Hu Huanyong Line based on geographical synthesis: Simulation and prediction under SSPs-RCPs scenario matrix
XIA Haibin,1,2,3, LIU Min,1,2,31. Key laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241 2. School of Geographic Sciences, East China Normal university, Shanghai, 200241 3. Key Laboratory of Spatio-temporal Big Data Analysis and Application of Natural Resources in Megacity, Ministry of Natural Resources, Shanghai,200062, China
Abstract In this paper, a population potential model under the influence of environmental factors is constructed, and four sets of the crop model and water model driven by climate system models are combined to simulate the spatiotemporal evolution trend of China's population in the near (2030) and medium (2050) periods under SSPs-RCPs scenario matrix. It is found that under the SSPs scenario, the gap between population proportions on the east and west sides of Hu Huanyong Line (also known as Hu Line) in China will be further enlarged in the future, while under the scenario of SSP-RCPS, the population proportion gap on both sides of the Hu Line will be somewhat narrowed compared with the SSP scenario alone. The reason for the former is that the urbanization development on the east side of the Hu Line is much higher than that on the west side. Under the background of population urbanization in China, the population on the east side of the Hu Line increases. The latter is due to the favorable change of hydrothermal conditions on the west side of the Hu Line under the influence of climate change, which further improves the environmental carrying capacity of the population. The impact of social and economic development on change of population proportion on both sides of the Hu Line is far greater than the impact of climate change. This paper aims to explore the possibility of the breakthrough of the Hu Line from north, middle and south sections. We believe that the middle section will act as the breakthrough point because the region where Yellow River and other rivers flow through have rich water resources, which is favorable to the development of urbanization. Keywords:Hu Huanyong Line;spatial and temporal population change;climate change;SSPs-RCPs scenario matrix;human-environment relationship;sustainable development
PDF (6081KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 夏海斌, 刘敏. 基于地理学综合视角的胡焕庸线IPCC复合情景(SSPs-RCPs)模拟和预测[J]. 地理研究, 2021, 40(10): 2838-2855 doi:10.11821/dlyj020200840 XIA Haibin, LIU Min. Hu Huanyong Line based on geographical synthesis: Simulation and prediction under SSPs-RCPs scenario matrix[J]. Geographical Research, 2021, 40(10): 2838-2855 doi:10.11821/dlyj020200840
本文利用跨部门影响模式相互比较项目(ISIMIP)提供的作物模型和水文模型的模拟数据。ISIMIP提供了一系列系统和部门的气候影响数据集成[46],其第一轮模拟周期ISIMIP Fast Track利用RCPs情景驱动五种全球气候模式进行模拟预测,使得ISIMIP Fast Track成为耦合模式比较计划(CMIP)工作的自然延伸[46],第二轮模拟周期ISIMIP2a允许在全球变暖的不同水平上改进对气候变化的生物物理和社会经济影响的估计[47]。本文选取ISIMIP2a所提供的HadGEM2-ES[48]和IPSL-CM5A-LR[49]两种模式,作物模型采用ISIMIP 2a提供的LPJmL和GEPIC[50]两种作物模型。这两种作物模型对玉米、小麦、水稻和大豆四种代表作物产量进行模拟,并对四种作物产量进行加权求和,得出具有可比性的代表作物产量[51]。水文模型采用LPJmL[52]和WaterGAP[53,54]两种模型模拟的年河流径流量。需要指出的是作物模型模拟不考虑农业生产的技术投入等社会经济因素,而水文模型不涉及任何水的提取(如灌溉)或任何其他人为引起的水循环变化。这意味着作物模型及水文模型所得的模拟数据都可以归因于气候模式的变化,避免了作物模型、水文模型模拟数据与社会经济数据之间的交互影响。选取以上模型的原因一方面是考虑气候模式和模型的代表性,同时ISIMIP2a提供了以上模型1970—2010年历史时期以及2010—2100年不同RCPs情景下的模拟数据。根据本文情景设定中需求,采用RCP2.6、RCP4.5、RCP6.0以及RCP8.5四种代表性浓度路径驱动下未来近期(2030年)及中期(2050年)水资源模拟数据。某个时代的模拟值以该时代10年平均水平表示,如2000年水资源量为2000—2009年10年平均河流径流量表示,2000年作物产量以2000—2009年10年平均代表作物产量表示。为降低气候变化预估中单一模型误差,采用多模式集合的方法,将水文模型和作物模型模拟数据分为4个组别(表1),如第一组表示在HadGEM2-ES全球气候模式驱动下的LPJmL水文模型和LPJmL作物模型的模拟数据。
