Spatial variation analysis of topsoil bulk density in the Yili Valley, Xinjiang
SUNGuojun1,2,3,, LIWeihong2,, ZHUChenggang2, YANYuhai2, WANGFei4 1. College of Resources and Environment,Xinjiang University,Urumqi 830046,China2. State Key Laboratory of Desert and Oasis Ecology;Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China3. School of History Agriculture and Tourism,He Xi University,Zhangye 734000,China4. Water Conservancy Bureau of Yili Kazak Autonomous Prefecture,Yili 835000,China 通讯作者:李卫红,E-mail:liwh@ms.xjb.ac.cn 收稿日期:2015-12-10 修回日期:2016-06-21 网络出版日期:2016-07-25 版权声明:2016《资源科学》编辑部《资源科学》编辑部 基金资助:国家科技支撑计划项目(2014BAC15B03)中国科学院“西部之光”一般项目(YB201302)新疆维吾尔族自治区青年科技创新人才培养工程(2013721050) 作者简介: -->作者简介:孙国军,男,甘肃通渭人,博士生,讲师,主要从事灌区农田管理、水土保持以及生态修复等研究工作。E-mail:sgjwin@163.com
关键词:伊犁河谷;土壤容重;空间变异;Kriging插值 Abstract Bulk density is one of the basic physical properties of soil and a core indictor of soil degradation. It is important to study spatial variation for preventing soil erosion. Here,we used traditional statistics,GIS technology and spatial interpolation of Ordinary Kriging to analyze spatial variation of topsoil (0 to 20 cm) bulk density in the Yili River Valley. The results showed that the distribution of topsoil bulk density is normal and a K-S single sample test showed that kurtosis is 0.14 and skewness is 0.15. The range of topsoil bulk density was 1.01 to 1.50g/cm3,the average value was 1.25g/cm3;the variation coefficient was 7.6% and indicates weak variation. Semi variance function of topsoil soil bulk density indicated that the nugget was 0.0056;the sill was 0.0083;and the nugget effect was 32.5%,that is to say,the spatial structures of topsoil bulk density are isotropic. Trend analysis of topsoil bulk density indicated that the topsoil bulk density was gradually reduced from south to north and also from west to east. Spatial interpolation of Ordinary Kriging indicated that the distribution of the topsoil bulk density was strip shaped from south to north,and patch shaped from east to west. The internal natural factors of topsoil bulk density were climate (such as temperature and precipitation),soil parent material (such as organic matter and mineral elements),changes in land use (such as conversion of grassland to farm land and transformation into garden and wood land)and these accelerated changes in topsoil bulk density.
2015年5月底至6月初,选择在具有代表性的伊宁市北山坡地作为采样区(图1)。依据样区内地形、土壤性质、坡度、坡向等自然特征,依据高程的变化,从谷地到坡顶,按照不同的坡度和坡向,在草地、果园、生态经济林、农业用地内布置样点,并对每个样点进行GPS定位,记录其经纬度坐标和高程,运用罗盘记录其方位。每个样点采用环刀法取样(容积为100cm3),采取表层(0~20cm)127个土壤样品,其中,88个草地样品,12个林地样品,18个园地样品,9个耕地样品。土样就地密封后带回实验室,在105℃下烘干8~12h至恒重,称重并计算其容重。 显示原图|下载原图ZIP|生成PPT 图1研究区位置及采样点分布 -->Figure 1Study area and distribution of the sampling points -->
