Correlation between fractal characteristics of soil particles and biomass of steppe plants in Xilinhot
SUNGaiqing, LISuying, ZHAOYuanyuan, WANGRan, RENLijuan, CHANGYing, WANGJiwei Department of Environmental Science and Engineering,College of Energy and Power Engineering,Inner Mongolia University of Technology,Hohhot 010051,China 通讯作者:李素英,E-mail:lisuying70@sina.com 收稿日期:2015-07-22 修回日期:2016-03-25 网络出版日期:2016-06-20 版权声明:2016《资源科学》编辑部《资源科学》编辑部 基金资助:国家自然科学基金项目(31060078)内蒙古自然科学基金项目(2016MS0307)内蒙古自治区“大学生创新创业训练计划”项目 作者简介: -->作者简介:孙改清,女,山西大同市人,硕士生,主要从事环境科学方面的研究。E-mail:sungaiqing@163.com
关键词:土壤分形维数;土壤颗粒;典型草原;植物功能群;植物生物量;锡林浩特 Abstract In order to determine whether soil fractal dimension affects the growth of steppe plants,we analyzed the correlation between soil fractal dimension and plant biomass. Eighty-eight soil samples were collected in the Xilinhot area in 2012 and we used linear regression,correlation analysis and other statistical methods to analyze the relationship between soil fractal dimension and particle content,soil fractal dimension and plant biomass. We found that soil fractal dimension had a significant negative correlation with coarse sand content,no significant correlation with fine sand content,and an extreme significant correlation with silt and clay. To some extent,soil fractal dimension could reflect the content of soil particles,especially clay content;according to morphological characteristics and the ways adapted to the natural environment,grassland plants were divided into different functional groups,among life-form functional groups the biomass of perennial bunch grasses,semi-shrubs,annuals and biennials were positively correlated with soil fractal dimension (R was respectively 0.345,0.674 and 0.238) and indicates that soil fractal dimension probably impacts the accumulation of biomass in these three functional groups. Among functional groups of water ecological types,xerophytes and intermediate mesophytes had no significant correlation with soil fractal dimension,but xerophytes were positively correlated with clay particle content and intermediate mesophytes biomass was positively correlated with silt content. In view of the relationship between particle content and fractal dimension,the growth of these plants were positively correlated with soil fractal dimension. Perennial rhizome grasses,forbs,intermediate xerophytes and mesophytes had no significant correlation with soil fractal dimension.
