1.School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2.Engineering Research Center for Neutron Application Technology, Ministry of Education, Lanzhou University, Lanzhou 730000, China Received Date:2019-01-08 Accepted Date:2019-03-08 Available Online:2019-06-01 Abstract:The potential-driving model is used to describe the driving potential distribution and to calculate the pre-neutron emission mass distributions for different incident energies in the $ {}^{237} \rm{Np(n,f)} $ reaction. The potential-driving model is implemented in Geant4 and used to calculate the fission-fragment yield distributions, kinetic energy distributions, fission neutron spectrum and the total nubar for the $ {}^{237} \rm{Np(n,f)} $ reaction. Compared with the built-in G4ParaFissionModel, the calculated results from the potential-driving model are in better agreement with the experimental data and evaluated data. Given the good agreement with the experimental data, the potential-driving model in Geant4 can describe well the neutron-induced fission of actinide nuclei, which is very important for the study of neutron transmutation physics and the design of a transmutation system.
HTML
--> --> --> -->
2.1.Driving potential distribution
Based on the potential-driving model [19], the driving potential D can be expressed as the sum of symmetric fission potential and asymmetric fission potential [20, 21]
where $ U_{\rm sym}(A_{\rm f}) $ and $ U_{\rm asym}(A_{\rm f}) $ denote the symmetric fission potential and asymmetric fission potential, respectively. $ A_{\rm f} $ is the mass number of the initial fission-fragment. $ A_{\rm sym} $ and $ A_{{\rm asym,}{i}} $ are the peak positions of mass number for the symmetric and asymmetric fission potentials, respectively. $ D(A_{\rm sym}) $ and $ D(A_{{\rm asym,}{i}}) $ are the driving potentials of symmetric and asymmetric fragments, respectively. $ \delta_{\rm sym} $ and $ \delta_{{\rm asym,}{i}} $ denote the widths of symmetric and asymmetric fission mass distribution, respectively. i is the index of different asymmetric fission potentials, and $ \eta_{i} $ defines the relative contribution of each asymmetric fission potential [19]. Figure 1 shows the calculated driving potential distribution for the $ {}^{237} {\rm Np(n,f)} $ reaction. One can see that the calculated results from the potential-driving model agree well with the results from the DNS model [22-24]. Figure1. (color online) The driving potential distribution for the $ {}^{237} {\rm Np(n,f)}$ reaction. The red curve denotes the driving potential distribution calculated by the potential-driving model, and the solid circles denote the driving potential distribution calculated by the DNS model.
22.2.Pre-neutron emission fission-fragment mass distributions -->
2.2.Pre-neutron emission fission-fragment mass distributions
The pre-neutron emission mass distribution, which is significant for understanding the fission process and calculating the fission product yield, has a strong relationship with the driving potential distribution
where C is the normalization constant. $ U_{\rm asym}(A_{\rm f}) $ and $ U_{\rm sym}(A_{\rm f}) $ are the empirical asymmetric fission potential and the empirical symmetric fission potential, respectively. To determine the parameters of $ U_{\rm asym}(A_{\rm f}) $ and $ U_{\rm sym}(A_{\rm f}) $, we consider the contributions from the excitation energy, fission width, neutron evaporation width and energy dependence of evaporation neutrons for the reactions $ {\rm (n,x\widetilde{n}f)} $ [19]. $ A_{\rm CN} $ is the mass number and $ T(A_{\rm CN}) $ is the temperature of the specific compound nucleus. The weight $ \omega $ is the relative contribution of each driving potential, and it is strongly dependent on the peak-to-valley ratio
