton and proceed to the next step.
2. Look at the second parton. If there is no second parton, the process ends. Otherwise, if the baryon number of the second parton is different from the first one, i.e., the first two partons are either
3. Look at the third parton. If there is no third parton, the process ends. Otherwise, if the baryon number of the third parton is different from the first one, the first and third parton form a meson and are removed from the queue, repeat to step 1; Otherwise if the first three partons are either qqq or
4. Look at the fourth parton. If there is no fourth parton, the first three partons form a baryon or an antibaryon and the process ends. Otherwise, if the baryon number of the fourth parton is different from the first one, the first and fourth parton form a meson and are removed from the queue, repeat to step 1; Otherwise the first three partons combine into a baryon or an antibaryon and are removed from the queue, proceed to step 1.
The outcome of implementing gQCR to the queue of stochastically populated
$ \begin{split}& (a) [(N_{M},N_{B},N_{\bar{B}},0,0)-(N_{M},N_{B},N_{\bar{B}}-1,0,3)]+q, \\ &(b) (N_{M}-1,N_{B},N_{\bar{B}},2,0)+\bar{q}. \end{split} $ ![]() | (25) |
$ \begin{split}& (a) [(N_{M},N_{B},N_{\bar{B}},0,0)-(N_{M},N_{B}-1,N_{\bar{B}},3,0)]+\bar{q}, \\& (b) (N_{M}-1,N_{B},N_{\bar{B}},0,2)+q. \end{split} $ ![]() | (26) |
$ \begin{split} &(a) (N_{M},N_{B},N_{\bar{B}},1,0)+q, \\& (b) (N_{M}-1,N_{B},N_{\bar{B}},3,0)+\bar{q}. \end{split} $ ![]() | (27) |
$ \begin{split}& (a) (N_{M},N_{B},N_{\bar{B}},0,1)+\bar{q}, \\ &(b) (N_{M}-1,N_{B},N_{\bar{B}},0,3)+q. \end{split} $ ![]() | (28) |
$ (N_{M},N_{B},N_{\bar{B}},3,0) = (N_{M},N_{B},N_{\bar{B}},2,0)+q, $ ![]() | (29) |
$ (N_{M},N_{B},N_{\bar{B}},0,3) = (N_{M},N_{B},N_{\bar{B}},0,2)+\bar{q}. $ ![]() | (30) |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},1,0) =& F(N_{M},N_{B},N_{\bar{B}},0,0) \\ &-F(N_{M},N_{B},N_{\bar{B}}-1,0,2) \\ &+F(N_{M}-1,N_{B},N_{\bar{B}},2,0), \end{split} $ ![]() |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},0,1) = &F(N_{M},N_{B},N_{\bar{B}},0,0) \\ &-F(N_{M},N_{B}-1,N_{\bar{B}},2,0) \\ &+F(N_{M}-1,N_{B},N_{\bar{B}},0,2), \\ F(N_{M},N_{B},N_{\bar{B}},2,0) = &F(N_{M},N_{B},N_{\bar{B}},1,0) \\ &+F(N_{M}-1,N_{B},N_{\bar{B}},2,0), \\ F(N_{M},N_{B},N_{\bar{B}},0,2) = &F(N_{M},N_{B},N_{\bar{B}},0,1) \\ &+F(N_{M}-1,N_{B},N_{\bar{B}},0,2). \end{split} $ ![]() | (31) |
$ \begin{split} F(N_{M},N_{B},N_{\bar{B}},0,0) = & F(N_{M},N_{B}-1,N_{\bar{B}},0,0)\\ &+F(N_{M},N_{B},N_{\bar{B}}-1,0,0) \\ & -F(N_{M},N_{B}-1,N_{\bar{B}}-1,0,0) \\ & +6F(N_{M}-1,N_{B},N_{\bar{B}},0,0) \\ & -3F(N_{M}-1,N_{B}-1,N_{\bar{B}},0,0) \\ & -3F(N_{M}-1,N_{B},N_{\bar{B}}-1,0,0) \\ & -10F(N_{M}-2,N_{B},N_{\bar{B}},0,0) \\ & +F(N_{M}-2,N_{B}-1,N_{\bar{B}},0,0) \\ & +F(N_{M}-2,N_{B},N_{\bar{B}}-1,0,0) \\ & +4F(N_{M}-3,N_{B},N_{\bar{B}},0,0). \end{split} $ ![]() | (32) |
2
3.2.Solution to recursive equation by generating functions for gQCR
We start with the most simple case $ \begin{split} F(N_{M},0,0,0,0) = & 6F(N_{M}-1,0,0,0,0) \\&-10F(N_{M}-2,0,0,0,0)\\ & +4F(N_{M}-3,0,0,0,0). \end{split} $ ![]() |
$ F(N_{M},0,0,0,0) = \frac{1}{2}\left[\left(2+\sqrt{2}\right)^{N_{M}}+\left(2-\sqrt{2}\right)^{N_{M}}\right]. $ ![]() | (33) |
$ A(x;0,N_{\bar{B}}) = \frac{(1-3x+x^{2})^{N_{\bar{B}}}}{(1-6x+10x^{2}-4x^{3})^{N_{\bar{B}}}}\cdot\frac{1-2x}{1-4x+2x^{2}}, $ ![]() | (34) |
$ A(x;0,0) = \frac{1-2x}{1-4x+2x^{2}}. $ ![]() | (35) |
$ \begin{split}\sum\limits_{N_{B} = 0}^{\infty}A(x;N_{B},0)y^{N_{B}} =& \frac{1-2x}{1-4x+2x^{2}}\\&\times\frac{1-6x+10x^{2}-4x^{3}}{1-6x+10x^{2}-4x^{3}-y(1-3x+x^{2})}, \end{split} $ ![]() | (36) |
