Study of Monte Carlo event generators for proton-proton collisions at LHC energies in the forward re
本站小编 Free考研考试/2022-01-01
Alexandru C?t?lin ENE1,2, , Alexandru JIPA2, , Lavinia-Elena GIUBEGA1, , 1.Department of Elementary Particles Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Reactorului 30, RO- 077125, P.O.B. MG-6, M?gurele-Bucharest, Romania 2.Faculty of Physics of the University of Bucharest, Atomi?tilor 405, RO-077125, P.O.B. MG-11, M?gurele-Bucharest, Romania Received Date:2019-01-27 Accepted Date:2019-03-28 Available Online:2019-08-01 Abstract:In this paper we present a comparative study between PYTHIA, EPOS, QGSJET, and SIBYLL generators. The global event observables considered are the charged energy flow, charged particle distributions, charged hadron production ratios and V0 ratios. The study is performed in the LHCb and TOTEM fiducial phase spaces on minimum bias simulated data samples for pp collisions at $\sqrt{s}$ = 7 TeV , using the reference measurements from these experiments. In the majority of cases, the measurements are within a band defined by the most extreme predictions. The observed differences between the predictions and the measurements seem to be, in most part, caused by extrapolation from the central pseudorapidity region (|η|$\leqslant$ 2.5), in which the generators were mainly tuned.
HTML
--> --> --> -->
2.1.General description
The generators used for this study are PYTHIA, a collider physics generator, and EPOS, QGSJET and SIBYLL, which are cosmic ray collision generators. They can be split in three categories according to the models on which they are based. PYTHIA is a parton based generator and it simulates parton interactions and parton showers, where the hadronization is treated using the Lund string fragmentation model [13, 14]. Another category are the generators based on the Regge theory, such as QGSJET and SIBYLL. These models treat soft and semi-hard interactions as Pomeron exchanges ("soft" and "semi-hard" Pomerons), but also mix perturbative methods in the treatment of hard interactions [14, 15]. EPOS is in a distinct category in which the parton based description is mixed with aspects from the Regge theory [14]. The focus of this study is on minimum bias physics measurements and the generators used, especially the cosmic ray ones, are developed for the description of such observables. The selection of these particular generators is justified by their varied usage and basic assumptions, while at the same time sharing similarities, as well as having been tuned to the LHC data, as will be discussed below. PYTHIA is one of the most widely used Monte Carlo event generators for collider physics with an emphasis on pp interactions. It is mainly based on the Leading Order (LO) QCD, having implemented LO matrix elements and usually using LO PDF sets (NLO PDF sets are also available) [7, 16, 17]. The main event in a pp collision (internally called "hard process") can be represented by a plethora of processes like elastic and diffractive (described using Pomerons) [7, 13, 18], soft and hard QCD processes, electroweak processes, top quark production etc. The generator also implements parton showers (Initial State Radiation, ISR, and Final State Radiation, FSR) in Leading Log (LL) approximation with matching and merging methods between them and the hard processes [7, 16]. Given that the colliding hadrons have a complex partonic structure, other partonic interactions aside from the main event are expected. These are called multi-parton interactions (MPI) and are usually soft in nature, but the momentum transfer can also reach the hard interaction energy scale. PYTHIA implements a description of both types and also of the beam remnants which form after the extraction of MPI initiator partons [7]. The hadronization mechanism is based on the Lund string fragmentation model [7]. The Parton-Based Gribov-Regge Theory is an effective field theory using concepts from QCD in which the elementary interactions between the constituent partons of nucleons/nuclei proceed via exchanges of parametrized objects called Pomerons, which have the quantum numbers of vacuum [19, 20]. In this theory the elementary collisions are treated as a sum of soft, semi-hard and hard contributions. If one considers a cutoff value of the momentum transfer squared of $Q_{0}^{2}\sim 1$ GeV2, below which perturbative QCD calculations can no longer be done, then the soft contribution (non-perturbative) is represented by processes with $Q^{2} < Q_{0}^{2}$ and the hard contribution (perturbative) by processes with $Q^{2} > Q_{0}^{2}$. The processes in which sea partons with $x\ll1$ (Bj?rken x) are involved are called semi-hard and are represented by a parton ladder with soft Pomeron ends [19]. The generator EPOS is based on the effective theory described above [2]. EPOS