删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Measurement of \begin{document}${{\varXi_{cc}^{++}}}$\end{document} production in pp collisions

本站小编 Free考研考试/2022-01-01

LHCb Collaboration
, R. Aaij 31,
, C. Abellán Beteta 49,
, T. Ackernley 59,
, B. Adeva 45,
, M. Adinolfi 53,
, H. Afsharnia 9,
, C.A. Aidala 80,
, S. Aiola 25,
, Z. Ajaltouni 9,
, S. Akar 66,
, P. Albicocco 22,
, J. Albrecht 14,
, F. Alessio 47,
, M. Alexander 58,
, A. Alfonso Albero 44,
, G. Alkhazov 37,
, P. Alvarez Cartelle 60,
, A.A. Alves Jr 45,
, S. Amato 2,
, Y. Amhis 11,
, L. An 21,
, L. Anderlini 21,
, G. Andreassi 48,
, M. Andreotti 20,
, F. Archilli 16,
, A. Artamonov 43,
, M. Artuso 67,
, K. Arzymatov 41,
, E. Aslanides 10,
, M. Atzeni 49,
, B. Audurier 26,
, S. Bachmann 16,
, J.J. Back 55,
, S. Baker 60,
, V. Balagura 11,b,
, W. Baldini 20,47,
, A. Baranov 41,
, R.J. Barlow 61,
, S. Barsuk 11,
, W. Barter 60,
, M. Bartolini 23,47,h,
, F. Baryshnikov 77,
, J.M. Basels 13,
, G. Bassi 28,
, V. Batozskaya 35,
, B. Batsukh 67,
, A. Battig 14,
, A. Bay 48,
, M. Becker 14,
, F. Bedeschi 28,
, I. Bediaga 1,
, A. Beiter 67,
, L.J. Bel 31,
, V. Belavin 41,
, S. Belin 26,
, V. Bellee 48,
, K. Belous 43,
, I. Belyaev 38,
, G. Bencivenni 22,
, E. Ben-Haim 12,
, S. Benson 31,
, S. Beranek 13,
, A. Berezhnoy 39,
, R. Bernet 49,
, D. Berninghoff 16,
, H.C. Bernstein 67,
, C. Bertella 47,
, E. Bertholet 12,
, A. Bertolin 27,
, C. Betancourt 49,
, F. Betti 19,e,
, M.O. Bettler 54,
, Ia. Bezshyiko 49,
, S. Bhasin 53,
, J. Bhom 33,
, M.S. Bieker 14,
, S. Bifani 52,
, P. Billoir 12,
, A. Bizzeti 21,u,
, M. Bj?rn 62,
, M.P. Blago 47,
, T. Blake 55,
, F. Blanc 48,
, S. Blusk 67,
, D. Bobulska 58,
, V. Bocci 30,
, O. Boente Garcia 45,
, T. Boettcher 63,
, A. Boldyrev 78,
, A. Bondar 42,x,
, N. Bondar 37,
, S. Borghi 61,47,
, M. Borisyak 41,
, M. Borsato 16,
, J.T. Borsuk 33,
, T.J.V. Bowcock 59,
, C. Bozzi 20,
, M.J. Bradley 60,
, S. Braun 16,
, A. Brea Rodriguez 45,
, M. Brodski 47,
, J. Brodzicka 33,
, A. Brossa Gonzalo 55,
, D. Brundu 26,
, E. Buchanan 53,
, A. Buonaura 49,
, C. Burr 47,
, A. Bursche 26,
, A. Butkevich 40,
, J.S. Butter 31,
, J. Buytaert 47,
, W. Byczynski 47,
, S. Cadeddu 26,
, H. Cai 72,
, R. Calabrese 20,g,
, L. Calero Diaz 22,
, S. Cali 22,
, R. Calladine 52,
, M. Calvi 24,i,
, M. Calvo Gomez 44,m,
, P. Camargo Magalhaes 53,
, A. Camboni 44,m,
, P. Campana 22,
, D.H. Campora Perez 31,
, A.F. Campoverde Quezada 5,
, L. Capriotti 19,e,
, A. Carbone 19,e,
, G. Carboni 29,
, R. Cardinale 23,h,
, A. Cardini 26,
, I. Carli 6,
, P. Carniti 24,i,
, K. Carvalho Akiba 31,
, A. Casais Vidal 45,
, G. Casse 59,
, M. Cattaneo 47,
, G. Cavallero 47,
, S. Celani 48,
, R. Cenci 28,p,
, J. Cerasoli 10,
, M.G. Chapman 53,
, M. Charles 12,47,
, Ph. Charpentier 47,
, G. Chatzikonstantinidis 52,
, M. Chefdeville 8,
, V. Chekalina 41,
, C. Chen 3,
, S. Chen 26,
, A. Chernov 33,
, S.-G. Chitic 47,
, V. Chobanova 45,
, S. Cholak 48,
, M. Chrzaszcz 33,
, A. Chubykin 37,
, P. Ciambrone 22,
, M.F. Cicala 55,
, X. Cid Vidal 45,
, G. Ciezarek 47,
, F. Cindolo 19,
, P.E.L. Clarke 57,
, M. Clemencic 47,
, H.V. Cliff 54,
, J. Closier 47,
, J.L. Cobbledick 61,
, V. Coco 47,
, J.A.B. Coelho 11,
, J. Cogan 10,
, E. Cogneras 9,
, L. Cojocariu 36,
, P. Collins 47,
, T. Colombo 47,
, A. Comerma-Montells 16,
, A. Contu 26,
, N. Cooke 52,
, G. Coombs 58,
, S. Coquereau 44,
, G. Corti 47,
, C.M. Costa Sobral 55,
, B. Couturier 47,
, D.C. Craik 63,
, J. Crkovska 66,
, A. Crocombe 55,
, M. Cruz Torres 1,ab,
, R. Currie 57,
, C.L. Da Silva 66,
, E. Dall'Occo 14,
, J. Dalseno 45,53,
, C. D'Ambrosio 47,
, A. Danilina 38,
, P. d'Argent 47,
, A. Davis 61,
, O. De Aguiar Francisco 47,
, K. De Bruyn 47,
, S. De Capua 61,
, M. De Cian 48,
, J.M. De Miranda 1,
, L. De Paula 2,
, M. De Serio 18,d,
, P. De Simone 22,
, J.A. de Vries 31,
, C.T. Dean 66,
, W. Dean 80,
, D. Decamp 8,
, L. Del Buono 12,
, B. Delaney 54,
, H.-P. Dembinski 15,
, A. Dendek 34,
, V. Denysenko 49,
, D. Derkach 78,
, O. Deschamps 9,
, F. Desse 11,
, F. Dettori 26,
, B. Dey 7,
, A. Di Canto 47,
, P. Di Nezza 22,
, S. Didenko 77,
, H. Dijkstra 47,
, V. Dobishuk 51,
, F. Dordei 26,
, M. Dorigo 28,y,
, A.C. dos Reis 1,
, L. Douglas 58,
, A. Dovbnya 50,
, K. Dreimanis 59,
, M.W. Dudek 33,
, L. Dufour 47,
, G. Dujany 12,
, P. Durante 47,
, J.M. Durham 66,
, D. Dutta 61,
, M. Dziewiecki 16,
, A. Dziurda 33,
, A. Dzyuba 37,
, S. Easo 56,
, U. Egede 69,
, V. Egorychev 38,
, S. Eidelman 42,x,
, S. Eisenhardt 57,
, R. Ekelhof 14,
, S. Ek-In 48,
, L. Eklund 58,
, S. Ely 67,
, A. Ene 36,
, E. Epple 66,
, S. Escher 13,
, S. Esen 31,
, T. Evans 47,
, A. Falabella 19,
, J. Fan 3,
, N. Farley 52,