$ \begin{split}\sum\limits_{N_{\bar{B}} = 0}^{\infty}A(x;0,N_{\bar{B}})z^{N_{\bar{B}}} =& \frac{1-2x}{1-4x+2x^{2}}\\&\times\frac{1-6x+10x^{2}-4x^{3}}{1-6x+10x^{2}-4x^{3}-z(1-3x+x^{2})}. \end{split}$ ![]() | (37) |
$ \begin{split}&A(x,y,z) \\&\quad = \frac{1-4x+4x^{2}-yz}{1-6x+10x^{2}-4x^{3}-y+3xy-x^{2}y-z+3xz-x^{2}z+yz}. \end{split} $ ![]() | (38) |
We extract
$ F(N_{M},N_{B},N_{\bar{B}},0,0) = I_{1}+I_{2}+I_{3}+I_{4}, $ ![]() | (39) |
$ \begin{split} \overline{N_{M}^{m}N_{B}^{n}N_{\bar{B}}^{k}} =& \sum\limits_{N_{M}N_{B}N_{\bar{B}}}N_{M}^{m}N_{B}^{n}N_{\bar{B}}^{k}\,P\left(N_{M},N_{B},N_{\bar{B}}\right) \\ &\times\delta_{N_{M}+3N_{B},N_{q}}\delta_{N_{M}+3N_{\bar{B}},N_{\bar{q}}}, \end{split} $ ![]() | (40) |
$ \begin{aligned} \overline{\delta N_{B}^{n}} = \overline{\delta N_{\bar{B}}^{n}}, \quad \overline{\delta N_{M}^{n}} = \left(-3\right)^{n}\overline{\delta N_{B}^{n}}, \end{aligned} $ ![]() | (41) |
In Fig. 1, we show the ratios of the cumulants for antibaryons as functions of the quark-antiquark asymmetry

$ z = \frac{N_{q}-N_{\bar{q}}}{N_{q}+N_{\bar{q}}}, $ ![]() | (42) |
$ \begin{split} C_{1} \equiv & C_{1}^{\bar{B}} = \overline{N_{\bar{B}}}, \quad C_{2} = \overline{\delta N_{B}^{2}} = \overline{\delta N_{\bar{B}}^{2}}, \quad C_{3} = \overline{\delta N_{B}^{3}} = \overline{\delta N_{\bar{B}}^{3}}, \\ C_{4} =& \overline{\delta N_{B}^{4}}-3C_{2}^{2} = \overline{\delta N_{\bar{B}}^{4}}-3C_{2}^{2}. \end{split} $ ![]() | (43) |
$ \begin{split} \overline{N}_{B_{i}} =& g_{B_{i}}\frac{N_{B_{i}}^{\left(q\right)}}{N_{q}\left(N_{q}-1\right)\left(N_{q}-2\right)}\overline{N}_{B}, \\ \overline{N}_{M_{i}} =& g_{M_{i}}\frac{N_{M_{i}}^{\left(q\right)}}{N_{q}N_{\bar{q}}}\overline{N}_{M}, \end{split} $ ![]() | (44) |
$ \begin{split} N_{B_{i}}^{\left(q\right)} =& S_{B_{i}}\prod\limits_{f}\prod\limits_{j = 1}^{n_{f,B_{i}}}\left(N_{f}-j+1\right), \\ N_{M_{i}}^{\left(q\right)} =& \prod\limits_{f}\prod\limits_{j = 1}^{n_{f,M_{i}}}\left(N_{f}-j+1\right), \end{split} $ ![]() | (45) |
Taking the proton as an example, we have
We introduce the configuration of multiple hadrons as
$ \overline{N_{\left\{ k_{{h}}{h}\right\} }} = \left(\prod\limits_{{h}_{i}}g_{{h}_{i}}^{k_{{h}_{i}}}\right)\frac{N_{\left\{ {h}\right\} }^{\left(q\right)}}{N_{q}^{\underline{k_{q}}}N_{\bar{q}}^{\underline{k_{\bar{q}}}}}\overline{N_{B}^{\underline{k_{B}}}N_{\bar{B}}^{\underline{k_{\bar{B}}}}N_{M}^{\underline{k_{M}}},} $ ![]() | (46) |
$ N_{\left\{ {h}\right\} }^{\left(q\right)} = \left(\prod\limits_{{h}_{i}}S_{{h}_{i}}\right)\prod\limits_{f}\prod\limits_{j = 1}^{n_{f}}\left(N_{f}-j+1\right), $ ![]() | (47) |
We take a few examples of multi-hadron configurations to illustrate Eq. (46). The first example is the configuration with two protons, where we have
$ \overline{N_{{p}}^{\underline{2}}} = \overline{N_{{p}}\left(N_{{p}}-1\right)} = g_{{p}}^{2}\frac{N_{{pp}}^{\left(q\right)}}{N_{q}^{\underline{6}}}\overline{N_{B}\left(N_{B}-1\right)}, $ ![]() | (48) |
$ \begin{split} \overline{N_{{p}}^{\underline{2}}N_{\bar{{n}}}} =& \overline{N_{{p}}\left(N_{{p}}-1\right)N_{\bar{{n}}}} \\ = &\left(g_{{p}}^{2}\frac{N_{{pp}}^{\left(q\right)}}{N_{q}^{\underline{6}}}\right)\left(g_{\bar{{n}}}\frac{N_{\bar{{n}}}^{\left(q\right)}}{N_{\bar{q}}^{\underline{3}}}\right)\overline{N_{B}\left(N_{B}-1\right)N_{\bar{B}}}, \end{split} $ ![]() | (49) |
All orders of moments and correlation functions of hadron multiplicity can be built from Eq. (46). The two-body correlation function reads