is an acronym for Energy conserving quantum mechanical approach, based on Partons, parton ladders, strings, Off-shell remnants, and Splitting of parton ladders [21]. In EPOS, the interaction of the two beam particles is described by means of Pomeron exchanges. As discussed above, these Pomerons can be soft, semi-hard or hard. A soft Pomeron can be viewed from a phenomenological standpoint as two parton ladders (or cut Pomeron) connected to the remnants by two color singlets (legs) from the parton sea [22]. A cut Pomeron can be viewed as two strings which fragment to create hadrons. The flavors of the string ends need to be compensated within the remnants. Thus, particle production in EPOS comes from two sources, namely cut Pomerons and the decay of remnants [22]. Through a recent development (from EPOS 1.99 onwards), EPOS is now a core-corona model. The core represents a region with a high density of string segments that is larger than some critical density for which the hadronization is treated collectively, and the corona is the region with a lower density of string segments for which the hadronization is treated non-collectively. The strings from the core region form clusters which expand collectively. This expansion has two components, namely radial and longitudinal flow. Through this core-corona approach, EPOS takes into account effects not accounted for in other HEP models [2]. In EPOS, in the case of multiple scatterings (multi-Pomeron exchanges), the energy scales of the individual scatterings are taken into account when calculating the respective cross-sections, while in the other models based on the Gribov-Regge theory this is not the case. This leads to a consistent treatment of both exclusive particle production and cross-section calculation, taking energy conservation into account in both cases [19, 22]. The multiplicity and inelastic cross-section predictions of the model are directly influenced by energy-momentum sharing and beam remnant treatment [22]. The elementary scatterings in QGSJET are also treated as Pomeron exchanges [15]. QGSJET is based on the Quark-Gluon string model, which is in turn based on the Gribov-Regge model [23]. In this model the Pomeron exchange can be viewed as an exchange of a non-perturbative gluon pair. Each of the colliding protons can be considered as a system of a quark and a diquark with opposite transverse momenta. The quark from the first proton exchanges a non-perturbative gluon with the diquark from the second proton and viceversa, thus creating two quark-gluon strings which will decay according to the fragmentation functions to create hadrons [24]. In a similar manner to EPOS, the soft (non-perturbative) and hard (perturbative) contributions are separated by a cutoff value of $Q_{0}^{2}$. In QGSJET, a Pomeron is actually a sum of two contributions: a "soft" Pomeron and a "semi-hard" Pomeron contribution. The soft part represents a purely non-perturbative parton cascade, while the "semi-hard" Pomeron can be viewed as two "soft" Pomerons connected by a parton ladder [25]. At very high energies as those at the LHC and/or small impact parameters, the semi-hard contribution dominates and so it is crucial to take it into account [15, 23]. In these high energy collisions a large number of parton-parton interactions occur, the resulting cascades interacting with one another (Pomeron-Pomeron interactions), and thus their evolution is no longer independent but correlated. QGSJET-II takes into account these non-linear effects, which are computed with enhanced Pomeron diagrams [15, 23]. SIBYLL is based on the dual parton model (DPM), using the mini-jet model for hard interactions and the Lund string fragmentation model for hadronization [26, 27]. Similarly to both EPOS and QGJSET, soft and hard interactions are separated by a transverse momentum scale cutoff value. The soft interactions are treated using the dual parton model (DPM) in which the nucleon is treated as consisting of a quark and a diquark, and similar to the Quark-Gluon string model described above, a quark (diquark) from the projectile combines with the diquark (quark) from the target to form two strings which are fragmented separately using the Lund string fragmentation model. In SIBYLL 1.7, the cutoff value was set to $p_{T}^{\rm min}=\sqrt{5}$ GeV, but from version 2.1 onwards it was changed to a function of the collision energy, which for $\sqrt{s}=7$ TeV returns $p_{T}^{\rm min}\approx3.87$ GeV [26]. 22.2.Versions used in the study -->
2.2.Versions used in the study