, S. Farry 59,
, D. Fazzini 11,
, P. Fedin 38,
, M. Féo 47,
, P. Fernandez Declara 47,
, A. Fernandez Prieto 45,
, F. Ferrari 19,e,
, L. Ferreira Lopes 48,
, F. Ferreira Rodrigues 2,
, S. Ferreres Sole 31,
, M. Ferrillo 49,
, M. Ferro-Luzzi 47,
, S. Filippov 40,
, R.A. Fini 18,
, M. Fiorini 20,g,
, M. Firlej 34,
, K.M. Fischer 62,
, C. Fitzpatrick 47,
, T. Fiutowski 34,
, F. Fleuret 11,b,
, M. Fontana 47,
, F. Fontanelli 23,h,
, R. Forty 47,
, V. Franco Lima 59,
, M. Franco Sevilla 65,
, M. Frank 47,
, C. Frei 47,
, D.A. Friday 58,
, J. Fu 25,q,
, M. Fuehring 14,
, W. Funk 47,
, E. Gabriel 57,
, A. Gallas Torreira 45,
, D. Galli 19,e,
, S. Gallorini 27,
, S. Gambetta 57,
, Y. Gan 3,
, M. Gandelman 2,
, P. Gandini 25,
, Y. Gao 4,
, L.M. Garcia Martin 46,
, J. García Pardi?as 49,
, B. Garcia Plana 45,
, F.A. Garcia Rosales 11,
, L. Garrido 44,
, D. Gascon 44,
, C. Gaspar 47,
, D. Gerick 16,
, E. Gersabeck 61,
, M. Gersabeck 61,
, T. Gershon 55,
, D. Gerstel 10,
, Ph. Ghez 8,
, V. Gibson 54,
, A. Gioventù 45,
, O.G. Girard 48,
, P. Gironella Gironell 44,
, L. Giubega 36,
, C. Giugliano 20,
, K. Gizdov 57,
, V.V. Gligorov 12,
, C. G?bel 70,
, D. Golubkov 38,
, A. Golutvin 60,77,
, A. Gomes 1,a,
, P. Gorbounov 38,6,
, I.V. Gorelov 39,
, C. Gotti 24,i,
, E. Govorkova 31,
, J.P. Grabowski 16,
, R. Graciani Diaz 44,
, T. Grammatico 12,
, L.A. Granado Cardoso 47,
, E. Graugés 44,
, E. Graverini 48,
, G. Graziani 21,
, A. Grecu 36,
, R. Greim 31,
, P. Griffith 20,
, L. Grillo 61,
, L. Gruber 47,
, B.R. Gruberg Cazon 62,
, C. Gu 3,
, E. Gushchin 40,
, A. Guth 13,
, Yu. Guz 43,47,
, T. Gys 47,
, P. A. Günther 16,
, T. Hadavizadeh 62,
, G. Haefeli 48,
, C. Haen 47,
, S.C. Haines 54,
, P.M. Hamilton 65,
, Q. Han 7,
, X. Han 16,
, T.H. Hancock 62,
, S. Hansmann-Menzemer 16,
, N. Harnew 62,
, T. Harrison 59,
, R. Hart 31,
, C. Hasse 14,
, M. Hatch 47,
, J. He 5,
, M. Hecker 60,
, K. Heijhoff 31,
, K. Heinicke 14,
, A.M. Hennequin 47,
, K. Hennessy 59,
, L. Henry 46,
, J. Heuel 13,
, A. Hicheur 68,
, D. Hill 62,
, M. Hilton 61,
, P.H. Hopchev 48,
, J. Hu 16,
, W. Hu 7,
, W. Huang 5,
, W. Hulsbergen 31,
, T. Humair 60,
, R.J. Hunter 55,
, M. Hushchyn 78,
, D. Hutchcroft 59,
, D. Hynds 31,
, P. Ibis 14,
, M. Idzik 34,
, P. Ilten 52,
, A. Inglessi 37,
, K. Ivshin 37,
, R. Jacobsson 47,
, S. Jakobsen 47,
, E. Jans 31,
, B.K. Jashal 46,
, A. Jawahery 65,
, V. Jevtic 14,
, F. Jiang 3,
, M. John 62,
, D. Johnson 47,
, C.R. Jones 54,
, B. Jost 47,
, N. Jurik 62,
, S. Kandybei 50,
, M. Karacson 47,
, J.M. Kariuki 53,
, N. Kazeev 78,
, M. Kecke 16,
, F. Keizer 54,47,
, M. Kelsey 67,
, M. Kenzie 55,
, T. Ketel 32,
, B. Khanji 47,
, A. Kharisova 79,
, K.E. Kim 67,
, T. Kirn 13,
, V.S. Kirsebom 48,
, S. Klaver 22,
, K. Klimaszewski 35,
, S. Koliiev 51,
, A. Kondybayeva 77,
, A. Konoplyannikov 38,
, P. Kopciewicz 34,
, R. Kopecna 16,
, P. Koppenburg 31,
, I. Kostiuk 31,51,
, O. Kot 51,
, S. Kotriakhova 37,
, L. Kravchuk 40,
, R.D. Krawczyk 47,
, M. Kreps 55,
, F. Kress 60,
, S. Kretzschmar 13,
, P. Krokovny 42,x,
, W. Krupa 34,
, W. Krzemien 35,
, W. Kucewicz 33,l,
, M. Kucharczyk 33,
, V. Kudryavtsev 42,x,
, H.S. Kuindersma 31,
, G.J. Kunde 66,
, T. Kvaratskheliya 38,
, D. Lacarrere 47,
, G. Lafferty 61,
, A. Lai 26,
, D. Lancierini 49,
, J.J. Lane 61,
, G. Lanfranchi 22,
, C. Langenbruch 13,
, O. Lantwin 49,
, T. Latham 55,
, F. Lazzari 28,v,
, C. Lazzeroni 52,
, R. Le Gac 10,
, R. Lefèvre 9,
, A. Leflat 39,
, O. Leroy 10,
, T. Lesiak 33,
, B. Leverington 16,
, H. Li 71,
, L. Li 62,
, X. Li 66,
, Y. Li 6,
, Z. Li 67,
, X. Liang 67,
, R. Lindner 47,
, V. Lisovskyi 14,
, G. Liu 71,
, X. Liu 3,
, D. Loh 55,
, A. Loi 26,
, J. Lomba Castro 45,
, I. Longstaff 58,
, J.H. Lopes 2,
, G. Loustau 49,
, G.H. Lovell 54,
, Y. Lu 6,
, D. Lucchesi 27,o,
, M. Lucio Martinez 31,
, Y. Luo 3,
, A. Lupato 27,
, E. Luppi 20,g,
, O. Lupton 55,
, A. Lusiani 28,t,
, X. Lyu 5,
, S. Maccolini 19,e,
, F. Machefert 11,
, F. Maciuc 36,
, V. Macko 48,
, P. Mackowiak 14,
, S. Maddrell-Mander 53,
, L.R. Madhan Mohan 53,
, O. Maev 37,47,
, A. Maevskiy 78,
, D. Maisuzenko 37,
, M.W. Majewski 34,
, S. Malde 62,
, B. Malecki 47,
, A. Malinin 76,
, T. Maltsev 42,x,
, H. Malygina 16,
, G. Manca 26,f,
, G. Mancinelli 10,
, R. Manera Escalero 44,
, D. Manuzzi 19,e,
, D. Marangotto 25,q,
, J. Maratas 9,w,
, J.F. Marchand 8,
, U. Marconi 19,
, S. Mariani 21,
, C. Marin Benito 11,
, M. Marinangeli 48,
, P. Marino 48,
, J. Marks 16,
, P.J. Marshall 59,
, G. Martellotti 30,
, L. Martinazzoli 47,
, M. Martinelli 24,i,
, D. Martinez Santos 45,
, F. Martinez Vidal 46,
, A. Massafferri 1,
, M. Materok 13,
, R. Matev 47,
, A. Mathad 49,
, Z. Mathe 47,
