HTML
--> --> --> $ {\rm{d}}s^2 = -g(r){\rm{d}}t^2+{{\rm{d}}r^2\over g(r)}+r^2\left({\rm{d}}\phi-{r_{+}r_{-}\over lr^2}{\rm{d}}t\right)^2, $ | (1) |
$ g(r) ={(r^2-r_{+}^2)(r^2-r_{-}^2)\over l^2r^2}, $ | (2) |
$ M = {r_{+}^2+r_{-}^2\over 8Gl^2}, $ | (3) |
$ J = {r_{+}r_{-}\over 4Gl}, $ | (4) |
Under the given BTZ spacetime, the spinning particle's motion can be described by MPD equations [28, 30]
$ \frac{D}{D\tau }P^{a} = -\frac{1}{2}R_{bcd}^{a} v ^{b}S^{cd}, $ | (5) |
$\frac{D}{D\tau }S^{ab} = P^{a} v^{b}-P^{b} v^{a}. $ | (6) |
To obtain the detailed relation between
$ S^{ab}P_{b} = 0, $ | (7) |
$ P^a v_a = -m , $ | (8) |
$ mv^{a}-P^{a} = \frac{S^{ab}R_{bcde}P^{c}S^{de}}{2\left(m^{2}+\dfrac{1}{4}R_{bcde}S^{bc}S^{de}\right)}. $ | (9) |
There are two Killing vector fields
$ \begin{align} \xi_a& = -\sqrt{g(r)}e_{a}^{(0)}-{r_{+}r_{-}\over lr}e_{a}^{(2)},\\ \phi_a& = r e_{a}^{(2)} , \end{align} $ | (10) |
$ \begin{align} e_{a}^{(0)}& = \sqrt{g(r)}({\rm{d}}t)_a, \\ e_{a}^{(1)}& ={1\over \sqrt{g(r)}}({\rm{d}}r)_a, \\ e_{a}^{(2)}& =r\left(({\rm{d}}\phi)_a-{r_{+}r_{-}\over lr^2}({\rm{d}}t)_a\right). \end{align} $ | (11) |
$ Q_{\xi } = P^{a}\xi _{a}-\frac{1}{2}S^{ab}\triangledown_{b}\xi_{a}. $ | (12) |
$ \begin{align} E_m& =-u^a\xi _a+\frac{1}{2m}S^{ab}\nabla _b\xi _a,\\ J_m& =u^a\phi _a-\frac{1}{2m}S^{ab}\nabla _b\phi _a. \end{align} $ | (13) |
$ s^2: = \frac{1}{2m^2}S^{ab}S_{ab}, $ | (14) |
$ S^{(a)(b)} = -m\varepsilon ^{(a)(b)}_{\; \; \; \; \; \; (c)}u^{(c)}s, $ | (15) |
From Eq. (15), the non-zero components of the spin tensor can be expressed in terms of
$ \begin{align} S^{(0)(1)}& =-msu^{(2)},\\ S^{(0)(2)}& =msu^{(1)},\\ S^{(1)(2)}& =-msu^{(0)}. \end{align} $ | (16) |
$ E_m = \sqrt{g(r)}u^{(0)}+\left({r_{+}r_{-}\over lr}+{rs\over l^2}\right)u^{(2)}, $ | (17) |
$ J_m = s\sqrt{g(r)}u^{(0)}+\left({r_{+}r_{-}s\over lr}+r\right)u^{(2)}. $ | (18) |
$ u^{(0)} = \frac{l \left(l E_m \left(l r^2+r_- r_+ s\right)-J_m \left(l r_- r_++r^2 s\right)\right)}{r \sqrt{\left(r^2-r_-^2\right) \left(r^2-r_+^2\right)} (l^2-s^2)}, $ | (19) |
$ u^{(2)} = \frac{J_m-E_m s}{r-\dfrac{r s^2}{l^2}}. $ | (20) |
$ (u^{(1)})^2 = (u^{(0)})^{2}-(u^{(2)})^2-m^2. $ | (21) |