$ \begin{split} C_{\alpha\beta} \equiv &\overline{\delta N_{\alpha}\delta N_{\beta}} = \overline{N_{\alpha}N_{\beta}}-\overline{N}_{\alpha}\overline{N}_{\beta}\\ =& \overline{N}_{\alpha\beta}+\delta_{\alpha,\beta}\overline{N}_{\alpha}-\overline{N}_{\alpha}\overline{N}_{\beta}, \end{split} $ ![]() | (50) |
$ \begin{split} C_{\alpha\beta\gamma} \equiv &\overline{\delta N_{\alpha}\delta N_{\beta}\delta N_{\gamma}} = \overline{N_{\alpha}N_{\beta}N_{\gamma}}-\overline{N}_{\alpha}C_{\beta\gamma}\\&-\overline{N}_{\beta} C_{\alpha\gamma} -\overline{N}_{\gamma}C_{\alpha\beta} -\overline{N}_{\alpha}\overline{N}_{\beta}\overline{N}_{\gamma}, \end{split} $ ![]() | (51) |
$ \begin{split} \overline{N_{\alpha}N_{\beta}N_{\gamma}} =& \overline{N}_{\alpha\beta\gamma}+\delta_{\alpha,\beta}\overline{N}_{\alpha\gamma}+\delta_{\alpha,\gamma}\overline{N}_{\alpha\beta}+\delta_{\beta,\gamma}\overline{N}_{\alpha\beta} \\ & +\delta_{\alpha,\beta}\delta_{\alpha,\gamma}\overline{N}_{\alpha}. \end{split} $ ![]() | (52) |
$ \begin{split} C_{\alpha\beta\gamma\epsilon} =& \overline{\delta N_{\alpha}\delta N_{\beta}\delta N_{\gamma}\delta N_{\epsilon}} \\ =& \overline{N_{\alpha}N_{\beta}N_{\gamma}N_{\epsilon}} -\left(\overline{N}_{\alpha}C_{\beta\gamma\epsilon}+{\rm permutation}\right) \\ &-\left(\overline{N}_{\alpha}\overline{N}_{\beta}C_{\gamma\epsilon}+{\rm permutation}\right) -\overline{N}_{\alpha}\overline{N}_{\beta}\overline{N}_{\gamma}\overline{N}_{\epsilon}, \end{split} $ ![]() | (53) |
$ \begin{split} \overline{N_{\alpha}N_{\beta}N_{\gamma}N_{\epsilon}} = & \overline{N}_{\alpha\beta\gamma\epsilon} +\left(\delta_{\alpha,\beta}\overline{N}_{\alpha\gamma\epsilon}+{\rm permutation}\right) \\ &+\left(\delta_{\alpha,\gamma}\delta_{\beta,\epsilon}\overline{N}_{\alpha\beta}+{\rm permutation}\right)\\&+\delta_{\alpha,\beta}\delta_{\alpha,\gamma}\delta_{\alpha,\epsilon}\overline{N}_{\alpha}. \end{split} $ ![]() | (54) |
The cumulants of the net proton number
$ \begin{split} C_{1} =& \overline{N}_{{p}}-\overline{N}_{\bar{{p}}}, \\ C_{2} = &C_{{pp}}-2C_{{p}\bar{{p}}}+C_{\bar{{p}}\bar{{p}}}, \\ C_{3} =& C_{{ppp}}-3C_{{pp}\bar{{p}}}+3C_{{p}\bar{{p}}\bar{{p}}}-C_{\bar{{p}}\bar{{p}}\bar{{p}}}, \\ C_{4} =& C_{{pppp}}-4C_{{ppp}\bar{{p}}}+6C_{{pp}\bar{{p}}\bar{{p}}} -4C_{{p}\bar{{p}}\bar{{p}}\bar{{p}}}+C_{\bar{{p}}\bar{{p}}\bar{{p}}\bar{{p}}}-3C_{2}^{2}. \end{split} $ ![]() | (55) |

$ P\left(\{N_{f}\}\right)\equiv P\left(N_{u},N_{\bar{u}},N_{d},N_{\bar{d}},N_{s},N_{\bar{s}}\right), $ ![]() | (56) |
$ \langle A_{{h}}\rangle = \sum\limits_{\{N_{f}\}}P\left(\{N_{f}\}\right)\overline{A}_{{h}}\left(\{N_{f}\}\right), $ ![]() | (57) |
In the practical evaluation, it is more convenient to take the expansion of
$ \begin{split} \overline{A}_{{h}} =& \overline{A}_{{h},0}+\sum\limits_{f}\left.\frac{\partial\overline{A}_{{h}}}{\partial N_{f}}\right|_{0}\delta N_{f} \\ &+\frac{1}{2}\sum\limits_{f_{1}f_{2}}\left.\frac{\partial^{2}\overline{A}_{{h}}}{\partial N_{f_{1}}\partial N_{f_{2}}}\right|_{0}\delta N_{f_{1}}\delta N_{f_{2}} +\cdots, \end{split} $ ![]() | (58) |
$ \begin{split} \langle A_{{h}}\rangle = &\overline{A}_{{h},0}+\frac{1}{2}\sum\limits_{f_{1}f_{2}}\left.\frac{\partial^{2}\overline{A}_{{h}}}{\partial N_{f_{1}}\partial N_{f_{2}}}\right|_{0}\left\langle \delta N_{f_{1}}\delta N_{f_{2}}\right\rangle \\ &+\frac{1}{3!}\sum\limits_{f_{1}f_{2}f_{3}}\left.\frac{\partial^{3}\overline{A}_{{h}}}{\partial N_{f_{1}}\partial N_{f_{2}}\partial N_{f_{3}}}\right|_{0}\left\langle \delta N_{f_{1}}\delta N_{f_{2}}\delta N_{f_{3}}\right\rangle \\ & +...., \end{split} $ ![]() | (59) |
$ \begin{split}C_{f_{1}f_{2}} \equiv &\left\langle \delta N_{f_{1}}\delta N_{f_{2}}\right\rangle , \\ C_{f_{1}f_{2}f_{3}} \equiv &\left\langle \delta N_{f_{1}}\delta N_{f_{2}}\delta N_{f_{3}}\right\rangle , \\ C_{f_{1}f_{2}f_{3}f_{4}} \equiv &\left\langle \delta N_{f_{1}}\delta N_{f_{2}}\delta N_{f_{3}}\delta N_{f_{4}}\right\rangle , \\ & \cdots \cdots \end{split} $ ![]() | (60) |
