Effect of hydrological processes,water temperature and river channel geometry changes on ice floods in the Ningxia-Inner Mongolia Reach of the Yellow River
SUTeng1,2,, HUANGHeqing1,, ZHOUYuanyuan1 1. Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China2. University of Chinese Academy of Sciences,Beijing 100049,China 通讯作者:通讯作者:黄河清,E-mail:huanghq@igsnrr.ac.cn 收稿日期:2016-01-10 修回日期:2016-04-5 网络出版日期:2016-05-25 版权声明:2016《资源科学》编辑部《资源科学》编辑部 基金资助:国家国际科技合作专项(2013DFA91700)宁夏水利厅委托项目国家自然科学基金面上项目(51179181) 作者简介: -->作者简介:苏腾,男,山东泰安人,博士生,主要从事河流地貌研究。E-mail:sut.12s@igsnrr.ac.cn
关键词:黄河宁蒙河段;凌汛;河道形态;水文过程;水温过程 Abstract The hydrological process and water temperature process have changed markedly during the flood season in the Ningxia-Inner Mongolia reach of the Yellow River in recent decades. Assessing the impact on river channel geometry,ice floods and the possible disaster- causing effects are needed Based on cross-sectional data measured before each ice flood season at Shizuishan,Dengkou,Bayangaole,Sanhuhekou and Toudaoguai gauging stations located in the stable frozen section of the Ningxia-Inner Mongolia reach from 2008 to 2013,we selected the lowest water level for each station as the given water level to calculate geometrical parameters under a given water level. To reveal geometrical changes in cross section effectively,we selected channel cross-section area,mean water depth and elevation of thalweg in order to analyze changes. We found that runoff and mean water temperature during each flood season increased from 2008 to 2013 in the Ningxia-Inner Mongolia reach of the Yellow River. The discharge process of the Qingtongxia Reservoir in each ice flood season accorded with ideal discharge processes and thus contributed to a reduction in ice flood disasters. The cross-section area and mean water depth before each ice flood season showed an increasing trend year by year at the five main gauging stations,while the elevation of thalweg dropped comparatively. These changes in channel geometry caused the enhancement of flow capacity,helpful for relieving possible disasters during thawing periods.
Keywords:Ningxia-Inner Mongolia Reach;ice flood;channel’s geometry;hydrological process;water temperature process -->0 PDF (0KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 苏腾, 黄河清, 周园园. 黄河宁蒙河段水文-水温过程和河道形态变化对凌汛的影响[J]. , 2016, 38(5): 948-955 https://doi.org/10.18402/resci.2016.05.14 SUTeng, HUANGHeqing, ZHOUYuanyuan. Effect of hydrological processes,water temperature and river channel geometry changes on ice floods in the Ningxia-Inner Mongolia Reach of the Yellow River[J]. 资源科学, 2016, 38(5): 948-955 https://doi.org/10.18402/resci.2016.05.14
宁蒙河段位于黄河上游的末端,是黄河最靠北的河段(图1)。该河段上起宁夏中卫市,下讫内蒙古托克托县,全长1217km,其中宁夏河段长397km,内蒙古河段长约820km[17]。河段主要支流有“十大孔兑”等,夏季汛期暴雨产生的山洪携带大量泥沙经这些支流注入黄河,导致主槽摆动,河床淤积抬高,河道越来越不通畅[18,19]。宁蒙河段河道流向几经转变:自宁夏中卫市南长滩至内蒙古磴口县,河道大致自西南向东北流动;自磴口县至呼和浩特市喇嘛湾,大致自西北向东南流动;喇嘛湾以下,河道基本为自北向南流动。受大陆性季风气候控制,宁蒙河段所在区域冬季寒冷干燥,平均气温在0 ℃以下的时间可持续4~5个月,极端气温达-39℃[20]。每年12月到翌年3月,河面结冰。由于纬度差异引起气温差异,河段下游的封河时间早于上游,开河时间晚于上游,使得凌汛期容易出现冰塞、冰坝等特殊凌情,严重的将导致凌灾的发生[21]。 显示原图|下载原图ZIP|生成PPT 图1黄河宁蒙河段区位 -->Figure 1Location of Ningxia-Inner Mongolia Reach of the Yellow River -->