The default tune for PYTHIA 8.186 is Tune 4C with the CTEQ6L1 LO PDF set as the default one [7, 28]. Tune 4C (default from version 8.150 onwards [29]) is obtained starting from Tune 2C for which the Tevatron data have been used, by varying MPI and color reconnection parameters to fit the measurements for minimum bias (MB) and underlying event (UE) observables from the ALICE and ATLAS experiments at various collision energies (0.90, 2.36 and 7 TeV). The observables used are for example: charged multiplicity and rapidity distributions, transverse momentum distributions, mean transverse momentum distributions as a function of charged multiplicity, transverse momentum sum densities etc. Tune 2M is obtained in a similar manner to 2C, using the measurements from the CDF experiment at Tevatron, but uses the modified PDF set MRST LO** instead of the CTEQ6L1 LO PDF set [30]. From here on, PYTHIA 8.186 with Tune 2M will be refered to as PYTHIA 8.1 2M. PYTHIA 8.219 has the Monash 2013 tune as its default (with the NNPDF3.3 QCD+QED LO PDF set) [7, 29]. The Monash 2013 tune has been created for a better description of minimum bias and underlying event observables. Similar observables as for the previous tune have been used, with the measurements from the ATLAS and CMS experiments, and the charged pseudorapidity distribution from TOTEM in the forward region. The flavor-selection parameters of the string fragmentation model have been re-tuned using a combination of data from PDG and from the LEP experiments, resulting in an overall increase of about 10% in strangeness production, and a similar decrease of the production of vector mesons. The kaon yields have clearly improved with respect to the CMS measurements, and the yields of hyperons are also slightly improved. The minimum bias charged multiplicity has also increased by about 10% in the forward region [31]. EPOS LHC fundamental parameters are tuned to the cross-section measurements from the TOTEM experiment at $\sqrt{s} = 7$ TeV, leading to a highly improved description of charged multiplicity (compared to EPOS 1.99). In EPOS LHC, the radial flow calculations are corrected. This correction affects the high multiplicity region, again leading to a highly improved description of this observable in this particular region. In EPOS 1.99, the baryon-antibaryon pair and strangeness production were largely overestimated in high energy collisions. This issue was corrected in EPOS LHC, and by using the same string fragmentation parameters as for $e^{+}e^{-}$ collisions, kaon/pion and proton/pion ratio measurements from CMS at $\sqrt{s}=$ 7 TeV are reasonably well described [2]. The statistical particle production mechanism from the core affects strangeness production by removing its suppression. This leads to a good description of the strange baryon yield measurements from CMS at $\sqrt{s}=$ 7 TeV, as shown in Figure 10 from [2]. The radial flow parameters are tuned using charged particle transverse momentum distributions (for minimum bias pp collisions) obtained by the ATLAS experiment at $\sqrt{s}=$ 0.9 and 7 TeV. This leads to a very good agreement with the experimental transverse momentum distributions of identified particles [2]. QGSJETII-04 is distinguished from the previous version, QGSJETII-03, by taking into account all significant enhanced Pomeron diagram contributions, including Pomeron loops, and the tuning to the new LHC data [32]. As QGSJET is used for high energy cosmic rays studies, the current version of the generator has been tuned to the LHC measurements for observables to which the extensive air shower (EAS) muon content is sensitive. Examples of such observables are: charged particle multiplicities and densities, anti-proton and strange particle yields etc. QGSJETII-03 predicts a steeper increase in multiplicity in pseudorapidity plots from $\sqrt{s}=$ 0.9 to 7 TeV than what is observed in the ATLAS measurements for these collision energies. As a consequence, the $Q_{0}^{2}$ separation scale between soft and hard interactions has been increased from 2.5 GeV2 to 3.0 GeV2. For a better description of the ALICE measurements of the antiproton transverse momentum spectrum at $\sqrt{s}=$ 0.9 TeV, the anti-nucleon yield was slightly reduced and the hadronization parameters have been modified so as to enlarge the average transverse momentum of the anti-nucleons. The strangeness production has been enhanced to better describe $K_{S}^{0}$ and Λ rapidity distributions measured by CMS for $\sqrt{s}=$ 0.9 TeV and 7 TeV pp collisions. Another major tuning was done using the inelastic cross-section measurements at $\sqrt{s}=$ 7 TeV from the TOTEM experiment [33]. SIBYLL is a relatively simpler model and emphasis is put on describing observables on which the evolution of extensive air showers depends, like energy flow and particle production in the forward region [34]. In SIBYLL 2.3 soft gluons can also be exchanged between sea quarks or sea and valence quarks. A new feature in version 2.3 is the beam remnant treatment which is similar to that in QGSJET. This new treatment allows particle production in the forward region to