, V. Matiunin 38,
, C. Matteuzzi 24,
, K.R. Mattioli 80,
, A. Mauri 49,
, E. Maurice 11,b,
, M. McCann 60,
, L. Mcconnell 17,
, A. McNab 61,
, R. McNulty 17,
, J.V. Mead 59,
, B. Meadows 64,
, C. Meaux 10,
, G. Meier 14,
, N. Meinert 74,
, D. Melnychuk 35,
, S. Meloni 24,i,
, M. Merk 31,
, A. Merli 25,
, M. Mikhasenko 47,
, D.A. Milanes 73,
, E. Millard 55,
, M.-N. Minard 8,
, O. Mineev 38,
, L. Minzoni 20,g,
, S.E. Mitchell 57,
, B. Mitreska 61,
, D.S. Mitzel 47,
, A. M?dden 14,
, A. Mogini 12,
, R.D. Moise 60,
, T. Momb?cher 14,
, I.A. Monroy 73,
, S. Monteil 9,
, M. Morandin 27,
, G. Morello 22,
, M.J. Morello 28,t,
, J. Moron 34,
, A.B. Morris 10,
, A.G. Morris 55,
, R. Mountain 67,
, H. Mu 3,
, F. Muheim 57,
, M. Mukherjee 7,
, M. Mulder 47,
, D. Müller 47,
, K. Müller 49,
, C.H. Murphy 62,
, D. Murray 61,
, P. Muzzetto 26,
, P. Naik 53,
, T. Nakada 48,
, R. Nandakumar 56,
, T. Nanut 48,
, I. Nasteva 2,
, M. Needham 57,
, N. Neri 25,q,
, S. Neubert 16,
, N. Neufeld 47,
, R. Newcombe 60,
, T.D. Nguyen 48,
, C. Nguyen-Mau 48,n,
, E.M. Niel 11,
, S. Nieswand 13,
, N. Nikitin 39,
, N.S. Nolte 47,
, C. Nunez 80,
, A. Oblakowska-Mucha 34,
, V. Obraztsov 43,
, S. Ogilvy 58,
, D.P. O'Hanlon 53,
, R. Oldeman 26,f,
, C.J.G. Onderwater 75,
, J. D. Osborn 80,
, A. Ossowska 33,
, J.M. Otalora Goicochea 2,
, T. Ovsiannikova 38,
, P. Owen 49,
, A. Oyanguren 46,
, P.R. Pais 48,
, T. Pajero 28,t,
, A. Palano 18,
, M. Palutan 22,
, G. Panshin 79,
, A. Papanestis 56,
, M. Pappagallo 57,
, L.L. Pappalardo 20,g,
, C. Pappenheimer 64,
, W. Parker 65,
, C. Parkes 61,
, G. Passaleva 21,47,
, A. Pastore 18,
, M. Patel 60,
, C. Patrignani 19,e,
, A. Pearce 47,
, A. Pellegrino 31,
, M. Pepe Altarelli 47,
, S. Perazzini 19,
, D. Pereima 38,
, P. Perret 9,
, L. Pescatore 48,
, K. Petridis 53,
, A. Petrolini 23,h,
, A. Petrov 76,
, S. Petrucci 57,
, M. Petruzzo 25,q,
, B. Pietrzyk 8,
, G. Pietrzyk 48,
, M. Pili 62,
, D. Pinci 30,
, J. Pinzino 47,
, F. Pisani 19,
, A. Piucci 16,
, V. Placinta 36,
, S. Playfer 57,
, J. Plews 52,
, M. Plo Casasus 45,
, F. Polci 12,
, M. Poli Lener 22,
, M. Poliakova 67,
, A. Poluektov 10,
, N. Polukhina 77,c,
, I. Polyakov 67,
, E. Polycarpo 2,
, G.J. Pomery 53,
, S. Ponce 47,
, A. Popov 43,
, D. Popov 52,
, S. Poslavskii 43,
, K. Prasanth 33,
, L. Promberger 47,
, C. Prouve 45,
, V. Pugatch 51,
, A. Puig Navarro 49,
, H. Pullen 62,
, G. Punzi 28,p,
, W. Qian 5,
, J. Qin 5,
, R. Quagliani 12,
, B. Quintana 8,
, N.V. Raab 17,
, R.I. Rabadan Trejo 10,
, B. Rachwal 34,
, J.H. Rademacker 53,
, M. Rama 28,
, M. Ramos Pernas 45,
, M.S. Rangel 2,
, F. Ratnikov 41,78,
, G. Raven 32,
, M. Reboud 8,
, F. Redi 48,
, F. Reiss 12,
, C. Remon Alepuz 46,
, Z. Ren 3,
, V. Renaudin 62,
, S. Ricciardi 56,
, D.S. Richards 56,
, S. Richards 53,
, K. Rinnert 59,
, P. Robbe 11,
, A. Robert 12,
, A.B. Rodrigues 48,
, E. Rodrigues 64,
, J.A. Rodriguez Lopez 73,
, M. Roehrken 47,
, S. Roiser 47,
, A. Rollings 62,
, V. Romanovskiy 43,
, M. Romero Lamas 45,
, A. Romero Vidal 45,
, J.D. Roth 80,
, M. Rotondo 22,
, M.S. Rudolph 67,
, T. Ruf 47,
, J. Ruiz Vidal 46,
, A. Ryzhikov 78,
, J. Ryzka 34,
, J.J. Saborido Silva 45,
, N. Sagidova 37,
, N. Sahoo 55,
, B. Saitta 26,f,
, C. Sanchez Gras 31,
, C. Sanchez Mayordomo 46,
, R. Santacesaria 30,
, C. Santamarina Rios 45,
, M. Santimaria 22,
, E. Santovetti 29,j,
, G. Sarpis 61,
, A. Sarti 30,
, C. Satriano 30,s,
, A. Satta 29,
, M. Saur 5,
, D. Savrina 38,39,
, L.G. Scantlebury Smead 62,
, S. Schael 13,
, M. Schellenberg 14,
, M. Schiller 58,
, H. Schindler 47,
, M. Schmelling 15,
, T. Schmelzer 14,
, B. Schmidt 47,
, O. Schneider 48,
, A. Schopper 47,
, H.F. Schreiner 64,
, M. Schubiger 31,
, S. Schulte 48,
, M.H. Schune 11,
, R. Schwemmer 47,
, B. Sciascia 22,
, A. Sciubba 30,k,
, S. Sellam 68,
, A. Semennikov 38,
, A. Sergi 52,47,
, N. Serra 49,
, J. Serrano 10,
, L. Sestini 27,
, A. Seuthe 14,
, P. Seyfert 47,
, D.M. Shangase 80,
, M. Shapkin 43,
, L. Shchutska 48,
, T. Shears 59,
, L. Shekhtman 42,x,
, V. Shevchenko 76,77,
, E. Shmanin 77,
, J.D. Shupperd 67,
, B.G. Siddi 20,
, R. Silva Coutinho 49,
, L. Silva de Oliveira 2,
, G. Simi 27,o,
, S. Simone 18,d,
, I. Skiba 20,
, N. Skidmore 16,
, T. Skwarnicki 67,
, M.W. Slater 52,
, J.G. Smeaton 54,
, A. Smetkina 38,
, E. Smith 13,
, I.T. Smith 57,
, M. Smith 60,
, A. Snoch 31,
, M. Soares 19,
, L. Soares Lavra 9,
, M.D. Sokoloff 64,
, F.J.P. Soler 58,
, B. Souza De Paula 2,
, B. Spaan 14,
, E. Spadaro Norella 25,q,
, P. Spradlin 58,
, F. Stagni 47,
, M. Stahl 64,
, S. Stahl 47,
, P. Stefko 48,
, O. Steinkamp 49,
, S. Stemmle 16,
, O. Stenyakin 43,
, M. Stepanova 37,
, H. Stevens 14,
, S. Stone 67,
