Spatio-temporal evolution characteristics and influencing factors of the industrial eco-efficiency in the Yellow River Basin
LI Beige,1, HU Zhiqiang1,2, MIAO Changhong,1,2, ZHANG Baifa1,2, KANG Wei11. Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center of Yellow River Civilization Provincial Co-construction, Henan University, Kaifeng 475001, Henan, China 2. College of Environment and Planning, Henan University, Kaifeng 475004, Henan, China
Abstract Industrial eco-efficiency can reflect the coupling state and level of Human-Earth System. Taking the eight provinces of the Yellow River Basin as the study region, this paper constructs the input-output index system of industrial eco-efficiency, and uses Super-SBM model to measure the industrial eco-efficiency at the city scale from 2006 to 2016, and analyzes its spatial differentiation. The econometric model is constructed to examine the influencing factors of industrial eco-efficiency from different scales such as the whole basin and the upper, middle and lower reaches. The results show that: (1) The overall industrial eco-efficiency is on the rise, and it is decreasing from the downstream to the upstream. On the whole, Henan develops faster, Shandong has the highest industrial eco-efficiency, while Gansu has the lowest. The industrial eco-efficiency of urban agglomerations and regional central cities in the lower reaches is overall better (2) Industrial ecoefficiency has spatial autocorrelation characteristics. From high-high agglomeration types evolve into high-high and low-low local agglomeration types. In 2006, High-high types are mainly distributed in Shanxi-Shaanxi-Inner Mongolia border area and Shandong Peninsula urban agglomeration. In 2016, High-high types are mainly distributed in Shandong Peninsula urban agglomeration, Central Plains urban agglomeration and southern Shaanxi, and low-low types are concentrated in Shanxi and Gansu. (3) The level of economic development, industrial agglomeration intensity, scientific and technological input, economic extroversion, environmental regulation and economic density have positive effects on industrial eco-efficiency. However, compared with the middle and upper reaches, the lower reaches is weaker in the impact of industrial agglomeration intensity, while stronger in the effect of environmental regulation. (4) To improve the level of industrial eco-efficiency in the Yellow River Basin, it is necessary to enhance tthe level of economic development, the intensity of industrial agglomeration, the investment in science and technology and the economic extroversion, and strengthen environmental regulation. However, differentiated measures should be taken according to the actual situation in the upper, middle and lower reaches. As the middle and upper reaches have more fragile eco-environment, we should agglomerate clean industries so as to improve the positive externality of industrial agglomeration, support the economic structure transformation of resource-based cities, and strengthen the constraints of environmental regulations. Keywords:industrial eco-efficiency;super-SBM model;urban agglomeration;environmental pollution;Yellow River Basin
PDF (4003KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李贝歌, 胡志强, 苗长虹, 张佰发, 康巍. 黄河流域工业生态效率空间分异特征与影响因素[J]. 地理研究, 2021, 40(8): 2156-2169 doi:10.11821/dlyj020200516 LI Beige, HU Zhiqiang, MIAO Changhong, ZHANG Baifa, KANG Wei. Spatio-temporal evolution characteristics and influencing factors of the industrial eco-efficiency in the Yellow River Basin[J]. Geographical Research, 2021, 40(8): 2156-2169 doi:10.11821/dlyj020200516
[ WangKeliang, MengXiangrui, YangBaochen, et al. Research on industrial eco-efficiency of Yangtze river economic belt based on environmental pressure Resources Science, 2015, 37(7):1491-1501.] DOI: CNKI:SUN:ZRZY.0.2015-07-021. [本文引用: 2]
Shao LG, YuX, FengC. Evaluating the eco-efficiency of China's industrial sectors: A two-stage network data envelopment analysis , 2019, 247:551-560. DOI: 10.1016/j.jenvman.2019.06.099. URL [本文引用: 1]