Using the above moment expansion method, we can study, for the selected phase-space window such as the midrapidity region
From the joint distribution functions of stable hadrons, we obtain the average yield of a stable hadron
$ \langle N_{\alpha}\rangle = \sum\limits_{i}\langle N_{i}\rangle D_{i\alpha}, $ ![]() | (61) |
$ C_{\alpha\beta} = \sum\limits_{ij}C_{ij}D_{i\alpha}D_{j\beta}+\sum\limits_{i}\langle N_{i}\rangle D_{i\alpha}\left(\delta_{\alpha\beta}-D_{i\beta}\right). $ ![]() | (62) |
$ \begin{split} C_{\alpha\beta\gamma} = & \sum\limits_{ijk}C_{ijk}D_{i\alpha}D_{j\beta}D_{k\gamma} +\sum\limits_{ij}C_{ij}D_{i\alpha}\left[\delta_{\alpha\beta}-D_{i\beta}\right]D_{j\gamma} \\ &+\sum\limits_{ij}C_{ij}D_{i\alpha}D_{j\beta}\left\{ \left[\delta_{\alpha\gamma}-D_{i\gamma}\right]+\left[\delta_{\beta\gamma}-D_{j\gamma}\right]\right\} \\ &+\sum\limits_{i}\langle N_{i}\rangle D_{i\alpha}\left[\left(\delta_{\alpha\beta}-D_{i\beta}\right)\left(\delta_{\alpha\gamma}-D_{i\gamma}\right)\right. \\ &\left.+D_{i\beta}\left(D_{i\gamma}-\delta_{\beta\gamma}\right)\right]. \end{split} $ ![]() | (63) |
$ \begin{split} C_{\alpha\beta\gamma\epsilon} =& \sum\limits_{ijkl}C_{ijkl}D_{i\alpha}D_{j\beta}D_{k\gamma}D_{l\epsilon} +\sum\limits_{ijk}\left[C_{ijk}+\langle N_{i}\rangle C_{jk}\right]\biggl\{\left(\delta_{\alpha\beta}-D_{i\beta}\right)D_{i\alpha}D_{j\gamma}D_{k\epsilon}+\left(\delta_{\alpha\gamma}-D_{i\gamma}\right)D_{i\alpha}D_{j\beta}D_{k\epsilon} \\ & +\left(\delta_{\alpha\epsilon}-D_{i\epsilon}\right)D_{i\alpha}D_{j\gamma}D_{k\beta}+\left(\delta_{\beta\gamma}-D_{i\gamma}\right)D_{i\beta}D_{j\alpha}D_{k\epsilon}+\left(\delta_{\beta\epsilon}-D_{i\epsilon}\right)D_{i\beta}D_{j\alpha}D_{k\gamma} +\left(\delta_{\gamma\epsilon}-D_{i\epsilon}\right)D_{i\gamma}D_{j\alpha}D_{k\beta}\} \\ &+\sum\limits_{ij}\left[C_{ij}+\langle N_{i}\rangle\langle N_{j}\rangle\right]\biggl\{ D_{i\alpha}\left(\delta_{\alpha\beta}-D_{i\beta}\right)D_{j\gamma}\left(\delta_{\gamma\epsilon}-D_{j\epsilon}\right) \\ & +D_{i\alpha}\left(\delta_{\alpha\gamma}-D_{i\gamma}\right)D_{j\beta}\left(\delta_{\beta\epsilon}-D_{j\epsilon}\right)+D_{i\alpha}\left(\delta_{\alpha\epsilon}-D_{i\epsilon}\right)D_{j\beta}\left(\delta_{\beta\gamma}-D_{j\gamma}\right)\} \\ & +\sum\limits_{ij}C_{ij}D_{i\alpha}\left\{ \left(\delta_{\alpha\beta}-D_{i\beta}\right)\left(\delta_{\alpha\gamma}-D_{i\gamma}\right)+D_{i\beta}\left(D_{i\gamma}-\delta_{\beta\gamma}\right)\right\} D_{j\epsilon} +\sum\limits_{ij}C_{ij}D_{i\alpha}\left\{ \left(\delta_{\alpha\beta}-D_{i\beta}\right)\left(\delta_{\alpha\epsilon}-D_{i\epsilon}\right)+D_{i\beta}\left(D_{i\epsilon}-\delta_{\beta\epsilon}\right)\right\} D_{j\gamma} \\ & +\sum\limits_{ij}C_{ij}D_{i\alpha}\left\{ \left(\delta_{\alpha\gamma}-D_{i\gamma}\right)\left(\delta_{\alpha\epsilon}-D_{i\epsilon}\right)+D_{i\gamma}\left(D_{i\epsilon}-\delta_{\gamma\epsilon}\right)\right\} D_{j\beta}+\sum\limits_{ij}C_{ij}D_{i\beta}\left\{ \left(\delta_{\beta\gamma}-D_{i\gamma}\right)\left(\delta_{\beta\epsilon}-D_{i\epsilon}\right)+D_{i\gamma}\left(D_{i\epsilon}-\delta_{\gamma\epsilon}\right)\right\} D_{j\alpha} \\ & +\sum\limits_{i}\langle N_{i}\rangle D_{i\alpha}\biggl\{-6D_{i\beta}D_{i\gamma}D_{i\epsilon} +2\left[\delta_{\alpha\beta}D_{i\gamma}D_{i\epsilon}+\left(\delta_{\alpha\gamma}+\delta_{\beta\gamma}\right)D_{i\beta}D_{i\epsilon}+\left(\delta_{\alpha\epsilon}+\delta_{\beta\epsilon}+\delta_{\gamma\epsilon}\right)D_{i\beta}D_{i\gamma}\right] \\ & -\left[\left(\delta_{\alpha\gamma}\delta_{\beta\epsilon}+\delta_{\alpha\epsilon}\delta_{\beta\gamma}+\delta_{\alpha\gamma}\delta_{\alpha\epsilon}+\delta_{\beta\gamma}\delta_{\beta\epsilon}\right)D_{i\beta}\right. \left.+\left(\delta_{\alpha\beta}\delta_{\gamma\epsilon}+\delta_{\alpha\beta}\delta_{\alpha\epsilon}\right)D_{i\gamma}+\delta_{\alpha\beta}\delta_{\alpha\gamma}D_{i\epsilon}\right]+\delta_{\alpha\beta}\delta_{\alpha\gamma}\delta_{\alpha\epsilon}\biggl\}. \end{split} $ ![]() | (64) |