, S. Stracka 28,
, M.E. Stramaglia 48,
, M. Straticiuc 36,
, S. Strokov 79,
, J. Sun 3,
, L. Sun 72,
, Y. Sun 65,
, P. Svihra 61,
, K. Swientek 34,
, A. Szabelski 35,
, T. Szumlak 34,
, M. Szymanski 47,
, S. Taneja 61,
, Z. Tang 3,
, T. Tekampe 14,
, F. Teubert 47,
, E. Thomas 47,
, K.A. Thomson 59,
, M.J. Tilley 60,
, V. Tisserand 9,
, S. T'Jampens 8,
, M. Tobin 6,
, S. Tolk 47,
, L. Tomassetti 20,g,
, D. Tonelli 28,
, D. Torres Machado 1,
, D.Y. Tou 12,
, E. Tournefier 8,
, M. Traill 58,
, M.T. Tran 48,
, E. Trifonova 77,
, C. Trippl 48,
, A. Trisovic 54,
, A. Tsaregorodtsev 10,
, G. Tuci 28,47,p,
, A. Tully 48,
, N. Tuning 31,
, A. Ukleja 35,
, A. Usachov 31,
, A. Ustyuzhanin 41,78,
, U. Uwer 16,
, A. Vagner 79,
, V. Vagnoni 19,
, A. Valassi 47,
, G. Valenti 19,
, M. van Beuzekom 31,
, H. Van Hecke 66,
, E. van Herwijnen 47,
, C.B. Van Hulse 17,
, M. van Veghel 75,
, R. Vazquez Gomez 44,22,
, P. Vazquez Regueiro 45,
, C. Vázquez Sierra 31,
, S. Vecchi 20,
, J.J. Velthuis 53,
, M. Veltri 21,r,
, A. Venkateswaran 67,
, M. Vernet 9,
, M. Veronesi 31,
, M. Vesterinen 55,
, J.V. Viana Barbosa 47,
, D. Vieira 64,
, M. Vieites Diaz 48,
, H. Viemann 74,
, X. Vilasis-Cardona 44,m,
, A. Vitkovskiy 31,
, V. Volkov 39,
, A. Vollhardt 49,
, D. Vom Bruch 12,
, A. Vorobyev 37,
, V. Vorobyev 42,x,
, N. Voropaev 37,
, R. Waldi 74,
, J. Walsh 28,
, J. Wang 3,
, J. Wang 72,
, J. Wang 6,
, M. Wang 3,
, Y. Wang 7,
, Z. Wang 49,
, D.R. Ward 54,
, H.M. Wark 59,
, N.K. Watson 52,
, D. Websdale 60,
, A. Weiden 49,
, C. Weisser 63,
, B.D.C. Westhenry 53,
, D.J. White 61,
, M. Whitehead 13,
, D. Wiedner 14,
, G. Wilkinson 62,
, M. Wilkinson 67,
, I. Williams 54,
, M. Williams 63,
, M.R.J. Williams 61,
, T. Williams 52,
, F.F. Wilson 56,
, W. Wislicki 35,
, M. Witek 33,
, L. Witola 16,
, G. Wormser 11,
, S.A. Wotton 54,
, H. Wu 67,
, K. Wyllie 47,
, Z. Xiang 5,
, D. Xiao 7,
, Y. Xie 7,
, H. Xing 71,
, A. Xu 4,
, L. Xu 3,
, M. Xu 7,
, Q. Xu 5,
, Z. Xu 4,
, Z. Yang 3,
, Z. Yang 65,
, Y. Yao 67,
, L.E. Yeomans 59,
, H. Yin 7,
, J. Yu 7,aa,
, X. Yuan 67,
, O. Yushchenko 43,
, K.A. Zarebski 52,
, M. Zavertyaev 15,c,
, M. Zdybal 33,
, M. Zeng 3,
, D. Zhang 7,
, L. Zhang 3,
, S. Zhang 4,
, W.C. Zhang 3,z,
, Y. Zhang 47,
, A. Zhelezov 16,
, Y. Zheng 5,
, X. Zhou 5,
, Y. Zhou 5,
, X. Zhu 3,
, V. Zhukov 13,39,
, J.B. Zonneveld 57,
, S. Zucchelli 19,e,
, 1.Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2.Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3.Center for High Energy Physics, Tsinghua University, Beijing, China
4.School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5.University of Chinese Academy of Sciences, Beijing, China
6.Institute Of High Energy Physics (IHEP), Beijing, China
7.Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8.Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9.Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10.Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11.LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
12.LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
13.I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14.Fakult?t Physik, Technische Universit?t Dortmund, Dortmund, Germany
15.Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16.Physikalisches Institut, Ruprecht-Karls-Universit?t Heidelberg, Heidelberg, Germany
17.School of Physics, University College Dublin, Dublin, Ireland
18.INFN Sezione di Bari, Bari, Italy
19.INFN Sezione di Bologna, Bologna, Italy
20.INFN Sezione di Ferrara, Ferrara, Italy
21.INFN Sezione di Firenze, Firenze, Italy
22.INFN Laboratori Nazionali di Frascati, Frascati, Italy
23.INFN Sezione di Genova, Genova, Italy
24.INFN Sezione di Milano-Bicocca, Milano, Italy
25.INFN Sezione di Milano, Milano, Italy
26.INFN Sezione di Cagliari, Monserrato, Italy
27.INFN Sezione di Padova, Padova, Italy
28.INFN Sezione di Pisa, Pisa, Italy
29.INFN Sezione di Roma Tor Vergata, Roma, Italy
30.INFN Sezione di Roma La Sapienza, Roma, Italy
31.Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32.Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
33.Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34.AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35.National Center for Nuclear Research (NCBJ), Warsaw, Poland
36.Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37.Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38.Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia
39.Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40.Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
41.Yandex School of Data Analysis, Moscow, Russia