Tab. 1 表1 表1全球气候模式驱动下的水文模型和作物模型 Tab. 1Hydrological models and crop models driven by global climate model (GCM)
Tab. 2 表2 表2中国未来近中期(2030年、2050年)SSPs-RCPs复合情景下胡焕庸线两侧人口密度及人口比重比较 Tab. 2Comparison of population density and population proportion on both sides of Hu Line under the SSPs-RCPs scenario matrix in 2030 and 2050
注:基于自然资源部地图技术审查中心标准地图服务网站的标准地图(审图号:GS(2020)4619号)绘制,底图无修改。 Fig. 6Spatial changes of population in China from 2010 to 2050 under SSPs-RCPs scenario matrix
[ DingJ-hong, HeShujin. The geographical pattern of Chinese population and the future of urbanization: An academic seminar to commemorate the 80th anniversary of the discovery of Hu Huan-yong Line was held in Shanghai Acta Geographica Sinica, 2015, 70(12):1856. ] DOI: NKI:SUN:DLXB.0.2015-12-001. [本文引用: 1]
[ ChenMingxing, LiYang, GongYinghua, et al. The population distribution and trend of urbanization pattern on two sides of Hu Huanyong population line: A tentative response to Premier Li Keqiang Acta Geographica Sinica, 2016, 12(2):179-193.] DOI: 10.11821/dlxb201602001. [本文引用: 3]
[ QiWei, LiuShenghe, ZhaoMeifeng. Study on the stability of Hu Line and different spatial patterns of population growth on its both sides Acta Geographica Sinica, 2015, 12(4):551-566.] DOI: 10.11821/dlxb201504004. [本文引用: 1]
[ GeMeiling, FengZhiming. A study on the distribution pattern of China's population in 2000 based on GIS: A comparison with Hu Huanyong's study in 1935 Population Research, 2008, 12(1):51-57.] DOI: 10.3969/j.issn.1000-6087.2008.01.007. [本文引用: 1]
[ WangZheng, XiaHaibin, TianYuan, et al. A big-data analysis of HU Line existence in the ecology view and new economic geographical understanding based on population distribution Acta Ecologica Sinica, 2019, 39(14):5166-5177.] DOI: 10.5846/stxb201812212776. [本文引用: 1]
[ WangKaiyong, DengYu. Can new urbanization break through the Hu Huanyong Line? Further discussion on the geographical connotations of the Hu Huanyong Line Geographical Research, 2016, 12(5):825-835.] DOI: 10.11821/dlyj201605002. [本文引用: 1]
[ GuoHuadong, WangXinyuan, WuBingfang. Cognizing population density demarcative line (Hu Huanyong-Line) based on space technology Bulletin of Chinese Academy of Sciences, 2016. 31(12):1385-1394.] DOI: 10.16418/j.issn.1000-3045.2016.12.013. [本文引用: 1]
[ FengZhiming, TangYan, YangYanzhao. The relief degree of land surface in China and its correlation with population distribution Acta Geographica Sinica, 2007, 12(10):1073-1082.] DOI: 10.11821/xb200710007. [本文引用: 1]
[ DongChun, LiuJiping, ZhaoRong, et al. An discussion on correlation of geographical parameter with spatial population distribution Remote Sensing Information, 2002, 12(4):61-64.] DOI: 10.3969/j.issn.1000-3177.2002.04.014. [本文引用: 1]
[ WuChuanjun. Contributions of Master Hu Huanyong to the development of modern geography in China Human Geography, 2001, 12(5):1-4.] DOI: 10.3969/j.issn.1003-2398.2001.05.001 [本文引用: 1]
[ WuChuanjun. Theoretical research and regulation of the regional system of human-land relationship Journal of Yunnan Normal University: Philosophy and Social Science Edition, 2008, 12(2):1-3.] DOI: 10.3969/j.issn.1000-5110.2008.02.001. [本文引用: 1]
WarnerK. Global environmental change and migration: Governance challenges. Global Environmental Change-Human and , 2010, 20(3):402-413. DOI: 10.1016/j.gloenvcha.2009.12.001. [本文引用: 1]