针对已处理的122个样品数据,在Spss19.0中,绘制表层(0~20cm)土壤容重频率分布图(图2),图2表明,表层土壤容重频率分布为正态分布。P-P散点图正态假设性检验表明,数据服从正态分布,通过K-S单样本检验,峰度为0.14,偏度为0.15,相伴概率为0.86,远大于显著性水平0.05,判定数据服从正态分布,满足地统计学分析相关要求。因此,未对122个样点数据进行数据转换等相关处理,后续分析都在此数据上进行。 显示原图|下载原图ZIP|生成PPT 图2表层土壤容重的频率 -->Figure 2Frequency distribution of topsoil bulk density -->
土地利用的变化显著改变了地表覆盖过程,从而影响了与地表覆盖相关的诸如土壤水分、土壤容重、土壤养分等物理、化学性质。通过对采样区内4a林地、8a园地、3a农用地和草地等土地利用表层容重变异系数、平均值进行统计(表1)。结果表明,变异系数中,草地和8a园地均为7%,农用地为8%,4a林地最大,为10%;表层土壤容重中,草地最低,为1.24g/cm3,8a园地最高,为1.30g/cm3,4a林地和3a农用地依次为1.25g/cm3和1.27g/cm3。草地农垦后破坏了土壤原有的结构,使得土壤容重增加[17],采样区内,4a林地、3a农用地和8a园地均为草地农垦。与草地容重相比,4a的林地、3a的农用地和8a的园地土壤容重分别增加了0.12%,1.87%,4.06%,土壤容重均呈增加趋势;相反,弃耕可以减小土壤容重,韦兰英等对黄土高原不同弃耕年限的土壤容重值变化认为,在弃耕地中,其容重随弃耕年限增加而减小,大小依次为4a<15a<20a<25a[18]。也有研究认为,农业耕作提高土壤容重[17,19]。总之,土地农垦化后破坏土壤原有的结构,使得土壤容重增加,加大土壤潜在退化趋势。因此,伊犁河谷农垦过程中,应该加强土壤理化性质的监测,合理布局农业产业结构,防止土壤退化,为伊犁河谷土地开垦可持续利用提供保障。 Table 1 表1 表1表层土壤容重的基本统计值 Table 1Descriptive statistics for the topsoil bulk density
在ArcGIS 10.0软件的地统计分析中,选择(Geostatistical Analyst)模块中的【探索性数据】|【趋势面分析】,对伊犁河谷表层土壤容重进行趋势面分析。图3中每条蓝色竖线代表一个采样点土壤容重的数据值,这些点被投影到东西向和南北向正交平面上,图3中,X轴方向为从西到东的方向,Y轴方向为从南到北方向,Z代表土壤容重。图3分析表明:伊犁河谷表层土壤容重从西向东呈逐渐减小趋势;从南向北也呈逐渐减小的趋势。 地统计学是以区域化变量为理论基础,以变异函数为主要分析工具[20]。依据空间变异性分析原理,半方差模型中C1为偏基台值,C0为块金值,C1+C0为基台值,其块基比C0/(C1+C0)可以反映空间相关的程度。一般:当C0/(C1+C0)<25%时,表现为强相关性;当25%<C0/(C1+C0)<75%时,为中等相关性;当75%< C0/(C1+C0)时,空间相关程度很弱[16,20]。半方差分析表明,伊犁河谷表层土壤容重的块金值为0.0056,基台值为0.0083,偏基台值为0.0027,块金效应为C0/(C1+ C0)为32.5%,其值介于25%~75%之间,表明在空间分布上,表层土壤容重为中等相关性。 变异函数理论认为,当采样点的距离为零时,半变异函数应为0,但由于测量误差和空间变异性等原因,即使采样点距离非常接近,但它们的半变异函数不为0,存在块金值。伊犁河谷表层土壤容重的块金值C0=0.0056,为正值。说明在采样点的选择、采样过程和样品处理环节,以及土壤本身性质等方面,产生了误差,引起了土壤容重的空间变异。 显示原图|下载原图ZIP|生成PPT 图3采样点表层土壤容重趋势面分布 -->Figure 3Trend analysis of topsoil bulk density sampling points -->
4.4 土壤容重的空间插值分析
空间趋势面分析和块金值结果表明,伊犁河谷表层土壤容重存在着空间相关性,有必要采取空间插值方法,分析其空间变化轨迹。为此,在SURFER(9.0)软件下,采用普通克里金(Ordinary Kriging)空间插值方法,进行内插,得到土壤容重空间分布等值线图(图4)。图4表明,伊犁河谷表层土壤容重分布呈斑块状和条带状镶嵌分布,从南到北和从西到东,表层土壤容重均呈减小。除受人为农垦原因增加其容重外,在大尺度上,主要受植被因素的影响。采样过程中发现,从南到北和从西到东,植被盖度呈增加趋势,植被多寡影响土壤理化性质,植被根系可增加土壤孔隙度,其枯枝、落叶可增加土壤腐殖质的含量,改善土壤质量,增大入渗性、透气性、持水性、溶质迁移性,从而减小土壤容重 [21,22]。植被的变化与降雨呈正相关,植被的NDVI指数与降雨相关性很高,降雨多,植被盖度高[23]。伊犁河谷区,随着海拔的升高,降雨增大,潜在的植被盖度增大,是土壤容重减小的又一重要因素。 显示原图|下载原图ZIP|生成PPT 图4表层土壤容重空间插值 -->Figure 4Spatial interpolation distribution of topsoil bulk density -->
5 结论
本文结合野外调研采样和室内数据分析,采用经典统计学、趋势面和空间插值方法,探讨了伊犁河谷表层土壤容重的变化特征,得到以下研究结果: (1)基本统计学分析和K-S单样本检验均表明,伊犁河谷表层土壤容重数据均服从正态分布;表层土壤容重的平均值为1.25g/cm3,最小值为1.01g/cm3,最大值为1.50g/cm3,其变幅为0.48g/cm3,变化幅度大;经典统计表明,其CV值为7.6%,属于弱变异性。 (2)与开垦前相比较, 4a的林地、3a的农用地和8a的园地土壤容重分别增加了0.12%,1.87%,4.06%,其容重大小依次为:8a园地>3a农用地>4a林地>草地。 (3)空间变异性分析表明,伊犁河谷表层土壤容重的块金值为0.0056,基台值为0.0083,快基比为C0/(C1+C0)为32.5%,其值介于25%~75%之间,为中等相关性; (4)普通克里金(Ordinary Kriging)插值结果表明,受海拔、降雨和植被等自然因素,以及农垦等人为因素影响,从南到北和从西到东,其容重均减小;而在局部区域,土壤容重呈现斑块状和条带状镶嵌分布。 The authors have declared that no competing interests exist.