42.Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43.Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44.ICCUB, Universitat de Barcelona, Barcelona, Spain
45.Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46.Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47.European Organization for Nuclear Research (CERN), Geneva, Switzerland
48.Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
49.Physik-Institut, Universit?t Zürich, Zürich, Switzerland
50.NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
51.Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
52.University of Birmingham, Birmingham, United Kingdom
53.H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54.Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
55.Department of Physics, University of Warwick, Coventry, United Kingdom
56.STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
57.School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58.School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59.Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
60.Imperial College London, London, United Kingdom
61.Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
62.Department of Physics, University of Oxford, Oxford, United Kingdom
63.Massachusetts Institute of Technology, Cambridge, MA, United States
64.University of Cincinnati, Cincinnati, OH, United States
65.University of Maryland, College Park, MD, United States
66.Los Alamos National Laboratory (LANL), Los Alamos, United States
67.Syracuse University, Syracuse, NY, United States
68.Laboratory of Mathematical and Subatomic Physics , Constantine, Algeria, associated to 2
69.School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to 55
70.Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
71.South China Normal University, Guangzhou, China, associated to 3
72.School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3
73.Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 12
74.Institut für Physik, Universit?t Rostock, Rostock, Germany, associated to 16
75.Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 31
76.National Research Centre Kurchatov Institute, Moscow, Russia, associated to 38
77.National University of Science and Technology "MISIS", Moscow, Russia, associated to 38
78.National Research University Higher School of Economics, Moscow, Russia, associated to 41
79.National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 38
80.University of Michigan, Ann Arbor, United States, associated to 67
a.Universidade Federal do Trióngulo Mineiro (UFTM), Uberaba-MG, Brazil
b.Laboratoire Leprince-Ringuet, Palaiseau, France
c.P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d.Università di Bari, Bari, Italy
e.Università di Bologna, Bologna, Italy
f.Università di Cagliari, Cagliari, Italy
g.Università di Ferrara, Ferrara, Italy
h.Università di Genova, Genova, Italy
i.Università di Milano Bicocca, Milano, Italy
j.Università di Roma Tor Vergata, Roma, Italy
k.Università di Roma La Sapienza, Roma, Italy
l.AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
m.DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n.Hanoi University of Science, Hanoi, Vietnam
o.Università di Padova, Padova, Italy
p.Università di Pisa, Pisa, Italy
q.Università degli Studi di Milano, Milano, Italy
r.Università di Urbino, Urbino, Italy
s.Università della Basilicata, Potenza, Italy
t.Scuola Normale Superiore, Pisa, Italy
u.Università di Modena e Reggio Emilia, Modena, Italy
v.Università di Siena, Siena, Italy
w.MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
x.Novosibirsk State University, Novosibirsk, Russia
y.INFN Sezione di Trieste, Trieste, Italy
z.School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi'an, China
aa.Physics and Micro Electronic College, Hunan University, Changsha City, China
ab.Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras
Received Date:2019-10-25
Available Online:2020-02-01
Abstract:The production of $\varXi _{cc}^ {++}$ baryons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13\;{\rm{TeV}}$ is measured in the transverse-momentum range $4 < p_{\rm{T}} <15\;{\rm{GeV}}/c$ and the rapidity range $2.0 <y <4.5$. The data used in this measurement correspond to an integrated luminosity of $1.7\;{\rm{fb}}^{-1}$, recorded by the LHCb experiment during 2016. The ratio of the $\varXi _{cc}^ {++}$ production cross-section times the branching fraction of the $\varXi _{cc}^ {++} \to \varLambda _c^ + K^-\pi^+ \pi^+$ decay relative to the prompt $\varLambda _c^ + $ production cross-section is found to be $(2.22\pm 0.27 \pm 0.29)\times 10^{-4}$, assuming the central value of the measured $\varXi _{cc}^ {++}$ lifetime, where the first uncertainty is statistical and the second systematic.