be tuned without modifying the string fragmentation parameters. A major tuning procedure has been done for the description of leading particle measurements from the NA22 and NA49 experiments [4]. SIBYLL 2.3 has also been tuned using measurements from $\sqrt{s}= 7$ TeV pp collisions from LHC experiments, namely the inelastic cross-section from TOTEM, and the average antiproton multiplicities and charged particle differential cross-sections as a function of transverse momentum obtained by CMS. The version SIBYLL 2.1 was tuned using the Tevatron data, and it describes, for example, charged pseudorapidity density measurements reasonably well, even from CMS at $\sqrt{s}=$ 7 TeV, as can be seen in Figure 4 from [35]. At the same time, SIBYLL 2.1 overestimates the inelastic cross-section measurements at high collision energies (beyond 1 TeV), leading to the tuning of version 2.3 with the $\sigma_{pp}^{\rm inel}$ measurements at $\sqrt{s}=$ 7 TeV from TOTEM. The antiproton multiplicities measured in fixed target experiments at low collision energies seem to be reasonably well described by version 2.1, but the measurements obtained by the CMS experiment for various collision energies are largely underestimated. To correct this effect in SIBYLL 2.3, a different value of the quark/diquark production probability, $P_{q/qq}$, has been assigned for the fragmentation of mini-jets than for all the other fragmentation processes. The value of $P_{q/qq}$ in SIBYLL 2.1 was fixed to 0.04 for all processes. SIBYLL 2.3 uses the same effective parton density function as the previous version, but the quark and gluon contributions are obtained from the same parametrizations used to calculate the mini-jet cross-section. This leads to a steeper parton distribution function for low Bj?rken x , which combined with the correction of the definition of $p_{T}^{\rm min}$, leads in turn to a better description of the measurements for charged particle cross-sections as a function of transverse momentum obtained by CMS in the range $2\leqslant p_{T} \leqslant 5$ GeV/c . Also, a charm hadron production model was implemented in version 2.3 [35].
3.Data generation and analysis strategySamples of $10^{6}$ inelastic minimum bias pp events at $\sqrt{s}$ = 7 TeV were generated for each generator. For all generators, a stable particle definition of $c\tau\geqslant$ 3 m was used, where τ is the mean proper lifetime of the particle species. This study treats five distinct aspects: charged energy flow, charged particle distributions, charged hadron production ratios and $V^{0}$ ratios. Charged energy flow is computed as the total energy of stable charged particles (p, $\bar{p}$, $K^{\pm}$, $\pi^{\pm}$, $\mu^{\pm}$ and $e^{\pm}$) in the interval 1.9 $\leqslant\eta\leqslant$ 4.9 (10 bins of $\Delta\eta=$ 0.3), divided by the width of the pseudorapidity bin and normalized to the number of visible inelastic pp interactions $N_{\rm int}$ or:
where $N_{\rm part},\eta$ is the number of stable charged particles (as defined above) in a $\Delta\eta=$ 0.3 bin and $E_{i,\eta}$ is the energy of the particles from the respective bin (see [36]). There are four event classes considered for the charged energy flow: inclusive minimum bias events, hard scattering events, diffractive enriched events and non-diffractive enriched events. The inclusive minimum bias events are required to have at least one charged particle in the range: 1.9 $\leqslant\eta\leqslant$ 4.9. The hard scattering events require at least one charged particle with $p_{T}\geqslant 3$ GeV/c in the aforementioned range. Diffractive enriched events require that no particles are generated in the pseudorapidity range of $-3.5 < \eta < -1.5$ and non-diffractive enriched events require at least one particle in this range. These event class definitions are compatible with the ones from [36], from which the LHCb reference measurements were taken. The purity of the diffractive enriched and non-diffractive enriched events samples have been studied for both versions of PYTHIA (as the generator has readily accessible event type information) and are about 94% and 92%, respectively. In Fig. 1, the transverse momentum scale distributions of the hardest parton collisions from hard and soft (non-hard and non-diffractive) events, obtained with PYTHIA 8.186, are shown. As can be seen, the peaks are reasonably well separated with $\mu\approx8.7$ GeV/c, $\sigma\approx4.5$ GeV/c, for hard events and $\mu\approx4.2$ GeV/c, $\sigma\approx3.2$ GeV/, for soft events. The fraction of events that pass both the hard and diffractive enriched event class conditions are negligible. Figure1. (color online) Transverse momentum scale of the hardest subprocess obtained with PYTHIA 8.186 for hard and soft events. The distributions were normalized to the number of visible events for each event class.