Keywords:soil fractal dimension;soil particles;typical steppe;plant functional groups;plant biomass;The Xilinhot -->0 PDF (2368KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 孙改清, 李素英, 赵园园, 王冉, 任丽娟, 常英, 王继伟. 锡林浩特土壤颗粒分形特征与草原植物生物量的相关性研究[J]. , 2016, 38(6): 1065-1074 https://doi.org/10.18402/resci.2016.06.06 SUNGaiqing, LISuying, ZHAOYuanyuan, WANGRan, RENLijuan, CHANGYing, WANGJiwei. Correlation between fractal characteristics of soil particles and biomass of steppe plants in Xilinhot[J]. 资源科学, 2016, 38(6): 1065-1074 https://doi.org/10.18402/resci.2016.06.06
2.2.1 土样采集与分析方法 2012年7月,在锡林浩特典型草原地区的30个样地中采集土壤和植物生物量,共计88个土样(其中有两个土层位于坡地,已达岩层,未取土样),采样点分布见图1。采集植物生物量的灌木样方面积为10m×10m,草本样方面积为1m×1m。样方统计内容包括植被种类组成、植株高度、株丛数、盖度、地上生物量(齐地分种剪下样方中植物的地上生物量),并于实验室按植物种称取其鲜重和干重。植物生物量大小体现了样方植物的初级生产力及群落的稳定性,可以用来表征区域的植被生长态势。本研究侧重于分析土壤环境(土壤粒级含量组成、土壤分形维数)对植物生物量的影响。 为了更好地体现分形维数与土壤各粒级含量及草原植物生物量的内在联系,本次土样采集均沿地表0~5cm,5~20cm,20~40cm三个深度分层取样,各层分别取1kg左右土样,用四分法进行混合。采用Master Size 2000型激光粒度仪测定各土样的粒径组成,并用美国制的分类标准对土壤粒级进行划分。利用Excel 2003对各样地土壤分形维数与其对应粒径颗粒含量(%)做散点图,并进行线性回归拟合,属于一元线性回归,可以得到两变量间的关系式y=ax+b,决定系数R2用来表示拟合程度的好坏,R2(0,1)越接近1表示线性拟合性越好。使用SPSS19.0对土壤分形维数按土层深度进行单因素方差分析,比较多个样本间的均数。计算F统计值,如果相伴概率P小于显著性水平a,则认为3个土层分形维数值有显著差异。Tukey HSD多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度,哪个水平显著,哪个不显著。进行植物生物量(g)、平均高度(cm)、株丛数与土壤分形维数、各粒级含量的相关分析,以确定自变量与因变量之间的线性相关程度,相关系数R**表示在0.01水平(两侧)上显著相关,R*表示在0.05水平(两侧)上显著相关,其他表示无显著相关性;相关系数为正,表示正相关,相反则为负相关。 显示原图|下载原图ZIP|生成PPT 图1研究区区位及采样点分布 -->Figure 1The samples in the research region -->
本研究所测定样方分形维数大小处于2.297~2.795之间(表1,图2),说明部分样方的土壤质地较为松散,其大多分布在5~40cm层。表层土壤分形维数的标准差最小,这组数据较接近平均值,数值较稳定。20~40cm分形维数的大小变化最明显,数据离散性较大。从表1和图2还可以看出,土壤分形维数(均值)随着纵向深度的增加而逐渐减小。由于深层土壤机械组成中砂粒含量逐渐增加,即土壤质地由轻变重,土壤结构变得疏松。而土壤微生物、植物根系和土壤酶集中分布于草原土壤的浅表层,故生物成土作用较强,使得土壤浅表层的土壤颗粒较细,分形维数大。 Table 1 表1 表1不同深度土层土壤分形维数的统计值 Table 1Statistical results of fractal dimension of different soil layers
土层深度/cm
样本数N
D均值
极小值
极大值
标准差
标准误差
0~5
28
2.623
2.510
2.795
0.061
0.012
5~20
28
2.580
2.330
2.678
0.069
0.013
20~40
28
2.572
2.297
2.683
0.092
0.017
0~40
84
2.592
2.297
2.795
0.077
0.008
注:D值表示分形维数(下同),样本数28是由于样方6和样方9各自缺少一层数据,故未进行单因素方差分析。 新窗口打开 显示原图|下载原图ZIP|生成PPT 图2研究区不同深度土层的土壤分形维数 -->Figure 2Fractal dimension of different soil layers in study area -->