We consider a quark system with the property
$ \begin{split} C_{ff} =& \langle N_{f}\rangle, \\ C_{fff} =& 3\langle N_{f}\rangle, \\ C_{ffff} = &9\langle N_{f}\rangle+3\langle N_{f}\rangle^{2}, \end{split} $ ![]() | (65) |
$ C_{f_{1}f_{1}f_{2}f_{2}} = \langle N_{f_{1}}\rangle\langle N_{f_{2}}\rangle. $ ![]() | (66) |
$ \begin{split} C_{s\bar{s}} =& C_{ss}, \\ C_{ss\bar{s}}=& C_{s\bar{s}\bar{s}} = C_{sss}, \\ C_{ss\bar{s}\bar{s}} =& C_{ssss}. \end{split} $ ![]() | (67) |
In Fig. 3, we show the results for the cumulant ratios for net protons in the final state at different collisional energies. Our results only incorporate the contributions of quark number fluctuations and correlations up to the fourth order, as in Eq. (59). The auxiliary horizontal axis shows the corresponding quark-antiquark asymmetry parameter z. Results including the contributions from strong and electromagnetic (S&EM) decays of resonances are depicted by dashed lines, while results with full decay contributions including weak decays are depicted by solid lines. The STAR data are shown in solid circles with error bars.

In the figure, we see that the cumulant ratios for net protons as functions of collisional energies in our model describe the experimental data:
We now provide some remarks regarding the results for
We emphasize that the current results are preliminary and are mainly used to show the potential application of our model in hadronic fluctuations, and the related phase transition in relativistic heavy-ion collisions. Some limitations in current calculations should be clarified. In this study, we only consider the production of ground-state hadrons. Effects of higher-mass resonances are only partially absorbed by parameters
We studied the multiplicity fluctuation and correlation functions for identified baryons directly produced in collisions. We also studied correlation functions of final state hadrons including contributions from resonance decays. As an illustrative example, we consider a quark-antiquark system with the property
We dedicate this work to Qu-bing Xie (1935-2013) who was the teacher, mentor and friend of ZTL, FLS, and QW.
Property 1. For
$\tag{A1} \begin{split} F(N_{M},N_{B},N_{\bar{B}},1,0) =& \sum\limits_{n_{M} = 0}^{N_{M}}\sum\limits_{n_{B} = 0}^{N_{B}}\sum\limits_{n_{\bar{B}} = 0}^{N_{\bar{B}}}C_{n_{B},n_{\bar{B}}}^{10}(n_{M})2^{N_{M}-1-n_{M}+\delta_{n_{M},N_{M}}}F(n_{M},N_{B}-n_{B},N_{\bar{B}}-n_{\bar{B}},0,0), \\ F(N_{M},N_{B},N_{\bar{B}},0,1) =& \sum\limits_{n_{M} = 0}^{N_{M}}\sum\limits_{n_{B} = 0}^{N_{B}}\sum\limits_{n_{\bar{B}} = 0}^{N_{\bar{B}}}C_{n_{B},n_{\bar{B}}}^{01}(n_{M})2^{N_{M}-1-n_{M}+\delta_{n_{M},N_{M}}}F(n_{M},N_{B}-n_{B},N_{\bar{B}}-n_{\bar{B}},0,0), \end{split} $ ![]() |
$ \tag{A2}\begin{split} C_{a,b}^{10}(n_{M}) =& (-1)^{a+b}\sum\limits_{j_{1} = n_{M}}^{N_{M}}\cdots\sum\limits_{j_{a+b} = j_{a+b-1}}^{N_{M}}1,\quad{\rm for}\quad b = a,a+1, \\ C_{a,b}^{10}(n_{M}) =& 0,\quad{\rm for}\quad b\neq a,a+1, \end{split} $ ![]() |
$ \begin{split} C_{a,b}^{01}(n_{M}) = (-1)^{a+b}\sum\limits_{j_{1} = n_{M}}^{N_{M}}\cdots\sum\limits_{j_{a+b} = j_{a+b-1}}^{N_{M}}1,\quad{\rm for}\quad b = a,a-1, \end{split} $ ![]() |