[Zheng JY,Shao MA,Zhang XC.Spatial variation of surface soil’s bulk density and saturated hydraulic conductivity on slope in Loess Region [J]. ,2004,18(3):53-56.] [本文引用: 2]
[Liu XX,LiuJ,Zhao SW,et al.Spatial variation of topsoil bulk density of farmland on county level in northwest arid area [J]. ,2013,27(4):148-151.] [本文引用: 1]
[Zhang CM,Wang GX,Long XJ,et al.Study on spatial heterogeneity of soil bulk density of typical deteriorated minor watershed in Alpine Meadow [J]. ,2007,(6):90-95.] [本文引用: 1]
[LianG,Guo XD,Fu BJ,et al.Spatial variability of bulk density and soil water in a small catchment of the Loess Plateau [J]. ,2006,26(3):648-654.] [本文引用: 1]
[GengR,Zhang GH,Li ZW,et al.Spatial variation of soil bulk density of ephemeral gullies in hilly areas of Loess Plateau [J]. ,2014,28(4):257-262.] [本文引用: 1]
[Fu ZH,Wang YQ,An ZS.Spatio-temporal characteristics of soil bulk density and saturated hydraulic conductivity at small watershed scale on Loess Plateau [J]. ,2015,31(13):128-134.] [本文引用: 2]
[XiaoB,Wang QH,Yao SH,et al.Spatial variation of soil nutrients and bulk density in rehabilitated slope land on northeast of Loess Plateau [J]. ,2009,23(3):92-96.] [本文引用: 1]
[Zhang HQ,YangY.Assessment of limiting factors of undeveloped agricultural land over newly reclaimed areas in Yili,Xinjiang [J]. ,2009,31(12):2009-2015.] [本文引用: 1]
[Shi RX,Yang XH,Wang LX.Soil nutrient properties and land deve-lopment in the newly reclaimed area of Yili,Sinkiang Muni-cipality,China [J]. ,2009,31(12):2016-2023.] [本文引用: 1]
[Yang YH,Chen YN,Li WH,et al.Soil organic carbon distribution of different vegetation types in the Ili River Vally [J]. ,2010,65(5):605-612.] [本文引用: 1]
[Sun HL,Li WH,Chen YP,et al.Study on types and ecological services values of the grassland in the Ili River basin,Xinjiang [J]. ,2010,30(4):887-894.] [本文引用: 1]
[Xu HF,Song TQ,Huang GQ,et al.Spatiotemporal variation of soil moisture under different land use types in a typical Karst hill region [J]. ,2014,34(18):5311-5319.] [本文引用: 2]
[LiuF,Zhang HQ.Effects of land use and topographic factors on the variability of soil nutrients in newly reclaimed area in Yili [J]. ,2012,34(4):758-768.] [本文引用: 2]
[Guo XD,Fu BJ,Chen LD,et al.Effects of land use on soil quality in a hilly area-a case study in Zunhua County of Hebei Province [J]. ,2001,56(4):448-455.] [本文引用: 2]
[Wei LY,Shangguan ZP.Relationship between vertical distribution of fine root in different successional stages of herbaceous vegetation and environment in Loess Plateau [J]. ,2006,26(11):3740-3748.] [本文引用: 1]
[WangL,ZhangQ,Niu XW,et al.Effects of different land-uses on soil physical and chemical properties in the Loess Plateau of Shanxi Province [J]. ,2007,15(4):53-56.] [本文引用: 1]
[Yu AZ,Huang GB,ChaiQ,et al.Effects of different tillage on soil aggregates size distribution and stability of winter-wheat field [J]. ,2011,25(6):119-123.] [本文引用: 1]
[Yang LX,Chen SF,An JJ,et al.Relationships among community diversity and soil organic matter,total nitrogen under different vegetation types in the Gully Region of Loess Region [J]. ,2014,22(2):291-298.] [本文引用: 1]
[Chen CC,Xie GD,ZhenL,et al.Analysis of Jinghe watershed vegetation dynamics and evaluation of its relation to precipitation [J]. ,2008,28(3):925-938.] [本文引用: 1]