HTML

--> --> -->
1.Introduction
The quark model [1,2] predicts the existence of multiplets of baryon and meson states. Baryons containing two charm quarks and a light quark provide a unique system for testing the low-energy limit of quantum chromodynamics (QCD). The production of doubly charmed baryons at hadron colliders can be treated as two independent processes: production of a $cc$ diquark followed by the hadronisation of the diquark into a baryon [3-9]. The production cross-section of doubly charmed baryons in proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13\;{\rm{TeV}}$ is predicted to be in the range 60–1800 nb [3-9], which is between $10^{-4}$ and $10^{-3}$ times that of the total charm production [4].
A doubly charmed baryon was first reported by the SELEX collaboration [10,11]. They found that 20% of their $\varLambda _c^ +$ yield originated from $\varXi _{cc}^ +$ decays, which is several orders of magnitude higher than theoretical prediction [4]. However, this signal has not been confirmed by searches performed at the FOCUS [12], BaBar [13], Belle [14], and LHCb [15,16] experiments. Recently, the LHCb collaboration observed a peak in the $\varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ mass spectrum at a mass of $3621.40 \pm 0.78\;{\rm{MeV}}/{c^2}$ [17], consistent with expectations for the $\varXi _{cc}^ {++}$ baryon. The $\varXi _{cc}^ {++}$ lifetime was measured to be $0.256^{+0.024}_{-0.022}\; ({\rm{stat}}) \;\pm 0.014$ $ \;({\rm{syst}})\;{\rm{ps}}$ [18], indicating that it decays through the weak interaction. A new decay mode, $\varXi _{cc}^{ + + } \to \varXi _c^ + {\pi ^ + }$, was observed by the LHCb collaboration [19], and the measured $\varXi _{cc}^ {++}$ mass was found to be consistent with that measured using $\varXi _{cc}^{ + + } \to \varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ decays. The $\varXi _{cc}^{ + + } \to {D^ + }p{K^ - }{\pi ^ + }$ decay has been searched for, but no signal was found [20].
This paper presents a measurement of $\varXi _{cc}^{ + + }$ production in $pp$ collisions at a centre-of-mass energy of $\sqrt{s}=13\;{\rm{TeV}}$, following the same analysis strategy as that used in Refs. [15,17,18]. The $\varXi _{cc}^ {++}$ production cross-section, $\sigma \left( {\varXi _{cc}^{ + + }} \right)$, times the branching fraction of the $\varXi _{cc}^{ + + } \to \varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ decay, is measured relative to the prompt $\varLambda _c^ +$ production cross-section, $\sigma \left( {\varLambda _c^ + } \right)$, in the transverse momentum range $4<{p_{\rm{T}}}<15\;{\rm{GeV}}/ c$ and the rapidity range $2.0<y<4.5$. The data used correspond to an integrated luminosity of $1.7\;{\rm{f}}{{\rm{b}}^{ - 1}}$ collected by the LHCb experiment in 2016. The $\varLambda _c^ +$ baryon is reconstructed via the $\varLambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$ decay. The inclusion of the charge-conjugate decay processes is implied throughout this paper. The production rate ratio is defined as,
$ R \equiv \frac{{\sigma \left( {\varXi _{cc}^{ + + }} \right) \times {\cal B}\left( {\varXi _{cc}^{ + + } \to \varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }} \right)}}{{\sigma \left( {\varLambda _c^ + } \right)}} = \frac{{{N_{{\rm{sig}}}}}}{{{N_{{\rm{norm}}}}}}\frac{{{\varepsilon _{{\rm{norm}}}}}}{{{\varepsilon _{{\rm{sig}}}}}},$
(1)
where “sig” and “norm” refer to the signal ($\varXi _{cc}^{ + + }$) and normalisation $\left( {\varLambda _c^ + } \right)$ modes, N is the signal yield and $\varepsilon$ is the total efficiency to reconstruct and select these decays.
2.Detector and simulation
The LHCb detector [21,22] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta <5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the $pp$ interaction region [23], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [24] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at $200\;{\rm GeV}/c$. The minimum distance of a track to a primary vertex, the impact parameter, is measured with a resolution of $(15+29/{p_{\rm{T}}})$ μm, where ${p_{\rm{T}}}$ is expressed in ${\rm GeV}/c $. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [25]. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad (SPD) and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [26]. The online event selection is performed by a trigger [27], which consists of a hardware stage, based on information from the calorimeters and muon systems [28,29], followed by a software stage, which applies a full event reconstruction incorporating near-real-time alignment and calibration of the detector [30]. The output of the reconstruction performed in the software trigger [31] is used as input to the present analysis.
Simulated samples are required to develop the candidate selection and to estimate the efficiency of the detector acceptance and the imposed selection requirements. Simulated $pp$ collisions are generated using Pythia [32] with a specific LHCb configuration [33]. A dedicated package, GenXicc2.0 [34], is used to simulate the $\varXi _{cc}^{ + + }$ baryon production. Decays of unstable particles are described by EvtGen [35], in which final-state radiation is generated using Photos [36]. The interaction of the generated particles with the detector, and its response, are simulated using the Geant4 toolkit [37] as described in Ref. [38].
3.Event selection
The $\varLambda _c^ + \to p{K^ - }{\pi ^ + }$ candidate is reconstructed through three charged particles identified as p, ${K^ - }$ and ${\pi ^ + }$ hadrons, which form a common vertex and do not originate from any primary vertex (PV) in the event. The decay vertex of the $\varLambda _c^ +$ candidate is required to be displaced from any PV by requiring its proper decay time to be greater than 0.15 ps, corresponding to about 1.5 times the $\varLambda _c^ +$ decay time resolution [39]. Each $\varLambda _c^ +$ candidate with mass in the range 2270-2306 ${\rm{MeV }}/c^2 $ is then combined with three additional particles to form a $\varXi _{cc}^{ + + }$ candidate. The three particles must form a common vertex with the $\varLambda _c^ +$ candidate and have hadron-identification information consistent with them being two ${\pi ^ + }$ mesons and one ${K^ - }$ meson. The $\varLambda _c^ +$ decay vertex is required to be downstream of the $\varXi _{cc}^{ + + }$ vertex. Additionally, the $\varXi _{cc}^ {++}$ candidates must have ${p_{\rm{T}}} > 4 \;{\rm GeV}/c $ and originate from a PV.
The combinatorial background is suppressed using two multivariate classifiers based on a boosted decision tree algorithm [40]. One classifier is optimised to select $\varLambda _c^ +$ candidates irrespective of their origin, and the other is optimised to select $\varXi _{cc}^ {++}$ candidates. While both classifiers are applied to the signal channel, only the first is applied to the normalisation decay channel. The first classifier is trained with $\varLambda _c^ +$ signal in the simulated $\varXi _{cc}^ {++}$ sample and background candidates in the $\varLambda _c^ +$ mass sideband. The second classifier is trained using data candidates in the $\varLambda _c^ +$ and $\varXi _{cc}^ {++}$ signal mass region, where wrong-sign (WS) $\varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ - }$ combinations are used as proxy for the background. The first multivariate classifier is trained with the following variables: the $\chi^2$ of the $\varLambda _c^ +$ vertex fit; the largest distance of closest approach among the decay products; the scalar sum of the ${p_{\rm{T}}}$ and the smallest ${p_{\rm{T}}}$ of the three decay products of the $\varLambda _c^ +$ candidate; the smallest and largest $\chi _{{\rm{IP}}}^2$ of the decay products of the $\varLambda _c^ +$ candidate with respect to its PV. Here, $\chi _{{\rm{IP}}}^2$ is defined as the difference in $\chi^2$ of the PV fit with and without the particle in question. The PV of any single particle is defined to be that with respect to which the particle has the smallest $\chi _{{\rm{IP}}}^2$. The second multivariate classifier is trained with the following variables: the $\chi _{{\rm{IP}}}^2$ of the $\varXi _{cc}^{ + + }$ candidate to its PV; the angle between the $\varXi _{cc}^{ + + }$ momentum and the direction from the PV to the $\varXi _{cc}^{ + + }$ decay vertex; the logarithm of the $\chi^2$ of the $\varXi _{cc}^ {++}$ flight distance between the $\varXi _{cc}^ {++}$ decay vertex and the PV; the vertex fit ${\chi ^2}$ of the $\varXi _{cc}^{ + + }$ candidate; the ${\chi ^2}$ of a kinematic refit [41] that requires the $\varXi _{cc}^{ + + }$ candidate to originate from a PV; the scalar sum of the ${p_{\rm{T}}}$ and the smallest ${p_{\rm{T}}}$ of the six final state tracks of the $\varXi _{cc}^{ + + }$ candidate. Here the flight distance $\chi^2$ is defined as the change in $\chi^2$ of the $\varXi _{cc}^ {++}$ decay vertex if it is constrained to coincide with the PV. Candidates retained for analysis must have two classifier responses exceeding thresholds chosen by performing a two-dimensional maximisation of the figure of merit $\varepsilon/(5/2+\sqrt{B})$ [42]. Here $\varepsilon$ and B are the estimated signal efficiency determined from signal simulation and background yield under the signal peak, respectively. The background is estimated from the WS sample. The same threshold of the first classifier, optimised for the signal mode, is applied to the normalisation mode.
Finally, the $\varXi _{cc}^{ + + }$ and $\varLambda _c^ +$ candidates are required to have their transverse momentum and rapidity in the fiducial ranges of 4-15 ${\rm GeV}/c $ and 2.0-4.5, respectively. After the multivariate selection is applied, events may still contain more than one $\varXi _{cc}^ {++}$ candidate in the signal region. Candidates made of duplicate tracks are removed by requiring all pairs of tracks with the same charge to have an opening angle larger than $0.5 \;{\rm{ mrad }}$. Duplicate candidates, which are due to the interchange between identical particles from the $\varLambda _c^ +$ decay or directly from the $\varXi _{cc}^{ + + }$ decay (e.g., the ${K^ - }$ particle from the $\varXi _{cc}^{ + + }$ decay and the ${K^ - }$ particle from the $\varLambda _c^ +$ decay), can cause peaking structures in the $\varXi _{cc}^ {++}$ invariant mass distribution. In this case, one of the candidates is chosen at random to be retained and the others are discarded. The systematic uncertainty associated with this procedure is negligible.
4.Signal yields
After the full selection is applied, the data sets are further filtered into two disjoint subsamples using information from the hardware trigger. The first contains candidates that are triggered by at least one of the $\varLambda _c^ +$ decay products with high transverse energy deposited in the calorimeters, referred to as Triggered On Signal (TOS). The second consists of the events that are exclusively triggered by particles unrelated to the signal decay products; these events can, for example, be triggered by the decay products of the charmed hadrons produced together with the signal baryon, referred to as exclusively Triggered Independently of Signal (exTIS).
To determine the $\varXi _{cc}^ {++}$ baryon signal yields, an unbinned extended maximum-likelihood fit is performed simultaneously to the $\varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ invariant-mass spectra in the interval 3470-3770 ${\rm{MeV}}/c^2 $ of the two trigger categories. The mass distribution of the signal is described by the sum of a Gaussian function and a modified Gaussian function with power-law tails on both sides of the function [43] with a common peak position. The tail parameters and the relative fraction of the two Gaussian functions for the signal model are determined from simulation, while the common peak position and the mass resolution are allowed to vary in the fit. The background is described by a second-order Chebyshev polynomial. Fig. 1 shows the $\varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ invariant-mass distribution in data together with the fit results for the two trigger categories. The fit returns a mass of $3621.34 \pm 0.74 \;{\rm{MeV}}/ c^2 $, and a mass resolution of $7.1 \pm 1.3 \;{\rm{MeV}}/c^2 $, where the uncertainties are statistical only.
Figure1. (color online) Invariant-mass distributions of $\varXi _{cc}^{ + + }$ candidates (a) triggered by TOS and (b) triggered by exTIS, with fit results shown.