4.1.1 青铜峡水库凌汛期下泄水量过程 青铜峡水库位于宁夏回族自治区的青铜峡峡谷出口处,为距离稳定性封冻河段最近的控制性水库,其出库流量是影响研究区域凌情的一个重要因素。从图2中可以看出,2008年以来,青铜峡站各年凌汛期下泄流量过程较为一致:①11月中旬至12月中旬,青铜峡水库下泄流量逐渐增大;②12月中旬至2月中旬,下泄流量较前一阶段略微减小,过程平稳;③2月中旬至3月中旬,下泄流量逐渐减小。青铜峡水库自2008年以来各年凌汛期下泄流量过程符合当前已经总结出的青铜峡水库理想下泄过程[6],对于减小凌灾的发生几率具有重要的作用。 显示原图|下载原图ZIP|生成PPT 图2青铜峡水库凌汛期下泄流量过程 -->Figure 2Discharge progress of Qingtongxia Reservoir during ice flood -->
青铜峡水库凌汛期下泄径流量如图3所示。自1951年以来,研究区域的来水量呈现逐渐增大的趋势,其中刘家峡水库投入运行前(1951-1968年)凌汛期平均径流量为58.78亿m3,自刘家峡水库运行至龙羊峡水库运行期间(1969-1986年)凌汛期平均径流量为66.47亿m3,较前一时期增大了13%,龙刘水库联合运行后的2008-2012年间,凌汛期平均径流量为71.22亿m3,较刘家峡水库运行前增大了21.16%。因此,2008年以来,青铜峡水库凌汛期下泄流量有所增大,但下泄过程基本不变。 显示原图|下载原图ZIP|生成PPT 图31951-2012年青铜峡站凌汛期径流量变化过程 -->Figure 3Variation of runoff at Qingtongxia Station during ice flood season from 1951 to 2012 -->
4.1.2 凌汛期水温变化过程 图4为1971-2012年青铜峡站凌汛期平均水温变化过程,可以看出,龙刘水库联合运行之前,水温较为稳定,该时期凌汛期平均水温为2.82℃。龙羊峡水库投入运行后平均水温为3.68℃,比龙羊峡水库运行前的平均水温增大0.86℃,增幅为30.64%。 显示原图|下载原图ZIP|生成PPT 图41971-2012年青铜峡站凌汛期平均水温变化过程 -->Figure 4Variation of mean water temperature at Qingtongxia Station during ice flood season from 1971 to 2012 -->
4.2 凌汛前河道过水断面形态
根据石嘴山、磴口、巴彦高勒、三湖河口、头道拐5个水文站2008-2013年凌汛前的实测断面资料,选取各站6次实测断面的最低水位作为各站的同水位,计算该水位下的断面面积和平均水深,其结果见表1。 Table 1 表1 表1凌汛前给定水位下河道断面形态参数 Table 1Channel cross-section parameters under a given water level before ice flood season
年份
石嘴山
磴口
巴彦高勒
三湖河口
头道拐
A/m2
H/m
A/m2
H/m
A/m2
H/m
A/m2
H/m
A/m2
H/m
2008
331.9
1.43
499.3
2.45
319.6
0.92
359.0
1.78
564.0
1.88
2009
468.3
2.00
682.1
3.67
932.4
2.86
462.3
2.12
508.9
1.73
2010
518.9
2.14
549.5
2.83
290.1
0.77
406.1
1.74
577.2
2.01
2011
577.0
2.44
709.4
3.96
868.4
2.86
404.3
2.11
605.1
2.14
2012
551.3
2.37
792.1
4.19
1 086.7
3.27
521.4
1.79
672.9
2.14
2013
600.4
2.58
792.8
4.31
382.0
1.01
639.3
2.22
680.1
1.91
注:A是同水位下的断面面积;H是平均水深。 新窗口打开 4.2.1 河道过水断面面积 图5为研究区域5个水文站近年来凌汛前断面面积变化曲线。2008-2013年,石嘴山站凌汛前断面面积除2012年较2011年有所减小外,其余各年呈增加趋势;磴口站2010年断面面积较2009年减小,其余各年呈增加趋势;巴彦高勒站凌汛前断面面积在2008年、2010年、2013年较小,在2009年、2011年、2012年大幅增大,整体呈现大幅波动的变化趋势;三湖河口站凌汛前断面面积在2010年、2011年有所减小,其余各年呈增大趋势;头道拐站除2009年汛前断面面积较2008年减小外,其余各年呈增大趋势。整体来看,石嘴山站、磴口站、三湖河口站和头道拐站凌汛前断面面积近年来呈增大趋势,巴彦高勒站呈波动变化趋势。与2008年相比,石嘴山、磴口、巴彦高勒、三湖河口、头道拐5个水文站2013年汛前断面面积分别增大了80.90%、58.78%、19.52%、78.08%、20.59%,可以看出,研究区域各站近年来凌汛前断面面积变化过程虽有所差异,但最终均有所增大,其中石嘴山站、磴口站、三湖河口站增幅较大,巴彦高勒站和头道拐站增幅较小。 显示原图|下载原图ZIP|生成PPT 图52008-2013年各水文站凌汛前断面面积 -->Figure 5Cross-sectional area before ice flood season at main gauging stations from 2008 to 2013 -->
4.2.2 河道平均水深 图6为2008-2012年研究区域5个水文站近年来凌汛前河道平均水深变化曲线。整体来看,各站平均水深的年际变化趋势与断面面积较为一致,其中石嘴山站、磴口站、三湖河口站和头道拐站凌汛前平均水深呈增大趋势,巴彦高勒站呈波动变化趋势。与2008年相比,石嘴山、磴口、巴彦高勒、三湖河口、头道拐5个水文站2013年凌汛前平均水深分别增大了80.12%、76.04%、9.77%、24.90%、1.62%,可以看出,研究区域各站近年来凌汛前平均水深均有所增大,其中石嘴山站、磴口站、三湖河口站增幅较大,巴彦高勒站和头道拐站增幅较小。 显示原图|下载原图ZIP|生成PPT 图62008-2013年各水文站凌汛前平均水深 -->Figure 6Mean water depth before ice flood season at the main gauging stations from 2008 to 2013 -->