Bilsborrow RE. Population growth, internal migration, and environmental degradation in rural areas of developing countries , 1992, 8(2):125-148. DOI: 10.1007/BF01797549. URL [本文引用: 1]
[DingJinhong, HuangChenxi, SunZhongfeng. Open model of population carrying capacity of land and its use of metropolitan area around Shanghai. China Population, Resources and Environment, 1998, 12(4):41-46.] DOI: CNKI:SUN:ZGRZ.0.1998-04-008. [本文引用: 1]
PiguetE. From “Primitive Migration” to “Climate Refugees”: The curious fate of the natural environment in migration studies , 2013, 103(1):148-162. DOI: 10.1080/00045608.2012.696233. URL [本文引用: 1]
StarkO, Bloom DE. The new economics of labor migration , 1985, 75(2):173-178. [本文引用: 1]
[ PanJiahua, ZhengYan. On climate migration and its policy implication: Reflection on Ningxia's Ecological Migration China Soft Science Magazine, 2014, 12(1):78-86.] DOI: 10.3969/j.issn.1002-9753.2014.01.011. [本文引用: 1]
ShayeghS. Outward migration may alter population dynamics and income inequality , 2017, 7(11):828-832. DOI: 10.1038/nclimate3420. [本文引用: 1] Climate change impacts may drive affected populations to migrate. However, migration decisions in response to climate change could have broader effects on population dynamics in affected regions. Here, I model the effect of climate change on fertility rates, income inequality, and human capital accumulation in developing countries, focusing on the instrumental role of migration as a key adaptation mechanism. In particular, I investigate how climate-induced migration in developing countries will affect those who do not migrate. I find that holding all else constant, climate change raises the return on acquiring skills, because skilled individuals have greater migration opportunities than unskilled individuals. In response to this change in incentives, parents may choose to invest more in education and have fewer children. This may ultimately reduce local income inequality, partially offsetting some of the damages of climate change for low-income individuals who do not migrate.
LonerganS. The role of environmental degradation in population displacement , 1998, 12(4):5-15. [本文引用: 1]
IPCC. . In: T F Stocker, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1-30. [本文引用: 1]
van Vuuren DP, RiahiK, CalvinK, et al. The shared socio-economic pathways: Trajectories for human development and global environmental change. Global Environmental Change-Human and , 2017, 42:148-152. DOI: 10.1016/j.gloenvcha.2016.10.009 [本文引用: 1]
O'Neill BC, KrieglerE, RiahiK, et al. A new scenario framework for climate change research: The concept of shared socioeconomic pathways , 2014, 122(3):387-400. DOI: 10.1007/s10584-013-0905-2. URL [本文引用: 1]
O'Neill BC, KrieglerE, Ebi KL , et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change-Human and , 2017, 42:169-180. DOI: 10.1016/j.gloenvcha.2015.01.004 [本文引用: 1]
[ JiangTong, ZhaoJing, JingCheng, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China Climate Change Research, 2017, 3(2):128-137.] DOI: 10.12006/j.issn.1673-1719.2016.249. [本文引用: 2]
RiahiK, van Vuuren DP, KriegleretE, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change-Human and , 2017, 42:153-168. DOI: 10.1016/j.gloenvcha.2016.05.009. [本文引用: 2]
Samir KC, LutzW. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change-Human and , 2017, 42:181-192. DOI: 10.1016/j.gloenvcha.2014.06.004. [本文引用: 1]