The determination of the prompt $\varLambda _c^ +$ baryon yields, which are contaminated by $\varLambda _c^ +$ candidates produced in b-hadron decays, is done in two steps [44]. First, a binned extended maximum-likelihood fit to the $m(pK^-{\pi ^ + })$ invariant-mass distribution in the interval 2220-2360 ${\rm{MeV}}/{c^2}$ is performed to determine the total number of $\varLambda _c^ +$ candidates. Then a binned extended maximum-likelihood fit to the background-subtracted ${\log _{10}}\left( {\chi _{{\rm{IP}}}^2\left( {\varLambda _c^ + } \right)} \right)$ distribution is performed to separate the prompt $\varLambda _c^ +$ component from that originated in b-hadron decays. The mass distribution of $\varLambda _c^ +$ candidates is described by a sum of a Gaussian function and a modified Gaussian function with power-law tails on both sides with a common peak position. The background mass distribution is described by a first-order Chebyshev polynomial. The ${\log _{10}}\left( {\chi _{{\rm{IP}}}^2\left( {\varLambda _c^ + } \right)} \right)$ distribution, after subtracting the combinatorial background using the sPlot technique [45], is described by two Bukin functions [46]. All the parameters except the peak position and resolution of the functions are derived from a fit to simulated signal. Figs. 2 and 3 show the $p K^- {\pi ^ + }$ invariant-mass distribution and ${\log _{10}}\left( {\chi _{{\rm{IP}}}^2\left( {\varLambda _c^ + } \right)} \right)$ distributions in data together with the fit results for the two trigger categories. The signal yields for both the signal and the normalisation modes are presented in Table 1.
Category$N_{\rm{sig}}$$N_{\rm{norm} } \;[10^{3}]$
TOS$116 \pm 23$$8764 \pm 6$
exTIS$210 \pm 29$$13889 \pm 8$


Table1.Yields of the signal and normalisation modes.

Figure2. (color online) Invariant-mass distributions of $\varLambda _c^ +$ candidates (a) triggered by TOS and (b) triggered by exTIS, with fit results shown.

Figure3. (color online) Distributions of ${\log _{10}}\left( {\chi _{{\rm{IP}}}^2\left( {\varLambda _c^ + } \right)} \right)$ for background-subtracted candidates (a) triggered by TOS and (b) triggered by exTIS, with fit results shown.

5.Efficiencies
For each trigger category and for both the signal and the normalisation channels, the total efficiencies are computed as products of the detector geometrical acceptance and of the efficiencies related to particle reconstruction, event selection, particle identification and trigger. All the efficiencies are calculated using simulation that is corrected using data. For both the signal and the normalisation modes, the kinematic distributions in simulation samples, including the transverse momentum and rapidity of the $\varXi _{cc}^ {++}$ and $\varLambda _c^ +$ baryons and the event multiplicity, are weighted to match those in the corresponding data. The efficiencies are calculated under three lifetime $\left( {\tau _{\varXi _{cc}^{ + + }}} \right)$ hypotheses: the central value of the measured lifetime, and the lifetime increased or decreased by its measured uncertainty [18]. The dependence of the efficiency on the $\varXi _{cc}^{ + + }$ baryon lifetime is almost linear, with the efficiency ratio varying by 25% from the lower lifetime to the higher one. The resonant structures of the $\varLambda _c^ + \to p{K^ - }{\pi ^ + }$ decay are also weighted based on the background-subtracted data, as the simulation samples do not model well the structure seen in the data. The tracking efficiency is corrected with control data samples, as described in Ref. [47]. The particle-identification efficiency is corrected in bins of particle momentum, pseudorapidity and event multiplicity, using the results of a tag-and-probe method applied to calibration samples [48]. The efficiency ratios of the normalisation mode to the signal mode are presented in Table 2.
Category$\varepsilon_{\rm{norm}}/\varepsilon_{\rm{sig}}$
$\tau_{\varXi _{cc}^{ + + }} = 0.230\;{\rm{ps}}$$\tau_{\varXi _{cc}^{ + + }} = 0.256\;{\rm{ps}}$$\tau_{\varXi _{cc}^{ + + }}= 0.284\;{\rm{ps}}$
TOS$22.00 \pm 1.09$$19.50 \pm 1.71$$17.50 \pm 1.50$
exTIS$16.64 \pm 1.30$$14.56 \pm 1.06$$12.95 \pm 0.80$


Table2.Ratios of the normalisation and signal efficiencies.