$\tag{A3} \begin{split} C_{a,b}^{01}(n_{M}) = 0,\quad{\rm for}\quad b\neq a,a-1, \end{split} $ ![]() |
Property 2. For
$\tag{A4} \begin{split} F(N_{M},N_{B},N_{\bar{B}},2,0) =& \sum\limits_{n_{M} = 0}^{N_{M}}\sum\limits_{n_{B} = 0}^{N_{B}}\sum\limits_{n_{\bar{B}} = 0}^{N_{\bar{B}}}C_{n_{B},n_{\bar{B}}}^{20}(n_{M})2^{N_{M}-n_{M}}F(n_{M},N_{B}-n_{B},N_{\bar{B}}-n_{\bar{B}},0,0), \\ F(N_{M},N_{B},N_{\bar{B}},0,2) =& \sum\limits_{n_{M} = 0}^{N_{M}}\sum\limits_{n_{B} = 0}^{N_{B}}\sum\limits_{n_{\bar{B}} = 0}^{N_{\bar{B}}}C_{n_{B},n_{\bar{B}}}^{02}(n_{M})2^{N_{M}-n_{M}}F(n_{M},N_{B}-n_{B},N_{\bar{B}}-n_{\bar{B}},0,0), \end{split} $ ![]() |
To demonstrate the two properties in Eq. (A1) and Eq. (A4), we can solve
$ \tag{A5}\begin{split} F(N_{M},N_{B},N_{\bar{B}},2,0) =& \sum\limits_{n_{M} = 0}^{N_{M}}[F(n_{M},N_{B},N_{\bar{B}},0,0)-F(n_{M},N_{B},N_{\bar{B}}-1,0,2)]\\&\times2^{N_{M}-n_{M}}. \end{split}$ ![]() |
$ \tag{A6}\begin{split} F(N_{M},N_{B},N_{\bar{B}},0,2) =& \sum\limits_{n_{M} = 0}^{N_{M}}[F(n_{M},N_{B},N_{\bar{B}},0,0)-F(n_{M},N_{B}-1,N_{\bar{B}},2,0)]\\&\times2^{N_{M}-n_{M}}. \end{split} $ ![]() |
$\tag{B1}\begin{split} F(N_{M},N_{B},N_{\bar{B}},0,0) =& G(N_{M},N_{B},N_{\bar{B}})-3G(N_{M}-1,N_{B},N_{\bar{B}})\\&+G(N_{M}-2,N_{B},N_{\bar{B}}), \end{split} $ ![]() |
$\tag{B2} G(N_{M},N_{B},N_{\bar{B}}) = F(N_{M},N_{B},N_{\bar{B}},2,0)+F(N_{M},N_{B},N_{\bar{B}},0,2). $ ![]() |
$\tag{B3} \begin{split} H(N_{M},N_{B},N_{\bar{B}}) =& F(N_{M},N_{B}-1,N_{\bar{B}},2,0)+F(N_{M},N_{B},N_{\bar{B}}-1,0,2) \\ =& 2F(N_{M},N_{B},N_{\bar{B}},0,0)+2G(N_{M}-1,N_{B},N_{\bar{B}})\\&-G(N_{M},N_{B},N_{\bar{B}}) = G(N_{M},N_{B},N_{\bar{B}})\\&-4G(N_{M}-1,N_{B},N_{\bar{B}})+2G(N_{M}-2,N_{B},N_{\bar{B}}), \end{split} $ ![]() |
$\tag{B4} \begin{split} H(N_{M},N_{B},N_{\bar{B}}) =& F(N_{M},N_{B}-1,N_{\bar{B}},1,0)+F(N_{M}-1,N_{B}-1,N_{\bar{B}},2,0) \\&+F(N_{M},N_{B},N_{\bar{B}}-1,0,1) +F(N_{M}-1,N_{B},N_{\bar{B}}-1,0,2) \\ =& 2H(N_{M}-1,N_{B},N_{\bar{B}})-G(N_{M},N_{B}-1,N_{\bar{B}}-1)\\&+G(N_{M},N_{B}-1,N_{\bar{B}}) -3G(N_{M}-1,N_{B}-1,N_{\bar{B}})\\&+G(N_{M}-2,N_{B}-1,N_{\bar{B}})+G(N_{M},N_{B},N_{\bar{B}}-1) \\ & -3G(N_{M}-1,N_{B},N_{\bar{B}}-1)+G(N_{M}-2,N_{B},N_{\bar{B}}-1). \end{split} $ ![]() |
$\tag{B5} \begin{split} H(N_{M},N_{B},N_{\bar{B}})-2H(N_{M}-1,N_{B},N_{\bar{B}}) =& G(N_{M},N_{B},N_{\bar{B}})-6G(N_{M}-1,N_{B},N_{\bar{B}})\\& +10G(N_{M}-2,N_{B},N_{\bar{B}})\\&-4G(N_{M}-3,N_{B},N_{\bar{B}}). \end{split} $ ![]() |
$\tag{C1} \begin{split} A(x;N_{B},N_{\bar{B}})&-x^{2}F(2,N_{B},N_{\bar{B}},0,0)-xF(1,N_{B},N_{\bar{B}},0,0)-F(0,N_{B},N_{\bar{B}},0,0) = A(x;N_{B}-1,N_{\bar{B}})-x^{2}F(2,N_{B}-1,N_{\bar{B}},0,0)-xF(1,N_{B}-1,N_{\bar{B}},0,0)\\ &-F(0,N_{B}-1,N_{\bar{B}},0,0) +A(x;N_{B},N_{\bar{B}}-1)-x^{2}F(2,N_{B},N_{\bar{B}}-1,0,0)-xF(1,N_{B},N_{\bar{B}}-1,0,0)-F(0,N_{B},N_{\bar{B}}-1,0,0) \\& -A(x;N_{B}-1,N_{\bar{B}}-1)+x^{2}F(2,N_{B}-1,N_{\bar{B}}-1,0,0)+xF(1,N_{B}-1,N_{\bar{B}}-1,0,0) +F(0,N_{B}-1,N_{\bar{B}}-1,0,0)+6x[A(x;N_{B},N_{\bar{B}})\\ &-xF(1,N_{B},N_{\bar{B}},0,0)-F(0,N_{B},N_{\bar{B}},0,0)] -3x[A(x;N_{B}-1,N_{\bar{B}})-xF(1,N_{B}-1,N_{\bar{B}},0,0)-F(0,N_{B}-1,N_{\bar{B}},0,0)] \\ & -3x[A(x;N_{B},N_{\bar{B}}-1)-xF(1,N_{B},N_{\bar{B}}-1,0,0)-F(0,N_{B},N_{\bar{B}}-1,0,0)] -10x^{2}[A(x;N_{B},N_{\bar{B}})-F(0,N_{B},N_{\bar{B}},0,0)]+x^{2}[A(x;N_{B}-1,N_{\bar{B}}) \\ &-F(0,N_{B}-1,N_{\bar{B}},0,0)]+x^{2}[A(x;N_{B},N_{\bar{B}}-1)-F(0,N_{B},N_{\bar{B}}-1,0,0)] +4x^{3}A(x;N_{B},N_{\bar{B}}). \end{split} $ ![]() |
$\tag{C2} \begin{split} I =& F(0,N_{B},N_{\bar{B}},0,0)-F(0,N_{B}-1,N_{\bar{B}},0,0)-F(0,N_{B},N_{\bar{B}}-1,0,0)\\&+F(0,N_{B}-1,N_{\bar{B}}-1,0,0) \\ =& \delta_{N_{B}N_{\bar{B}},0}-\delta_{(N_{B}-1)N_{\bar{B}},0}-\delta_{N_{B}(N_{\bar{B}}-1),0}+\delta_{(N_{B}-1)(N_{\bar{B}}-1),0}, \end{split} $ ![]() |