where $ U^{\rm max}_{\rm asym} $ and $ U^{\rm max}_{\rm sym} $ denote the maximum value of $ U_{\rm asym}(A_{\rm f}) $ and $ U_{\rm sym}(A_{\rm f}) $, respectively. $ P_{\rm peak-to-valley} $ is the peak-to-valley ratio of the mass distribution, and it can be well described by an exponential function [24-26]. Z and A are the charge number and mass number of the fission nucleus, respectively. In the potential-driving model, all parameters are defined, and the model can be applied to calculate the pre-neutron emission mass distributions for neutron-induced fission of all actinide nuclei with incident neutron energies up to 160 MeV without specific adjustments for individual fissioning systems [19]. In order to verify the reliability of the potential-driving model, we have calculated pre-neutron emission mass distributions for the $ {}^{237} {\rm Np(n,f)} $, $ {}^{232} {\rm Th(n,xnf)} $, $ {}^{235} {\rm U(n,f)} $, $ {}^{238} {\rm U(n,xnf)} $ and $ {}^{239} {\rm Pu(n,f)} $ reactions at different incident energies, as shown in Fig. 2. The calculated results agree well with the experimental data [27-31] for neutron-induced actinide nuclei fission (see Fig. 2), which indicates that the potential-driving model can reproduce the measured results at different incident energies. In particular, taking into account the energy dependence of evaporation neutrons from the reactions $ {\rm (n,x\widetilde{n}f)} $ [32, 33], the potential-driving model can calculate pre-neutron emission mass distributions for the $ {}^{238} {\rm U(n,xnf)} $ reaction with incident neutron energies up to 160 MeV, shown in Fig. 2(g). With increasing incident neutron energy, there are clear changes in the experimental data for pre-neutron emission mass distributions, such as the increase of the valley height and the decrease of the peak height. The potential-driving model also describes this behavior. Given the good agreement with the experimental data, the potential-driving model should predict well the mass distributions for the $ {}^{237} {\rm Np(n,f)} $ reaction at unmeasured energies. Figure2. (color online) Pre-neutron emission fission-fragment mass distribution for the ${}^{237} {\rm Np(n,f)}$, ${}^{232} {\rm Th(n,xnf)}$, ${}^{235} {\rm U(n,f)}$, ${}^{238} {\rm U(n,xnf)}$ and ${}^{239} {\rm Pu(n,f)}$ reactions at different incident energies. The red curves denote the calculated data from the potential-driving model, and the solid circles denote the experimental data [27–31] at different incident energies.
-->
3.1.Fission yield distribution
Using the potential-driving model and the G4ParaFissionModel, 14 MeV fast neutron-induced fission of the $ {}^{237} {\rm Np} $ nucleus is simulated in this work. The calculated independent yield distributions from the $ {}^{237} {\rm Np(n,f)} $ reaction are shown in Fig. 3. Comparison with the experimental data [11, 12] and with the evaluated nuclear data from ENDF/B-VII.1 is also shown. Compared to the G4ParaFissionModel, the independent yields calculated with the potential-driving model agree better with the experimental data and ENDF/B-VII.1. Obviously, in the region $ 110<A<125 $ and $ 47<Z<58 $, the calculated independent yields from the G4ParaFissionModel have an opposite tendency to the recommended data. Figure3. (color online) Comparison between the calculated data and the recommended data. (a) The mass chain yield versus mass number for the independent yield from the ${}^{237} {\rm Np(n,f)}$ reaction. (b) The elemental yield versus charge number for the independent yield from the ${}^{237} {\rm Np(n,f)}$ reaction. The red lines denote calculated results from the potential-driving model, the blue lines denote calculated results from G4ParaFissionModel, and the color dots and black dots denote experimental and evaluated data.
Figure 4 shows the calculated cumulative yield distributions from the $ {}^{237} {\rm Np(n,f)} $ reaction, and the evaluated nuclear data from ENDF/B-VII.1. The comparison shows an overall good consistency. The calculated cumulative yields from the potential-driving model have a better relative accuracy than the G4ParaFissionModel. From Fig. 3 and Fig. 4, it can be concluded that the new method proposed in this work to calculate the fission yield distributions with the potential-driving model shows a substantial advance with regard to accuracy. Figure4. (color coline) Comparison between the calculated data and the recommended data. (a) The mass chain yield versus mass number for the cumulative yield from the ${}^{237} {\rm Np(n,f)}$ reaction. (b) The elemental yield versus charge number for the cumulative yield from the ${}^{237} {\rm Np(n,f)}$ reaction. The red lines denote calculated results from the potential-driving model, the blue lines denote calculated results from G4ParaFissionModel, and the black dots denote evaluated data.