4.2.3 河道深泓点高程 根据5个水文站各年凌汛前的实测断面资料,得到各测次的深泓点高程,各站深泓点高程年际变化如图7所示。2008-2013年,石嘴山站(图7a)深泓点高程逐渐降低,至2013年,深泓点高程降低了2.33m;磴口站(图7b)深泓点高程在2010年、2013年抬升,其余各年均降低,5年间深泓点高程降低了0.72m;巴彦高勒站(图7c)深泓点呈现抬升与下降不断交替的波动变化趋势,其2013年高程较2008年降低了0.37m;三湖河口站(图7d)深泓点高程在2013年抬升,其余各年均不断降低,5年间深泓点高程降低了1.05m;头道拐站(图7e)深泓点高程在2008-2012年呈降低趋势,在2013年深泓点高程出现了较大的抬升。整体来看,石嘴山、磴口、巴彦高勒、三湖河口4个水文站凌汛前断面深泓点高程经过5年的演变有所降低,其中石嘴山和三湖河口站降低幅度相对较大。 显示原图|下载原图ZIP|生成PPT 图72008-2013年各水文站凌汛前断面深泓点高程年际变化 -->Figure 7Variation of thalweg’s elevation before ice flood season from 2008 to 2013 -->
通过对宁蒙河段稳定封冻区域近年来水文过程和河道形态的分析,本研究详细分析了宁蒙河段水文-水文和河道形态的变化特征,并揭示了这些变化对凌汛的影响。得到了如下主要结论: (1)2008-2013年间,宁蒙河段凌汛期径流量增大,水温升高,青铜峡水库下泄流量过程符合理想流量下泄过程曲线,有助于减少凌汛灾害的发生。 (2)各主要水文站凌汛前的断面面积和平均水深等断面形态参数呈逐年增大的趋势,深泓点高程也不断降低,增大了凌汛期河道的过流能力,有助于缓解开河期可能出现的凌汛灾情。 2008年以来,宁蒙河段凌汛期水文过程及河道形态变化有利于减少凌汛灾情的发生,但巴彦高勒站所在河段仍需加强监测与防治,从而应对可能出现的凌汛灾情。 The authors have declared that no competing interests exist.
[Wang FQ,Wei HB.Multi-time scale analysis of ice regime in Ningxia-Inner Mongolia reach based on wavelet transform [J]. Journal of Arid Land Resources and Environment,2014,28(11):83-89.] [本文引用: 1]
[Na JH,Zhou XJ,Xu XH,et al.Cause and forecast of ice jam and run in Heilong River,Songhua River and Nenjiang River [J]. Journal of Natural Disasters,2011,20(2):115-120.] [本文引用: 1]
[Lu SB,HuangQ,Wu CG,et al.Ice jams disaster in Ningxia-Inner Mongolia reaches of the Yellow River and its prevention by reservoirs [J]. Journal of Natural Disasters,2010,19(4):43-47.] [本文引用: 1]
[Chen GS,Wang YM,HuangQ,et al.Influence of discharge of Qingtongxia Reservoir on ice run in Ningxia-Inner Mongolia reaches [J]. Journal of Natural Disasters,2013,22(5):198-203.] [本文引用: 3]
[Ji HL.Factor Analysis for Ice Flood and Model Research for Freeze-Up Time and Breakup Time in the Inner Mongolia Reach of the Yellow River[D]. Hohhot:Inner Mongolia Agricultural University,2002.] [本文引用: 1]
[Wang WD,Zhang FH,Kang ZM,et al.Characteristics and causes of ice flood in Ningxia-Inner Mongolia section of the Yellow River valley [J]. Meteoro-logical Monthly,2006,32(3):32-38.] [本文引用: 1]
[Wang FQ,WangL.Analysis of ice regime characteristics in the Ningxia-Inner Mongolia reach of Yellow River in the recent ten years [J]. South-to-North Water Transfers and Water Science & Technology,2014,12(4):21-24.] [本文引用: 1]
[Yao HM,Qin FX,Shen GC,et al.Ice regime characteristics in the Ningxia-Inner Mongolia reach of Yellow River [J]. Advances in Water Science,2007,18(6):893-899.] [本文引用: 2]
[HuangQ,LiQ,Zhang ZZ,et al.Impact of ice jam by Long-Liu reservoirs joint operation in the Ningxia-Inner Mongolia reach [J]. Journal of Hydroelectric Engineering,2008,27(6):142-147.] [本文引用: 1]
[Liu XY,SiY.Effect of reservoir operation in the upper Yellow River on ice prevention in Ningxia-Inner Mongolia reach [J]. Yellow River,2011,33(10):4-6.] [本文引用: 1]
[Hu CH,Zhang ZH.Relationship between adjustment of section configuration and flow-sediment of tail channels in the Yellow River estuary [J]. Journal of Basic Science and Engi-neering,2011,19(4):543-553.] [本文引用: 1]