$\tag{C3} \begin{split} A(x;N_{B},N_{\bar{B}}) =& \left(6x+4x^{3}-10x^{2}\right)A(x;N_{B},N_{\bar{B}}) +\left(1-3x+x^{2}\right)\\&\times\left[A(x;N_{B}-1,N_{\bar{B}})+A(x;N_{B},N_{\bar{B}}-1)\right] \\ &-A(x;N_{B}-1,N_{\bar{B}}-1) +\delta_{N_{B}N_{\bar{B}},0}-\delta_{(N_{B}-1)N_{\bar{B}},0}\\&-\delta_{N_{B}(N_{\bar{B}}-1),0}+\delta_{(N_{B}-1)(N_{\bar{B}}-1),0}. \end{split} $ ![]() |
$ \begin{split} \left(1-6x+10x^{2}-4x^{3}\right)A(x,y,z) = \left(1-3x+x^{2}\right)\sum\limits_{N_{\bar{B}} = 1}^{\infty}\sum\limits_{N_{B} = 1}^{\infty}y^{N_{B}}z^{N_{\bar{B}}} \left[A(x;N_{B}-1,N_{\bar{B}})+A(x;N_{B},N_{\bar{B}}-1)\right] -\sum\limits_{N_{\bar{B}} = 1}^{\infty}\sum\limits_{N_{B} = 1}^{\infty}A(x;N_{B}-1,N_{\bar{B}}-1)y^{N_{B}}z^{N_{\bar{B}}} \end{split} $ ![]() |
$\tag{C4} \begin{split}+\sum\limits_{N_{\bar{B}} = 1}^{\infty}\sum\limits_{N_{B} = 1}^{\infty}\left[\delta_{N_{B}N_{\bar{B}},0}-\delta_{(N_{B}-1)N_{\bar{B}},0}-\delta_{N_{B}(N_{\bar{B}}-1),0}\right. \left.+\delta_{(N_{B}-1)(N_{\bar{B}}-1),0}\right]y^{N_{B}}z^{N_{\bar{B}}}. \end{split} $ ![]() |
$\tag{C5} \begin{split} \sum\limits_{N_{\bar{B}} = 1}^{\infty}\sum\limits_{N_{B} = 1}^{\infty}A(x;N_{B}-a,N_{\bar{B}}-b)y^{N_{B}}z^{N_{\bar{B}}} =& \delta_{a,1}\delta_{b,1}yzA(x,y,z) +\delta_{a,0}\delta_{b,1}z\left[A(x,y,z)-\sum\limits_{N_{\bar{B}} = 0}^{\infty}A(x;0,N_{\bar{B}})z^{N_{\bar{B}}}\right] +\delta_{a,1}\delta_{b,0}y\left[A(x,y,z)-\sum\limits_{N_{B} = 0}^{\infty}A(x;N_{B},0)y^{N_{B}}\right] \\ &+\delta_{a,0}\delta_{b,0}\left[A(x,y,z)-\sum\limits_{N_{B} = 0}^{\infty}A(x;N_{B},0)y^{N_{B}}\right. \left.-\sum\limits_{N_{\bar{B}} = 0}^{\infty}A(x;0,N_{\bar{B}})z^{N_{\bar{B}}}+A(x;0,0)\right], \end{split} $ ![]() |
$\tag{C6}\begin{split} -yz = \sum\limits_{N_{\bar{B}} = 1}^{\infty}\sum\limits_{N_{B} = 1}^{\infty}\left[\delta_{N_{B}N_{\bar{B}},0}-\delta_{(N_{B}-1)N_{\bar{B}},0}\right. \left.-\delta_{N_{B}(N_{\bar{B}}-1),0}+\delta_{(N_{B}-1)(N_{\bar{B}}-1),0}\right]y^{N_{B}}z^{N_{\bar{B}}}, \end{split}$ ![]() |
$\tag{D1} \begin{split} A(x,y,z) =& \frac{1-4x+4x^{2}-yz}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\left[\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\left(y+z\right)-\frac{1}{1-6x+10x^{2}-4x^{3}}yz\right]^{i} \\ =& \frac{1-4x+4x^{2}-yz}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\sum\limits_{j+k+l = i}\left(\begin{array}{c} N_{q}+N_{\bar{q}}\\ N_{q} \end{array}\right)y^{j+l}z^{k+l} \times\left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{j+k}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{l} \\ =& \frac{1-4x+4x^{2}-yz}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{i}\sum\limits_{k = 0}^{i}\left(\begin{array}{c} i\\ j,\ k,\ l \end{array}\right)y^{i-k}z^{i-j}\times\left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{j+k}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{i-j-k}, \end{split} $ ![]() |
$\tag{D2} { (w_{1}+w_{2}+\cdots+w_{m})^{n}} = \sum\limits_{k_{1}+k_{2}+\cdots+k_{m} = n}{n \choose k_{1},\ k_{2},\ \ldots,\ k_{m}}\prod\limits_{t = 1}^{m}w_{t}^{k_{t}}, $ ![]() |
$ \tag{D3} {n \choose k_{1},\ k_{2},\ \ldots,\ k_{m}} = \frac{n!}{k_{1}!k_{2}!\cdots k_{m}!}. $ ![]() |
$ \tag{D4} C(y^{N_{B}}z^{N_{\bar{B}}}) = C_{1}+C_{2}+C_{3}+C_{4}, $ ![]() |