23.2.Fission-fragment kinetic energy distribution -->
3.2.Fission-fragment kinetic energy distribution
The fission of a heavy nucleus releases about 200 MeV, and a large part of this energy is released as kinetic energy of the fission-fragments. As one of the most significant physical quantities, it is closely related to the deformation of the fission nucleus and the driving potential at the scission point. The kinetic energy of the fragments is vital for obtaining the mass distributions in the experiments by means of the double kinetic energy (2-E) method [36-38]. In previous works, the single fragment kinetic energy distributions for fast neutron-induced $ {}^{235} {\rm U} $, $ {}^{238} {\rm U} $, $ {}^{237} {\rm Np} $ and $ {}^{239} {\rm Pu} $ fission have been successfully measured [29, 39]. Due to the lack of data at 14 MeV incident energy, and as the only available comparable experimental data are at 4.6 MeV [29], the fission reaction $ {}^{237} {\rm Np(n,f)} $ at 4.6 MeV is first calculated to prove the reliability of the potential-driving model. The calculated two-dimensional distribution of the kinetic energy and mass number of the fission-fragments is shown in Fig. 5(a). The relationship between the average kinetic energy and mass number of the fission-fragments shows that for light fission-fragments the average kinetic energy is almost constant, while there is a large difference for heavy fragments. Neglecting the effects of momentum transfer and neutron emission, the ratio of the kinetic energy of fragments is inverse to the ratio of their mass. Therefore, with increasing mass number, the average kinetic energy roughly follows a downward trend. For the magic nucleus and its complementary nuclei, this downward trend clearly flattens, owing to the shell structure effect. Figure5. (color online) (a) Two-dimensional distribution of the kinetic energy and mass number of the fission-fragments calculated with the potential-driving model at 4.6 MeV incident neutron energy. (b) Comparison of the kinetic energy distributions from Monte Carlo calculated data and experimental data. The red line denotes calculated result from the potential-driving model, the blue line denotes calculated result from G4ParaFissionModel and the black dots denote experimental data.
The calculated kinetic energy distributions of single fragments from the two physical models are shown in Fig. 5(b). They both show good agreement with the experimental data [29], which indicates that the potential-driving model can describe well the sharing of the kinetic energy between two complementary fragments in the $ {}^{237} {\rm Np(n,f)} $ reaction. For $ E_n = $ 1.3 MeV, 2.0 MeV, 4.6 MeV, 5.5 MeV and 14.0 MeV, the relationship between the average total kinetic energy ($ {\overline{TKE}} $) and the heavy fission-fragment mass number is shown in Fig. 6(a). The black curve denotes the results from the potential-driving model. One can see that $ {\overline{TKE}} $ reaches a maximum value at $ A_{H} = 132 $$ {\rm amu} $ on account of nuclear shell structure effects (N = 82, Z = 50). For the $ {}^{237} {\rm Np(n,f)} $ reaction, the value of $ TKE $ around the symmetric fragment mass is about 10 - 20 MeV lower than the peak value, and with increasing incident neutron energies (excitation energy), this energy difference distinctly becomes smaller. In addition, the relationship between the relative average total kinetic energy ($ {\Delta{{\overline{TKE}}}} $) and the heavy fission-fragment mass number is shown in Fig. 6(b). With increasing incident neutron energy, $ \Delta{\overline{TKE}} $ remains the same in the region $ 138<A<155 $, which indicates that the change of excitation energy has no effect on $ {\overline{TKE}} $ for $ 138<A<155 $. A similar trend is reported for other actinide nuclei fission reactions [36, 40]. Figure6. (color online) (a) Relationship between the average total kinetic energy (${\overline{TKE}}$) and the heavy fission-fragment mass number. (b) Relationship between the relative average total kinetic energy ($\Delta{\overline{TKE}}$) and the heavy fission-fragment mass number.
23.3.Fission neutron spectrum and the total nubar -->
3.3.Fission neutron spectrum and the total nubar
In the process of neutron-induced fission of actinide nuclei, the excitation energy of the compound nucleus becomes higher and the nucleus undergoes de-excitation by emitting neutrons and gamma rays. The fission neutron spectrum and the total nubar for the $ {}^{237} {\rm Np(n,f)} $ reaction calculated in this work is shown in Fig. 7. Figure7. (color online) (a) Fission neutron spectrum from the $ {}^{237} {\rm Np(n,f)}$ reaction at 14 MeV. (b) The total average neutron multiplicity as function of incident energy, with a comparison between the experimental data and calculated data.
The calculated fission neutron spectra for the $ {}^{237} {\rm Np(n,f)} $ reaction with the two models are in good agreement with the evaluated nuclear data from ENDF/B-VII.1, Fig. 7(a) , and both follow the Maxwell-Boltzmann distribution [41]. According to the weighted average method, the average energy of fission neutrons can be expressed as
where E denotes the fission neutron energy, and $ N(E) $ denotes the fission neutron yield. The calculated result from the potential-driving model, $ {\overline {E}} = 2.095 \;{\rm{MeV}} $, shows an overall good consistency with the experimental data $ {\overline {E}} = 2.06\pm0.05 \;{\rm{MeV}} $ [42] and $ {\overline {E}} = 2.13\pm0.03 \;{\rm{MeV}} $ [43]. As shown in Fig. 7(b), the calculated results for the total nubar for the $ {}^{237} {\rm Np(n,f)} $ reaction are also in good agreement with the evaluated nuclear data from ENDF/B-VII.1 and experimental data [42, 44].