$ p^t(r) ={{\rm{d}}t\over{\rm{d}}\tau} = {W(r)\over g(r)}, $ | (22) |
$ p^r(r) = {{\rm{d}}r\over{\rm{d}}\tau} = \rho\sqrt{Y(r)}, $ | (23) |
$ p^\phi(r) ={{\rm{d}}\phi\over{\rm{d}}\tau} = {r_{+}r_{-}W(r)\over lg(r)r^2}+{l^2(J_m-E_ms)\over r^2(l^2-s^2)}, $ | (24) |
$ W(r) = \frac{E_{{m}} l \left(l r^2+r_{-} r_{+} s\right)-J_{{m}} \left(l r_{-} r_{+}+r^2 s\right)}{r^2 \left(l^2-s^2\right)}, $ | (25) |
$ Y(r) = W^2(r)-\left(m^2+\left({J_{{m}}-E_{{m}}s\over r(1-{s^2\over l^2})}\right)^2\right)g(r), $ | (26) |
We define the critical angular momentum as
$ J_c\equiv{E_ml(lr_{+}+r_{-}s)\over lr_{-}+r_{+}s}, $ | (27) |
$ W_i(r_{+}) = 0, $ | (28) |
The timelike constraint of Eq. (22) indicates
$ \begin{split}E^2_{\rm cm}\equiv &-(p^\mu_1(r)+p^\mu_2(r))(p_{1\mu}(r)+p_{2\mu}(r)) \\ =& \;m_1^2+m_2^2 +{W_1(r)W_2(r)-\sqrt{Y_1(r)Y_2(r)}\over g(r)}\\ &-2{l^4(J_{m1}-E_{m1}s_1)(J_{m2}-E_{m1}s_2)\over r^2(l^2-s_1^2)(l^2-s_2^2)}, \end{split} $ | (29) |
We find that the third term of Eq. (29) is a
$ \mathop {\lim }\limits_{r \to {r_ + }} 2\frac{{{W_1}(r){W_2}(r) - \sqrt {{Y_1}(r){Y_2}(r)} }}{{g(r)}} = \frac{{{W_2}({r_ + })}}{{{W_1}({r_ + })}}{Z_1} + \frac{{{W_1}({r_ + })}}{{{W_2}({r_ + })}}{Z_2},$ | (30) |
$ Z_i = \left(m_i^2+\left({J_{mi}-E_{mi}s_i\over r\left(1-\dfrac{s_i^2} {l^2}\right)}\right)^2\right)>0. $ | (31) |
$ {W_2(r_{+})\over W_1(r_{+})} = {W'_2(r_{+})\over W'_1(r_{+})} = \frac{E_{m1}(l r_-+ r_+ s_2)}{E_{m2} (l r_-+ r_+ s_1)}, $ | (32) |
$ s_1 = s_c = -{lr_{-}\over r_{+}}. $ | (33) |
4.1.Timelike constraint of $ p^t(r) $![]()
![]()
The first subsection is devoted to the timelike constraint of $ p^t(r) = {W(r)\over g(r)}\geqslant 0, $ | (34) |
$ W(r) = \frac{l \left(l E_m \left(l r^2+r_- r_+ s\right)-J_m \left(l r_- r_++r^2 s\right)\right)}{r (l^2-s^2)}\geqslant 0. $ | (35) |
$ J_m\leqslant E_m l = J_c, $ | (36) |
2
4.2.Radial motion of particle: $ Y(r) $![]()
![]()
Now we come to the radial motion of the particle, starting with the expression of $ {1\over 2}{p^r(r)}^2+V(r) = 0, $ | (37) |
For a massive particle with
$ \mathop {\lim }\limits_{r \to \infty } Y(r) = - {m^2} \times \infty < 0, $ | (38) |
2
4.3.Motion of a particle with subcritical total angular momentum