$\tag{D5} \begin{split} C_{1} =& \frac{1}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\left(\begin{array}{c} i\\ j,\ k,\ i-j-k \end{array}\right) \left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{2i-N_{B}-N_{\bar{B}}}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{N_{B}+N_{\bar{B}}-i}, \\ C_{2} =& \frac{-4x}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right) \left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{2i-N_{B}-N_{\bar{B}}}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{N_{B}+N_{\bar{B}}-i}, \\ C_{3} =& \frac{4x^{2}}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right) \left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{2i-N_{B}-N_{\bar{B}}}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{N_{B}+N_{\bar{B}}-i}, \\ C_{4} =& -\frac{1}{1-6x+10x^{2}-4x^{3}}\sum\limits_{i = 0}^{\infty}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right) \times\left(\frac{1-3x+x^{2}}{1-6x+10x^{2}-4x^{3}}\right)^{2i-N_{B}-N_{\bar{B}}+2}\left(\frac{-1}{1-6x+10x^{2}-4x^{3}}\right)^{N_{B}+N_{\bar{B}}-2-i}. \end{split} $ ![]() |
We can factorize the following two polynomials as
$\tag{D6} 1-3x+x^{2} = \left(1-\frac{3+\sqrt{5}}{2}x\right)\left(1-\frac{3-\sqrt{5}}{2}x\right), $ ![]() |
$\tag{D7} 6x+10x^{2}-4x^{3} = 6x\left(1-x\right)\left(1-\frac{2}{3}x\right), $ ![]() |
$\tag{D8} \begin{split} I_{1} =& \sum\limits_{i = 0}^{\infty}\left(-1\right)^{N_{B}+N_{\bar{B}}-i}\left(\begin{array}{c} i\\ i-N_{B}+1,\ i-N_{\bar{B}}+1,\ N_{B}+N_{\bar{B}}-2-i \end{array}\right) \sum\limits_{j+k+l+m+n = N_{M}}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right)\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ j \end{array}\right) \\ &\times\left(-\frac{3+\sqrt{5}}{2}\right)^{j}\left(-\frac{3-\sqrt{5}}{2}\right)^{k}\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ k \end{array}\right)6^{l}\left(\begin{array}{c} i+l\\ l \end{array}\right)\left(-1\right)^{m}\left(\begin{array}{c} l\\ m \end{array}\right)\left(-\frac{2}{3}\right)^{n}, \\ I_{2} =& -4\sum\limits_{i = 0}^{\infty}\left(-1\right)^{N_{B}+N_{\bar{B}}-i}\left(\begin{array}{c} l\\ n \end{array}\right) \sum\limits_{j+k+l+m+n = N_{M}-1}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right)\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ j \end{array}\right) \\&\times\left(-\frac{3+\sqrt{5}}{2}\right)^{j}\left(-\frac{3-\sqrt{5}}{2}\right)^{k}\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ k \end{array}\right)6^{l}\left(\begin{array}{c} i+l\\ l \end{array}\right)\left(-1\right)^{m}\left(\begin{array}{c} l\\ m \end{array}\right)\left(-\frac{2}{3}\right)^{n}, \\ I_{3} =& 4\sum\limits_{i = 0}^{\infty}\left(-1\right)^{N_{B}+N_{\bar{B}}-i}\left(\begin{array}{c} l\\ n \end{array}\right) \sum\limits_{j+k+l+m+n = N_{M}-2}\left(\begin{array}{c} i\\ i-N_{B},\ i-N_{\bar{B}},\ N_{B}+N_{\bar{B}}-i \end{array}\right)\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ j \end{array}\right) \\&\times\left(-\frac{3+\sqrt{5}}{2}\right)^{j}\left(-\frac{3-\sqrt{5}}{2}\right)^{k}\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}\\ k \end{array}\right)6^{l}\left(\begin{array}{c} i+l\\ l \end{array}\right)\left(-1\right)^{m}\left(\begin{array}{c} l\\ m \end{array}\right)\left(-\frac{2}{3}\right)^{n}, \\ I_{4} =& -\sum\limits_{i = 0}^{\infty}\left(-1\right)^{N_{B}+N_{\bar{B}}-i}\left(\begin{array}{c} l\\ n \end{array}\right) \sum\limits_{j+k+l+m+n = N_{M}}\left(\begin{array}{c} i\\ i-N_{B}+1,\ i-N_{\bar{B}}+1,\ N_{B}+N_{\bar{B}}-2-i \end{array}\right)\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}+2\\ j \end{array}\right) \\ &\times\left(-\frac{3+\sqrt{5}}{2}\right)^{j}\left(-\frac{3-\sqrt{5}}{2}\right)^{k}\left(\begin{array}{c} 2i-N_{B}-N_{\bar{B}}+2\\ k \end{array}\right)6^{l}\left(\begin{array}{c} i+l\\ l \end{array}\right)\left(-1\right)^{m}\left(\begin{array}{c} l\\ m \end{array}\right)\left(-\frac{2}{3}\right)^{n}, \end{split} $ ![]() |