The number of visible events for the different event classes are given in Table 1.
Generator
$N_{\rm MB}$
$N_{\rm hard}$
$N_{\rm dif}$
PYTHIA 8.186
88.20%
5.63%
7.04%
PYTHIA 8.219
88.11%
5.05%
7.10%
EPOS LHC
84.92%
4.87%
6.26%
QGSJETII-04
86.72%
7.94%
5.52%
SIBYLL 2.3
89.55%
6.43%
6.47%
PYTHIA 8.1 2M
86.89%
5.08%
7.97%
Table1.Number of visible events for different event classes. $N_{MB}$, the number of visible minimum bias events, is expressed as a percentage of the total number of generated inelastic events $N_{\rm gen}=10^{6}$. $N_{\rm hard}$ and $N_{\rm dif}$, the numbers of visible hard and diffractive events, respectively, are expressed as percentage of $N_{\rm MB}$.
The transverse momentum, pseudorapidity and multiplicity distributions of charged stable particles (p, π, K, e, μ) are presented in Figs. 3-6. The distributions were scaled with the number of visible events from the sample. The visible events are required to contain a minimum of one charged particle satisfying the criteria listed below: Figure3. (color online) Transverse momentum, pseudorapidity and multiplicity distributions for prompt charged particles in the kinematic region $2 < \eta < 4.8$, $p\geqslant 2$ GeV/c and $p_{T} > 0.2$ GeV/c , at $\sqrt{s}$ = 7 TeV. The vertical bars represent the statistical error and the grey bands represent the combined uncertainties (statistical and systematic) [37].
Figure4. (color online) Pseudorapidity and multiplicity distributions for prompt charged particles in the kinematic region $2 < \eta < 4.5$ at $\sqrt{s}$ = 7 TeV. The vertical bars represent the statistical error and the grey bands represent the combined uncertainties (statistical and systematic) [38].
Figure5. (color online) Pseudorapidity and multiplicity distributions for prompt charged particles in the kinematic region $2 < \eta < 4.5$ from "hard" events at $\sqrt{s}$ = 7 TeV. The vertical bars represent the statistical error and the grey bands represent the combined uncertainties (statistical and systematic) [38].
Figure6. (color online) Prompt charged particle pseudorapidity distribution in the kinematic region $p_{T} > $ 40 MeV/c and 5.3 $\leqslant|\eta|\leqslant$ 6.5 , at $\sqrt{s}$ = 7 TeV. The error bars represent the combined statistical and systematic errors [39].
● Figure 3: $2 <\eta < 4.8$, $p\geqslant 2$ GeV/c and $p_{T}>0.2$ GeV/c [37]. ● Figure 4: $2 < \eta < 4.5$ [38]. ● Figure 5: $2.5 <\eta < 4.5$ and $p_{T}>1$ GeV/c. These events are called "hard" [38]. ● Figure 6: $5.3 <\eta < 6.5$ and $p_{T}>40$ MeV/c [39]. The number of minimum bias and hard events with a minimum of one charged particle in the range $2 <\eta < 4.5$ are given in Table 2.