In the last subsection, we already know that particles with critical total angular momentum cannot exist outside the event horizon. Thus, we consider a particle with subcritical total angular momentum $ J_m\equiv J_c-{\tilde{\delta}} = {E_ml(lr_{+}+r_{-}s)\over lr_{-}+r_{+}s}-{\tilde{\delta}}, $ | (39) |
$ \begin{split}Y(r) =Y_c(r)+\frac{{\tilde{\delta}}(-2E_ml(r^2-r_{+}^2)(l^2-s^2)(lr_{+}+r_{-}s)-(lr_{-}+r_{+}s)(l^2(-r^2+r_{-}^2+r_{+}^2)+2lr_{-}r_{+}s+r^2s^2){\tilde{\delta}})}{r^2(l^2-s^2)^2(lr_{-}+r_{+}s)}, \end{split} $ | (40) |
$ Y_c(r) = -{(r^2-r_{+}^2)\over r^2}\left({E_m^2l^2(r_{+}^2-r_{-}^2)\over (lr_{-}+r_{+}s)^2}+{m^2(r^2-r_{-})^2\over l^2}\right). $ | (41) |
$ Y(r_{+}) = \left({(lr_{-}+r_{+}s){\tilde{\delta}}\over r_{+}(l^2-s^2)}\right)^2>0. $ | (42) |
$ Y_c'(r_+) = \frac{2 \left(r_-^2-r_+^2\right) \left(l^4 E_m^2+m^2 \left(l r_-+r_+ s\right){}^2\right)}{l^2 r_+ \left(l r_-+r_+ s\right){}^2} $ | (43) |
Then, with subcritical total angular momentum,
$ Y'(r) = Y'_c(r)-{2l{\tilde{\delta}}(-2E_mr_{+}^2(l^2-s^2)(lr_{+}+r_{-}s)+(lr_{-}+r_{+}s)(l(r_{-}^2+r_{+}^2)+2r_{-}r_{+}s){\tilde{\delta}})\over r^3(lr_{-}+r_{+}s)(l^2-s^2)^2}.\\ $ | (44) |
$ Y'(r_{+}) = D_2{\tilde{\delta}}^2+D_1{\tilde{\delta}}+D_0, $ | (45) |
$ D_2 = -\frac{2 l \left(l \left(r_-^2+r_+^2\right)+2 r_- r_+ s\right)}{r_+^3 \left(l^2-s^2\right)^2}, $ | (46) |
$ D_1 = \frac{4 l E_m \left(l r_++r_- s\right)}{r_+ \left(l^2-s^2\right) \left(l r_-+r_+ s\right)}, $ | (47) |
$ D_0 =\frac{2 \left(r_-^2-r_+^2\right) \left(l^4 E_m^2+m^2 \left(l r_-+r_+ s\right){}^2\right)}{l^2 r_+ \left(l r_-+r_+ s\right){}^2}. $ | (48) |
$ E_{\max} = \frac{m \sqrt{r_+^2-r_-^2} \sqrt{l r_-^2+l r_+^2+2 r_+ r_- s}}{l^{3/2} r_-}, $ | (49) |
$ \begin{split} {\tilde{\delta}}_{\rm L}& =\frac{l^3 E_m r_+^2 (l^2-s^2) \left(l r_++r_- s\right)-\sqrt{\Delta}}{l^3 \left(l r_-+r_+ s\right) \left(l \left(r_-^2+r_+^2\right)+2 r_- r_+ s\right)},\\ {\tilde{\delta}}_{\rm R}& =\frac{l^3 E_m r_+^2 (l^2-s^2) \left(l r_++r_- s\right)+\sqrt{\Delta}}{l^3 \left(l r_-+r_+ s\right) \left(l \left(r_-^2+r_+^2\right)+2 r_- r_+ s\right)}, \\ \Delta =& l^3 r_+^2 (l^2-s^2)^2 \left(l r_-+r_+ s\right){}^2 \\ &\times\left(l^3 E_m^2 r_-^2+m^2 \left(r_-^2-r_+^2\right) \left(l \left(r_-^2+r_+^2\right)+2 r_- r_+ s\right)\right). \end{split} $ | (50) |
