HTML
--> --> --> $ \begin{array}{l} S(x^0,x^1,\cdots) = S_B(x^0,x^1,\cdots)+S_E(x^0,x^1,\cdots), \end{array} $ | (1) |
$ \begin{aligned}[b]S =& S_0+\frac{\partial S_B}{\partial x_B^\mu}\Delta x^\mu_B +\frac{\partial S_E}{\partial x_E^\mu}\Delta x^\mu_E +\frac{1}{2}\frac{\partial^2 S_B}{\partial x_B^\mu \partial x_B^\nu}\Delta x^\mu_B \Delta x^\nu_B \\& +\frac{1}{2}\frac{\partial^2 S_E}{\partial x_E^\mu \partial x_E^\nu}\Delta x^\mu_E \Delta x^\nu_E +\cdots. \end{aligned} $ | (2) |
$ \Delta S = S_0-S \approx -\frac{1}{2}\frac{\partial^2 S_B}{\partial x_B^\mu \partial x_B^\nu}\Delta x^\mu_B \Delta x^\nu_B. $ | (3) |
$ P(x^0,x^1,\cdots)\propto \exp\left(-\frac12 \Delta l^2\right) , $ | (4) |
$ \Delta l^2 = -\frac{\partial^2 S}{\partial x^\mu \partial x^\nu}\Delta x^\mu \Delta x^\nu, $ | (5) |
For a system comprising a black hole and its surrounding infinite environment, the black hole itself is a small subsystem of the above. Returning to the example of an AdS black hole, the first law of thermodynamics is
$ {\rm d}S = \frac{1}{T}{\rm d}M-\frac{V}{T}{\rm d}P, $ | (6) |
$ \Delta l^2 = \frac{1}{T}\Delta T \Delta S+\frac{1}{T}\Delta V \Delta P. $ | (7) |
$ \Delta l^2 = \frac{1}{T}\left(\frac{\partial T}{\partial S}\right)_P \Delta S^2+\frac{2}{T}\left(\frac{\partial T}{\partial P}\right)_S \Delta S \Delta P+\frac{1}{T}\left(\frac{\partial V}{\partial P}\right)_S \Delta P^2, $ | (8) |
In addition, we use the Christoffel symbols,
$ \Gamma^{\alpha}_{\beta\gamma} = \frac12 g^{\mu\alpha}\left(\partial_{\gamma}g_{\mu\beta}+\partial_{\beta}g_{\mu\gamma}-\partial_{\mu}g_{\beta\gamma}\right), $ | (9) |
$ \begin{array}{l} {R^{\alpha}}_{\beta\gamma\delta} = \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma}-\partial_{\gamma}\Gamma^{\alpha}_{\beta\delta}+ \Gamma^{\mu}_{\beta\gamma}\Gamma^{\alpha}_{\mu\delta}-\Gamma^{\mu}_{\beta\delta}\Gamma^{\alpha}_{\mu\gamma}. \end{array} $ | (10) |
$ \begin{array}{l} R = g^{\mu\nu}{R^{\xi}}_{\mu\xi\nu}. \end{array} $ | (11) |
$ \eta: = \frac{\rm{Interaction}}{\rm{Thermal\; motion}} \approx \frac{\rm{The\; magnitude\; of\; thermodynamic\; curvature \times Planck\; volume}}{\rm{Temperature\; \times\; entropy}}. $ | (12) |
● In regular thermodynamics, the key notion used to describe the phase transition is the free energy, which measures the competition between interactions and the thermal motions. In particular, for the free energy, the degree of the thermal motion is measured by the product of the temperature and entropy of the system.
● First, through analysis, it can be seen that the temperature, entropy, and volume have dimensions of
● The dimensions of the numerator and denominator in Eq. (12) are consistent. When the interaction represented by the numerator and the thermal motion represented by the denominator are in balance with each other, the ratio
● If
● If
● If
Next, we use the newly introduced measurement to investigate the microscopic behaviors of several kinds of AdS black holes. In the following discussion, we often set the value of Planck volume as a unit.