O'Neill BC, TebaldiC, van Vuuren DP, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016, 9(9), 3461-3482. DOI: 10.5194/gmd-9-3461-2016. URL [本文引用: 4]
[ WangZheng, YueQun, XiaHaibin, et al. China 2050: Climate scenarios and stability of Hu-line Scientia Sinica Terrae, 2016, 46(11):1505-1514.] DOI: 10.1360/N072015-00527. [本文引用: 1]
Vorosmarty CJ, GreenP, SalisburyJ, et al. Global water resources: Vulnerability from climate change and population growth , 2000, 289(5477):284-288. DOI: 10.1126/science.289.5477.284. URL [本文引用: 1]
[ XiaJun, QiuBing, PanXingyao, et al. Assessment of water resources vulnerability under climate change and human activities Advances in Earth Science, 2012, 27(4):443-451.] DOI: 10.11867/j.issn.1001-8166.2012.04.0443. [本文引用: 1]
Kebede AS, Nicholls RJ, AllanA, et al. Applying the global RCP-SSP-SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach , 2018, 635:659-672. DOI: 10.1016/j.scitotenv.2018.03.368. URL [本文引用: 1]
Doxsey-WhitfieldE, MacManusK, Adamoet SB, et al. Taking advantage of the improved availability of census data: Afirst look at the gridded population of the world: Version 4 , 2015, 3(1):226-234. DOI: 10.1080/23754931.2015.1014272. URL [本文引用: 2]
LeykS, GaughanE, Adamo SB, et al. The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci , 2019, 11(3):1385-1409. DOI: 10.5194/essd-11-1385-2019. [本文引用: 1]
IPCC. . Cambridge: Cambridge University Press, 2013: 1535. [本文引用: 1]
HarperS. Population-environment interactions: European migration, population composition and climate change , 2013, 55(4):525-541. DOI: 10.1007/s10640-013-9677-4. [本文引用: 1]
WarszawskiL, FrielerK, HuberV, et al. The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework , 2014, 111(9):3228-3232. DOI: 10.1073/pnas.1312330110. [本文引用: 2]
RosenzweigC, Arnell NW, Ebi KL, et al. Assessing inter-sectoral climate change risks: The role of ISIMIP , 2017, 12(1):301-330. DOI: 10.1088/1748-9326/12/1/010301. [本文引用: 1]
Jones CD, Hughes JK, BellouinN, et al. The HadGEM2-ES implementation of CMIP5 centennial simulations , 2011, 4(3):543-570. DOI: 10.5194/gmd-4-543-2011. URL [本文引用: 1]
Dufresne JL, Foujols MA, DenvilS, et al. Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5 , 2013, 40(9):2123-2165. DOI: 10.1007/s00382-012-1636-1. URL [本文引用: 1]
LiuJ, WilliamsJ, ZehnderA, et al. GEPIC: Modelling wheat yield and crop water productivity with high resolution on a global scale , 2007, 94:478-493. DOI: 10.1016/j.agsy.2006.11.019. URL [本文引用: 1]
MüllerC, ElliottJ, ChryssanthacopoulosJ, et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications , 2017, 10(4):1403-1422. DOI: 10.5194/gmd-10-1403-2017. URL [本文引用: 1]
SchaphoffS, von BlohW, RammigA, et al. LPJmL4: A dynamic global vegetation model with managed land-Part 1: Model description , 2018, 11(4):1343-1375. DOI: 10.5194/gmd-11-1343-2018. URL [本文引用: 1]
AlcamoJ, DÖLlP, HenrichsT , Development and testing of the WaterGAP 2 global model of water use and availability , 2003, 48(3):317-337. DOI: 10.1623/hysj.48.3.317.45290. URL [本文引用: 1]
AlcamoJ, DÖLlP, HenrichsT , et al. Development and testing of the WaterGAP 2 global model of water use and availability , 2003, 48(3):317-337. DOI: 10.1623/hysj.48.3.317.45290. URL [本文引用: 1]
JonesB, O'Neill BC . Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways , 2016, 11(8):84-86. DOI: 10.1088/1748-9326/11/8/084003. [本文引用: 3]
Chen YD, GuoF, Wang JC, et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100 , 2020, 7, 83. DOI: 10.1038/s41597-020-0421-y. URL [本文引用: 1]