土壤分形维数反映土壤粒级颗粒大小[12]。相关分析得出,粗砂粒(0.2~2.0mm)与3层土壤分形维数都呈极显著负相关,R分别为-0.800、-0.623、-0.524(P<0.01),其中0~5cm层相关性最为显著,随土层深度的增加,相关性依次递减。细砂粒(0.02~0.2mm)与分形维数无明显相关性,只有5~20cm层相关性达到显著水平(R=0.274,P<0.05)。粉粒(0.002~0.02mm)与分形维数在0~5cm层极显著相关(R=0.780,P<0.01),其他两层相关性并不显著。黏粒(<0.002mm)与分形维数在各土层都呈极显著正相关性,相关性系数分别为0.946、0.874、0.888(P<0.01)。 利用线性回归拟合各粒级颗粒含量(%)与分形维数的相关性(图3)。其中,粗砂粒与分形维数的回归方程斜率为负,即负相关,R2=0.4115(决定系数R2取0~1,值越大表示线性越好)。细砂粒含量与分形维数的回归分析中,决定系数R2=0.0260,各数据点的分布明显不均匀,分形维数变化幅度大,这与相关性分析结果一致。粉粒含量(%)、黏粒含量(%)与分形维数的回归直线中,R2分别是0.1720、0.7647,且回归方程斜率为正,可见土壤分形维数与粉粒、黏粒存在正相关性,其中黏粒的各数据点多数分布在回归线附近,说明分形维数与黏粒含量为极显著正相关。土壤分形维数与不同粒级含量的相关性有明显差异。因此,土壤分形维数可以用来表示土壤粒级的分布特点,黏粒含量越高,分形维数越高,表征了土壤结构越紧实的特性;粗砂粒含量高,分形维数越低,则表征了相对松散、通透性越好。 显示原图|下载原图ZIP|生成PPT 图3研究区土壤粒度组成与分形维数 -->Figure 3The relationship between soil particle size and soil fractal dimension in study area -->
3.3 草原植物与土壤分形维数
研究区记录到的植物种类总计49种,其中出现次数较低的植物不进行讨论分析,只对其中26种出现次数较高的植物进行计算分析。 3.3.1 生活型功能群与土壤分形维数 生活型功能群的生物量(g)与土壤各粒级含量(%)、土壤分形维数D进行相关性分析(表2)。结果表明,多年生丛生禾草生物量与5~20cm层土壤分形维数相关性为0.345(P<0.05)。多年生丛生禾草与0~5cm土层细砂粒含量相关系数为0.332(P<0.05)。对于小半灌木而言,其生物量在20~40cm层与分形维数相关系数达到0.674(P<0.05)。一、二年生植物的生物量与分形维数D在表层(0~5cm)呈正相关,相关系数达到0.238(P<0.05),而5~20cm层的生物量与分形维数呈负相关,相关系数为-0.219(P<0.05)。多年生根茎禾草、多年生杂类草的生物量与土壤分形维数并无明显相关性。 不同的植物生活型功能群与不同深度土层的分形维数相关性分析显示,多年生丛生禾草根系较集中分布在5~20cm,与土壤分形维数之间的相互作用也发生在这一层;小半灌木生物量与分形维数在20~40cm层呈正相关性,由于其主根较发达,侧根密集,具有固定细颗粒的作用,使土壤在此深度变得紧实,进而储存上层淋溶下来的养分,有利于植物的生长以及土壤微生物繁殖[39]。一、二年生植物的生物量与表层土的分形维数呈正相关,根系分布较浅,多集中在0~10cm,表层土受外界扰动较大,一旦环境发生改变,一、二年生植物生长也随之改变。 Table 2 表2 表2研究区植物功能群与土壤分形维数的相关性 Table 2The correlation between plant functional groups and soil fractal dimension in study area
分形理论用于研究具有非规则性和自相似性的客观实体的形状,对分形体复杂结构进行描述的主要工具是分形维数(Fractal Dimension)。土壤颗粒的粒径分布具有一定的分形特征,而分形维数能够有效反映粒径大小和分布的均匀程度。本文利用杨培岭的模型,假定土粒的质量密度为一恒量,且不考虑不同土粒形状差异的基础上,建立了土壤颗粒的累积重量与粒径的分形关系,通过各粒级颗粒含量计算得到土壤分形维数。分形维数大小反映了土壤组成中黏粒、粉粒和砂粒含量的变化以及土壤结构的变化,正因如此,土壤分形维数的变化将关系到草原植物的生长。 锡林浩特地区的土壤分形维数大小为2.297~2.795,随着土壤深度的增加而减小。不同深度土壤分形维数之间存在显著性差异。土壤分形维数与各粒级颗粒含量的相关性分析表明,分形维数与粗砂粒含量呈极显著负相关,与细砂粒含量不相关,与粉粒含量在0~5cm层呈极显著正相关性,与黏粒含量呈极显著正相关。 不同生活型功能群生物量与土壤分形维数的相关性分析,表明:一、二年生植物、多年生丛生禾草、小半灌木功能群其生物量与分形维数呈正相关,分别表现在0~5cm层、5~20cm层、20~40cm层,这与三类植物的根系分布特征以及生长习性有关。多年生根茎禾草和多年生杂类草的生物量与土壤分形维数并无明显相关性。 生态类型功能群中,旱生植物与黏粒含量呈正相关,旱中生植物生物量与粉粒含量呈正相关,究其颗粒含量与分形维数的相关性关系,即可得到旱生、旱中生植物生物量与土壤分形维数间的正相关性,而中旱生、中生植物生物量大小与分形维数没有显著的相关性。 土壤分形维数的增大表明该土壤适合画眉草、蓖齿蒿、冷蒿等植物的生长;土壤分形维数越小的土壤,适合双齿葱、虫实等植物的生长。 The authors have declared that no competing interests exist.