2
A.Four-dimensional charged AdS black hole
We start by considering a four-dimensional charged AdS black hole, the metric of which can be expressed as [11,12,30] $ {\rm d} s^2 = -f(r){\rm d}t^2+\frac{{\rm d} r^2}{f(r)}+r^2({\rm d}\theta^2+\sin^2 \theta {\rm d}\varphi^2), $ | (13) |
$ T = \frac{8P S^2+S-\pi q^2}{4S\sqrt{\pi S}}, $ | (14) |
$ R = \frac{2\pi q^2-S}{S(8P S^2+S-\pi q^2)}. $ | (15) |
$ t: = \frac{T}{T_c}, \;\;\;\; s: = \frac{S}{S_c}, \;\;\;\; p: = \frac{P}{P_c}, \;\;\;\; \zeta: = \left|\frac{R}{R_c}\right|, $ | (16) |
$ T_c = \frac{\sqrt{6}}{18\pi q}, \;\;\; S_c = 6\pi q^2, \;\;\; P_c = \frac{1}{96\pi q^2}, \;\;\; R_c = -\frac{1}{12\pi q^2}. $ | (17) |
$ \eta = \left|\frac{32(1-3s)}{\sqrt{s}(3ps^2+6s-1)^2}\right|. $ | (18) |
Figure1. (color online) The dimensionless ratio
● For the charged AdS black hole system, there is indeed competition between the interactions among black hole molecules and their thermal motion.
● At
● In B1, we can see that regardless of the value of the dimensionless pressure
● In B2, as the dimensionless entropy
2
B.Four-dimensional Schwarzschild-AdS black hole
The Schwarzschild-AdS black hole is a special case of the charged AdS black hole for which $ T = \frac{8P S+1}{4\sqrt{\pi S}}, \;\;\;\; R = -\frac{1}{8P S^2+S}. $ | (19) |
$ t = \frac{T}{\sqrt{8\pi P}} = \frac{u+1}{4\pi\sqrt{u}}, \;\;\; s = 8\pi PS = \pi u, \;\;\; \zeta = \left|\frac{R}{8P}\right| = \frac{1}{u(u+1)}. $ | (20) |
$ \eta = \frac{4}{u^{3/2}(u+1)}. $ | (21) |
Figure2. (color online) The dimensionless ratio
2
C.Five-dimensional Gauss-Bonnet AdS black hole
The metric of the Gauss-Bonnet AdS black hole in $ {\rm d}s^2 = -f(r){\rm d}t^2+\frac{1}{f(r)}{\rm d}r^2+r^2 {\rm d}\Omega^2, $ | (22) |
$ f(r) = 1+\frac{r^2}{2\alpha_0}\left(1-\sqrt{1+\frac{64\pi\alpha_0 {\cal M}}{(d-2)r^{d-1}\Sigma}-\frac{64\pi\alpha_0 P}{(d-1)(d-2)}}\right), $ |
When
$ T = \frac{8\pi P r_h^3+3r_h}{6\pi(r_h^2+2\alpha_0)}, \qquad S = \frac{\pi^2 r_h(r_h^2+6\alpha_0)}{2}. $ | (23) |
$ R = -\frac{4}{\pi^2 r_h(r_h^2+2\alpha_0)(8\pi P r_h^2+3)}. $ | (24) |
$ t = \frac{p x^3+3x}{3x^2+1}, \;\;\; s = \frac{x^3+x}{2}, \;\;\; \zeta = \frac{4}{(3x^2+1)(p x^3+3x)}, $ | (25) |
$ \begin{aligned}[b] T_c =& \frac{1}{2\pi\sqrt{6\alpha_0}}, \;\;\; r_c = \sqrt{6\alpha_0}, \;\;\; S_c = 6 \pi^2 \alpha_0 \sqrt{6\alpha_0}, \\ P_c =& \frac{1}{48\pi \alpha_0}, \;\;\; R_c = -\frac{1}{8\pi^2 \alpha_0 \sqrt{6\alpha_0}}. \end{aligned} $ |
$ \eta = \frac{8}{(p x^3+3x)^2(x^3+x)}. $ | (26) |
Figure3. (color online) The dimensionless ratio