[Hu CH,Chen JG,Liu DB,et al.Studies on the features of cross section’s profile in the lower Yellow River under the conditions of variable incoming water and sediment [J]. Journal of Hydraulic Engineering,2006,37(11):1283-1289.] [本文引用: 1]
[LongH,DuY,Wu HX,et al.Shrink and its impact on the ice floods in the Ningxia-Inner Mongolia reach of Yellow River [J]. Yellow River,2007,29(3):25-26.] [本文引用: 1]
[Liu JF,YangJ,Huo SQ,et al.Analysis on some new ice characteristics in Ningxia-Inner Mongolia reach of the Yellow River [J]. Yellow River,2012,34(11):12-14.] [本文引用: 1]
[Li QY,Cai QG,Fang HY.Channel evolvement and influence factors in Ningxia-Inner Mongolia reach of the Yellow River [J]. Journal of Arid Land Resources and Environment,2012,26(2):68-73.] [本文引用: 1]
[Xu JX.Temporal and spatial variations in erosion and sediment yield and the cause in the ten small tributaries to the Inner Mongolia reach of the Yellow Ricer [J]. Journal of Desert Research,2014,34(6):1-9.] [本文引用: 1]
[Wu BS.Effect of the ten major tributaries in the Inner Mongolia on the runoff and sediment load as well as sedimentation in the main stream of the Yellow River [J]. Yellow River,2014,36(10):5-8.] [本文引用: 1]
[Feng GH,Chaolun BG,Yan XG.Analysis of ice slush formation mechanism and ice flood causes of Yellow River in Inner Mongolia [J]. Journal of Hydrology,2008,28(3):74-76.] [本文引用: 1]
[Yellow River Conservancy Commission. Hydrometric Data in the Yellow River Basin(Vols.2) [M]. Zhengzhou:Yellow River Conservancy Commission,2008-2013.] [本文引用: 1]
[23]
SuT,Wang SJ,Mei YG,et al.Comparison of channel geometry changes in Inner Mongolian reach of the Yellow River before and after joint operation of large upstream reservoirs [J]. Journal of Geographical Sciences,2015,25(8):930-942. [本文引用: 2]
[Mao LQ,Zhang YB,Wu MF.Ice-run situation feature analysis on Yellow River Ningxia-Inner Mongolia section from 2012-2013 [J]. Journal of Yellow River Conservancy Technical Institute,2014,(2):9-11.] [本文引用: 2]
[Chen DL,WangB,Fan MH.Characteristics of ice condition in Ningxia-Inner Mongolia reach of the Yellow River from 2009 to 2010 [J]. Yellow River,2012,34(1):22-24.]
[Zhang BD,Zhang XH,Shang GH.Ice regime characteristic and ice flood protection measures of the Yellow River in 2010-2011 [J]. Yellow River,2011,33(12):6-8.] [本文引用: 2]
[Zhang YF,WangP,Hou SZ,et al.On conditions of sandbar clogging at confluences in the upper Yellow River [J]. Advances in Water Science,2013,24(3):333-339.] [本文引用: 1]
[GuoY,Hou SZ,Lin XZ.Variation characteristics of runoff and sediment in Xiliugou River basin for recent 51 years [J]. Journal of Arid Land Resources and Environment,2014,28(10):176-183.] [本文引用: 1]
[LiuT,Huang HQ,Shao MA,et al.Impacts of climate change and human activity on process of water and sediment load along Yellow River in Erdos [J]. Journal of Soil and Water Conservation,2015,29(2):17-22.] [本文引用: 1]