Generator
minimum bias
hard events [% of minbias]
PYTHIA 8.186
87.28%
43.90%
PYTHIA 8.219
87.17%
42.83%
EPOS LHC
83.81%
44.86%
QGSJETII-04
85.57%
54.01%
SIBYLL 2.3
88.19%
46.68%
PYTHIA 8.1 2M
85.87%
37.37%
Table2.Number of events with a minimum of $n_{ch}\geqslant 1$ in $2 < \eta < 4.5$, expressed as a percentage of the total number of generated inelastic events $N_{\rm gen}=10^{6}$. Hard events require a minimum of one charged particle with $p_{T}\geqslant 1$ GeV/c in $2.5 < \eta < 4.5$.
For all distributions mentioned above, pull plots of ($x_{\rm gen}-x_{\rm exp})/\sigma_{\rm exp}$ have been drawn. A particle is defined as prompt if the sum of mean proper lifetimes of its ancestors is less than 10 ps, as in [37-39]. The prompt charged hadron production ratios $\bar{p}/p$, $\pi^{-}/\pi^{+}$, $K^{-}/K^{+}$, $(K^{+}+K^{-})/(\pi^{+}+\pi^{-})$, $(p+\bar{p})/(K^{+}+K^{-})$ and $(p+\bar{p})/(\pi^{+}+\pi^{-})$ are shown in Figs. 9-11 as a function of pseudorapidity. These ratios are computed in the phase space defined by $2.5\leqslant\eta\leqslant 4.5$ and $p\geqslant 5$ GeV/c, and in three transverse momentum intervals, namely $p_{T}<$ 0.8 GeV/c, 0.8 $\leqslant p_{T}<$ 1.2 GeV/c and $p_{T}\geqslant$ 1.2 GeV/c [40]. Figure9. (color online) Prompt charged hadron ratios as a function of pseudorapidity in the kinematic region $2.5\leqslant\eta\leqslant4.5$ and $p\geqslant 5$ GeV/c , in various pT intervals, at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties [40].
Figure10. (color online) Prompt charged hadron ratios as a function of pseudorapidity in the kinematic region $2.5\leqslant\eta\leqslant 4.5$ and $p\geqslant 5$ GeV/c , in various pT intervals, at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties [40].
Figure11. (color online) Prompt charged hadron ratios as a function of pseudorapidity in the kinematic region $2.5\leqslant\eta\leqslant 4.5$ and $p\geqslant 5$ GeV/c , in various pT intervals, at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties [40].
The prompt $V^{0}$ particle ratios $\bar{\Lambda}/\Lambda$ and $\bar{\Lambda}/K_{S}^{0}$ as a function of rapidity are shown in Fig. 12. The ratios are computed in the phase space defined by $2\leqslant y \leqslant 4.5 $ and three pT intervals: 0.15 $ < p_{T} < $ 0.65 GeV/c, 0.65 $ < p_{T} < $ 1.00 GeV/c and 1.00 $ < p_{T} < $ 2.50 GeV/c. Figs. 13-14 show the prompt $V^{0}$ particle ratios as a function of rapidity and as a function of transverse momentum in the $2\leqslant y \leqslant 4.5 $ rapidity interval and the full pT interval 0.15 $ < p_{T} < $ 2.50 GeV/c [41]. Figure12. (color online) Prompt $V^{0}$ particle ratios as a function of rapidity in the kinematic region $2\geqslant y \geqslant 4.5 $, in various pT intervals, at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties, and the small horizontal ones show the statistical component [41].
Figure13. (color online) Prompt $V^{0}$ particle ratios as a function of y in the kinematic region $2\geqslant y \geqslant 4.5$ and $0.15 < p_{T} < 2.50$ GeV/c , at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties, and the small horizontal ones show the statistical component [41].
Figure14. (color online) Prompt $V^{0}$ particle ratios as a function of pT in the kinematic region $2\geqslant y \geqslant 4.5$ and $0.15 < p_{T} < 2.50$ GeV/c , at $\sqrt{s}$ = 7 TeV. The LHCb data vertical bars represent the combined statistical and systematic uncertainties and the small horizontal ones show the statistical component [41].
The statistical uncertainties of the MC predictions are negligible, reaching a maximum of about 3% in the least populated bins at the edges of the considered phase space regions, while for the rest of the bins the uncertainties are of the order of 0.1%. The sources of the reference measurements used in the plots are given at the end of the captions.