Tripathi SK,Kushwaha CP,Basu SK.Application of fractal theory in assessing soil aggregates in Indian tropical ecosystems [J]. ,2012,23(3):355-364. [本文引用: 1]
[WangD,Fu BJ,Chen LD,et al.Fractal analysis on soil particle size distributions under different land-use types:A case study in the loess hilly areas of the Loess Plateau,China [J]. ,2007,27(7):3081-3089. ] [本文引用: 1]
[Wang HJ,Li XW,Shi XZ,et al.Distribution of soil nutrient under different land use and relationship between soil nutrient and soil granule composition [J]. ,2003,17(2):44-47.]
[Zhang QL,Li ZB,Xu GC,et al.Soil particle-size distribution and fractal dimension of different land use types in Yingwugou small watershed of Dan River [J]. ,2013,27(2):244-249.] [本文引用: 1]
[Su YZ,Zhao HL.Fractal features of soil particle size distribution in the desertification process of the farmland in Horqin Sandy Land [J]. ,2004,24(1):71-74.] [本文引用: 1]
[Jia XH,Li XR,Li YS.Fractal dimension of soil particle size distribution during the process of vegetation restoration in arid sand dune area [J]. ,2007,26(3):518-525.] [本文引用: 1]
[Hu YF,Liu JY,Zhuang DF,et al.Fractal dimension of soil particle size distribution under different land use/land coverage [J]. ,2005,42(2):336-339.] [本文引用: 1]
[Huang GH,Zhan WH.Fractal property of soil particle size distribution and its application [J]. ,2002,39(4):490-497.] [本文引用: 1]
[16]
CarusoT,Bartoa EK,Siddiky M R K,et al. Are power laws that estimate fractal dimension a good descriptor of soil structure and its link to soil biological properties [J]. ,2011,43(2):359-366.
[17]
ArasanS,AkbulutS,Hasiloglu AS.The relationship between the fractal dimension and shape properties of particles [J]. ,2011,15(7):1219-1225.
[18]
Gao GL,Ding GD,Zhao YY,et al.Fractal approach to esti-mating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia,NW China [J]. ,2014,43:236-243. [本文引用: 1]
[Gui DW,Lei JQ,Zeng FJ,et al.Analysis on soil PSD and its affecting factors at different depths in Oasis Farmland-a case study in the Qira Oasis [J]. ,2011,28(4):622-629. ] [本文引用: 1]
[Yang HL,GaoP,Wang HW,et al.Characteristics of soil particles fractal dimension under different forest stands of the ecological restoration area in Dahei Mountain area [J]. ,2009,7(5):52-57.]
[Cao YZ,Wang XD.Fractal dimension of soil particle-size distribution characteristic in the Alpine Steppe of the Northern Tibet [J]. ,2014,32(4):438-443.]
[Ren TT,WangX,Chen WJ,et al.Relationship of soil particles fractal characteristics and clay content under different land use ways [J]. ,2013,44(2):202-207.] [本文引用: 1]
[ZhangL,Wang CT,LiuW,et al.Relationships of dominant species root activity,plant community characteristics and soil micro-environment in artificial grassland over different cultivation periods [J]. ,2012,21(5):185-194.] [本文引用: 1]
[Li SY,Liu ZL,ChangY,et al.The stability and compensation of the primary productivity of the typical steppe in Inner Mongolia [J]. ,2014,28(1):1-8.] [本文引用: 1]
[Gong AD,He YR.Study on fractal features of soil structure of degraded soil in dry and hot valley region of Jinsha River [J]. ,2001,15(3):112-115.] [本文引用: 2]
[Zhan HX.Fractal Features of Soil Particle Size Distribution and Hydrological Property under Different Vegetation Communities in Hilly Area of Middle Southern Region of Shandong Province[D]. ,2009.] [本文引用: 1]
[Chinese Academy ofSciences,Ningxia expedition of Inner Mongolia. [M]. Beijing:Science Press,1985.]
[34]
Vitousek PM,Hooper DU.Biological Diversity and Terrestrial Ecosystem Biogeo-Chemistry[A]. Schulze E D,Moonev H A. Biodiversity and Ecosystem Function [,1993. [本文引用: 1]
[Bai YF,Li LH,Huang JH,et al.The influence of plant diversity and functional composition on ecosystem stability of four stipa communities in the Inner Mon-golia Plateau [J]. ,2001,43(3):280-287.] [本文引用: 1]
[Bai YF,Zhang LX,ZhangY,et al.Changes in plant functional composition along gradients of precipitation and temperature in the Xilin River Basin,Inner Mongolia [J]. ,2002,26(3):308-316.] [本文引用: 1]