For the spinless particle, the infinite center-of-mass energy collision occurs at the extreme point of
$ r_m = r_{+}\left(1+{Y'(r_{+})l^2\over 2r_{+}m^2}\right)^{1\over 4}. $ | (51) |
$ r_m\geqslant r_{+}, $ | (52) |
After applying the extremal condition
$ \begin{split} {\tilde{\delta}}_{\rm L}& =\frac{1}{2} E_m \left(l-s-\sqrt{(l-s)^2}\right),\\ {\tilde{\delta}}_{\rm R}& =\frac{1}{2} E_m \left(l-s+\sqrt{(l-s)^2}\right). \end{split}$ | (53) |
Since
In Fig. 1,
Figure1. (color online) Effective potential of radial motion
$ \lim_{{\tilde{\delta}}_1\rightarrow 0}E_{\rm cm}^2(r_{m}) = m_1^2+m_2^2+Q-{2l^4(E_{m1}(l-s_1))J_{m2}\over r_+^2(l^2-s_1^2)(l^2-s_2^2)}, $ | (54) |
$ Q \equiv \mathop {\lim }\limits_{r \to {r_m}} 2\frac{{{W_1}({r_m}){W_2}({r_m}) - \sqrt {{Y_1}({r_m}){Y_2}({r_m})} }}{{g({r_m})}}.$ | (55) |
$ \begin{split} Q& = \lim_{{\tilde{\delta}}_1\rightarrow 0}{W_2(r_m)\over \dot{g}(r_m)}\left(2\dot{W}_1(r_m)-{\dot{Y}_1(r_m)\over \sqrt{Y_1(r_m)}}\right)\\ & = \lim_{{\tilde{\delta}}_1\rightarrow 0}{W_2(r_m)\over \dot{g}(r_m)}\left(2\dot{W}_1(r_m)-2\sqrt{\dot{W}_1(r_m)\over(l-s_1)}\right), \end{split}$ | (56) |
$ \lim_{{\tilde{\delta}}_1\rightarrow 0}\dot{W}_1(r_m) = \frac{E_{m1}^2 l^4+m_1^2 r_{+}^2 (l+s_1)^2}{m_1^2 r_{+}^2 (l-s_1) (l+s_1)^2}, $ | (57) |
$ \lim_{{\tilde{\delta}}_1\rightarrow 0}\dot{g}(r_m) = \frac{2 {\tilde{\delta}}_1 E_{m1}^2 l^4}{m_1^4 r_{+}^2 \left(l^2-s_1^2\right)^2}. $ | (58) |
$ \begin{split} Q& = \lim_{{\tilde{\delta}}_1\rightarrow 0}{W_2(r_m)\over \dot{g}(r_m)}\left(2\dot{W}_1(r_m)-2\sqrt{\dot{W}_1(r_m)\over(l-s_1)}\right) \\&= 2k\lim_{{\tilde{\delta}}_1\rightarrow 0}{W_2(r_m)\over \dot{g}(r_m)}\dot{W}_1(r_m)\\ & = k\lim_{{\tilde{\delta}}_1\rightarrow 0}W_2(r_m)\frac{m_1^2 (l-s_1) \left(E_{m1}^2 l^4+m_1^2 r_{+}^2 (l+s_1)^2\right)}{ {\tilde{\delta}}_1 E_{m1}^2 l^4}. \end{split} $ | (59) |
$\begin{split} k = 1-\sqrt{\dot{W}_1(r_m)\over(l-s_1)}/\dot{W}_1(r_m) = 1-\sqrt{\frac{m_1^2 r_{+}^2 (l+s_1)^2}{E_{m1}^2 l^4+m_1^2 r_{+}^2 (l+s_1)^2}}>0. \end{split}$ | (60) |