6.Systematic uncertainties
The sources of systematic uncertainties affecting the measurement of the production ratio include the choice of the fit model and the evaluation of the total efficiency. The uncertainties are summarised in Table 3.
SourceTOS [%]exTIS [%]
Simulation sample size8.87.3
Fit model5.45.3
Hardware trigger9.06.3
Tracking3.43.4
Particle identification5.55.4
Kinematic correction7.36.0
Sum in quadrature16.814.1


Table3.Relative systematic uncertainties on the production ratio measurement for the two trigger categories.

For both the signal and normalisation modes, the uncertainties due to the choice of the particular fit model are estimated by using alternative functions where the signal is described by a sum of two Gaussian functions with a common peak position and the background is described by a second-order polynomial function. The difference in the ratio of signal yields between the two fits is assigned as systematic uncertainty. Additional effects coming from the ${\log _{10}}\left( {\chi _{{\rm{IP}}}^2\left( {\varLambda _c^ + } \right)} \right)$ fit are tested with alternative functions where the parameters used to describe the nonprompt signal are determined from a $\varLambda _b^0$ baryon data sample. The effect from the background subtraction is studied using the shape determined with the candidates in the $\varLambda _c^ +$ baryon mass sidebands.
The limited size of the simulation samples leads to systematic uncertainties on the efficiencies. The systematic uncertainty due to the trigger selection efficiency is estimated with a tag-and-probe method exploiting a sample of events that are also triggered by particles unrelated to the signal candidate [27]. Due to the small sample size of the signal channel in data, two different control samples are used. The first sample comprises $\varLambda _b^0 \to \varLambda _c^ + \pi^ -\pi^+ \pi^-$ decays, which are topologically similar to the $\varXi _{cc}^{ + + } \to \varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ decay. The second sample comprises $B_c^ + \to J/\psi {\pi ^ + }$ decays. This decay does not have the same topology but shares another feature with the signal: there should be at least two other heavy-flavour particles (b- or c-hadrons) produced in the same event that can be responsible for the trigger decision. The hardware trigger efficiencies of the $\varLambda _b^0$, $B_c^ +$ decay channels and prompt $\varLambda _c^ +$ channel, are measured using the tag-and-probe method. Similar selections to those applied to the signal channel are applied to both the data and simulation for the control samples. The efficiency ratio of the $\varLambda _b^0$, $B_c^ +$ decays to the $\varLambda _c^ +$ decays is estimated and the difference of the ratio in data and in simulation is assigned as a systematic uncertainty. The transverse-energy threshold in the calorimeter hardware trigger varied during data taking, and this variation is not fully described by the simulation. The threshold used in the simulated samples is higher than that applied to some data. To investigate the influence of this difference, the same hardware trigger requirement used in the simulation is applied to the data. The measurement is repeated and the change in the measured production ratio is taken as a systematic uncertainty.
The systematic uncertainty related to the tracking efficiency includes three effects. First, the tracking efficiency depends on the detector occupancy, which is not well described by simulation. The distribution of the number of SPD hits in simulated samples is weighted to match that in data and an uncertainty of 0.8% per track is assigned to account for remaining difference in multiplicity between data and simulation [47]. Secondly, the uncertainty due to the finite size of the control samples is propagated to the final systematic uncertainty using a large number of pseudoexperiments. Finally, an uncertainty is assigned to the track reconstruction efficiency due to uncertainties on the material budget of the detector and on the modelling of hadronic interaction with the detector material.
The systematic uncertainty related to the particle-identification efficiency includes three effects. The effect from the limited size of calibration samples is evaluated with a large number of pseudoexperiments. Effects of binning in momentum, pseudorapidity and event multiplicity is evaluated by increasing or decreasing the bin sizes by a factor of two. In this estimation, the effects of the correlations between tracks on the particle identification performance are taken into account using simulated samples.
The uncertainties on the weights used for the correction of the kinematic distributions of the simulation samples are propagated as a systematic uncertainty on the production ratio.
7.Results
The production-rate ratio is calculated for the TOS and the exTIS categories of events for three different $\varXi _{cc}^ {++}$ lifetime scenarios using Eq. (1). The separate ratios in the TOS and exTIS categories are presented in Table 4 and are found to be consistent. The combination of the trigger categories, using the Best Linear Unbiased Estimate method [49] is also reported. In the combination, the systematic uncertainties coming from the simulation sample size and hardware trigger are assumed to be uncorrelated, while the other systematic uncertainties are considered to be 100% correlated.
Category$R\; [10^{-4}]$
$\tau_{\varXi _{cc}^{ + + }} = 0.230\;{\rm{ps}}$$\tau_{\varXi _{cc}^{ + + }} = 0.256\;{\rm{ps}}$$\tau_{\varXi _{cc}^{ + + }} = 0.284\;{\rm{ps}}$
TOS$2.90 \pm 0.57 \pm 0.49$$2.57 \pm 0.51 \pm 0.43$$2.31 \pm 0.46 \pm 0.39$
exTIS$2.41 \pm 0.35 \pm 0.34$$2.11 \pm 0.31 \pm 0.30$$1.88 \pm 0.27 \pm 0.27$
Combined$2.53 \pm 0.30 \pm 0.33$$2.22 \pm 0.27 \pm 0.29$$1.98 \pm 0.23 \pm 0.26$


Table4.Production rate ratio results for three different $\varXi _{cc}^ {++}$ lifetime hypotheses. The first uncertainty is statistical and the second is systematic.

8.Conclusion
A first measurement of the $\varXi _{cc}^ {++}$ production cross-section relative to that of $\varLambda _c^ +$ baryons is presented. The ratio of $\varXi _{cc}^ {++}$ production cross-section times the branching fraction of the $\varXi _{cc}^{ + + } \to \varLambda _c^ + {K^ - }{\pi ^ + }{\pi ^ + }$ decay relative to the prompt $\varLambda _c^ +$ production cross-section in the kinematic region $4 <{p_{\rm T}}<15\;{\rm GeV}/c $ and $2.0<y<4.5$ is measured to be $(2.22\pm 0.27 \pm 0.29)\times 10^{-4}$, assuming the central value of the $\varXi _{cc}^ {++}$ lifetime measured in Ref. [18], where the first uncertainty is statistical and the second systematic. This is the first measurement of the production of the doubly charmed baryons in $pp$ collisions and will deepen our understanding on their production mechanism.
We thank Chao-Hsi Chang, Cai-Dian Lü, Xing-Gang Wu, and Fu-Sheng Yu for the discussions on the production and decays of double-heavy-flavour baryons. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes.
相关话题/Measurement begindocument varXi_