张新林, 仇方道, 谭俊涛, 等. 中国工业生态效率时空分异特征及其影响因素解析 , 2020, 40(3):335-343. DOI:10.13249/j.cnki.sgs.2020.03.001 [本文引用: 2] 基于2000-2016年中国工业数据,构建工业生态效率投入产出指标体系,测度不同区域的工业生态效率,构建不同空间权重矩阵,对空间分异特征进行解析,最后研究了工业生态效率影响因素的空间效应。结果如下:① 中国工业生态效率均值呈现出波动趋势,在2016年达到最大值; ② 区域之间差距明显,绝对差异和相对差异也在2016年最大,空间分布上逐渐集中,逐渐形成了从东南向西北递减的阶梯状空间分布特征; ③ 工业生态效率存在着明显的空间集聚性,并有高高集聚和低低集聚的空间俱乐部现象; ④ 财政分权的直接效应值最高,对外开放和固定资产是抑制本地区工业生态效率提升的主要因素,科技创新、财政分权能够促进邻近区域工业生态效率的提升,产业集聚、对外开放不利于邻近地区工业生态效率的改善。 [ ZhangXinlin, QiuFangdao, TanJuntao, et al. Analysis of the characteristics of spatial and temporal differentiation of Chinese industrial ecological efficiency and its influencing factors Scientia Geographica Sinica, 2020, 40(3):335-343.] DOI: 10.13249/j.cnki.sgs.2020.03.001. [本文引用: 2]
[ ZhangZhen. Spatial and temporal evolution characteristics of regional industrial eco-efficiency in China in the new era Inquiry Into Economic Issues, 2020, (1):92-101.] DOI: CNKI:SUN:JJWS.0.2020-01-009. [本文引用: 1]
[ WangXiaoling, FangXingcun. Measurement of ecological efficiency and its influencing factors in northeast old industrial base based on DEA-Malmquist-Tobit model analysis Ecological economy, 2017, 33(5):95-99.] DOI: CNKI:SUN:STJJ.0.2017-05-019. [本文引用: 1]
[ ZhouXudong, LvGuanghui. Study on industrial eco-efficiency in arid regions based on super-efficiency DEA model: a case study of Xinjiang Arid Zone Research, 2019, 36(2):513-519.] DOI: 10.13866/j.azr.2019.02.29. [本文引用: 2]
许旭, 金凤君, 刘鹤. 产业发展的资源环境效率研究进展 , 2010, 29(12):1509-1517. DOI:10.11820/dlkxjz.2010.12.006 [本文引用: 2] 产业发展的资源环境效率研究对于建设资源节约和环境友好型社会,实现“效率国土”具有重要意义。本文总结了该领域研究在理论、方法和实践等方面取得的最新进展,指出了当前研究的薄弱环节和空白领域,并展望了未来的研究方向。研究认为,目前资源环境效率问题已经引起足够关注。对资源环境的内涵、指标体系、计算方法、应用实践层面进行了系统分析;已经从产业结构变动、产业布局、产业集群等多角度对产业发展与资源环境的关系及作用机理进行探讨,初步探讨了资源环境效率的影响因素,尚未从资源环境效率的角度揭示产业发展与资源环境的关系及作用规律;研究方法上,以多指标综合评价法、数据包络分析法、火用、能值、生态足迹、物质流等生态热力学方法为主的定量分析方法开始应用于资源环境效率的评价之中。未来应加强系统的理论研究,加强对资源环境效率的机制的分析,在计算方法上需进一步的探索和改进。 [ XuXu, JinFengjun, LiuHe. Research progress on resource and environmental efficiency of industrial development Progress in Geography, 2010, 29(12):1509-1517.] DOI: 10.11820/dlkxjz.2010.12.006. [本文引用: 2]
[ SunYufeng, GuoQuanying. Ecological efficiency analysis of mining circular economy system based on energy synthesis Acta Ecologica Sinica, 2014, 34(3):710-717.] DOI: 10.5846/stxb201306101566. [本文引用: 1]
[ LiuWei, JuMeiting, ChuChunli, et al. Material and energy flow analysis and empirical study in regional environmental-economic system.2011, 26(8):1435-1445.] DOI: 10.11849/zrzyxb.2011.08.018. [本文引用: 1]
[ YangJawei, WangMeiqiang. Evaluation of interprovincial eco-efficiency in China based on the undesired intermediate output network DEA Soft Science, 2017, 31(2):92-97.] DOI: 10.13956/j.ss.1001-8409.2017.02.20. [本文引用: 2]
Zhang JX, Liu YM, ChangY, et al. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis , 2017, 143:238-249. DOI: 10.1016/j.jclepro.2016.12.123. URL [本文引用: 1]
YuC, DijkemaG P J, JongM D, et al. From an eco-industrial park towards an eco-city: A case study in Suzhou, China , 2015, 102:264-274. DOI: 10.1016/j.jclepro.2015.04.021. URL [本文引用: 1]
ShiY, Liu JR, ShiH, et al. The ecosystem service value as a new eco-efficiency indicator for industrial parks , 2017, 164:597-605. DOI: 10.1016/j.jclepro.2017.06.187. URL [本文引用: 1]
Ma SJ, Hu SY, Chen DJ, et al. A case study of a phosphorus chemical firm's application of resource efficiency and eco-efficiency in industrial metabolism under circular economy , 2015, 87:839-849. DOI: 10.1016/j.jclepro.2014.10.059. URL [本文引用: 1]
[ ZhangXinlin, QiuFangdao, WangChangjian. Spatial spillover effect of industrial eco-efficiency in urban agglomeration of Yangtze river delta and its influencing factors Resources and Environment in the Yangtze Basin, 2019, 28(8):1791-1800.] DOI: 10.11870/cjlyzyyhj201908004. [本文引用: 2]
Tang ZL, SunG, FuM, et al. Research on the industrial energy eco-efficiency evolution characteristics of the Yangtze River Economic Belt in the temporal and spatial dimension, China , 2019, 17(1):268. DOI: 10.3390/ijerph17010268. URL [本文引用: 1]
[ LiZaijun, HuMeijuan, ZhouNianxin. Spatial pattern and influencing factors of industrial eco-efficiency in Chinese prefecture-level cities Economic Geography, 2018, 38(12):126-134.] DOI: 10.15957/j.cnki.jjdl.2018.12.017. [本文引用: 2]
Jiang DG. Study on the industrial eco-efficiency in East China based on the super efficiency DEA model: An example of the 2003-2013 panel data , 2016, 48(59):5779-5785. DOI: 10.1080/00036846.2016.1184380. URL [本文引用: 1]
[ GuoLu, XuShiqian. Industrial eco-efficiency with the integration super efficiency DEA: The central six provinces 2003-2013 data as an example Economic Geography, 2016, 36(6):116-121, 58.] DOI: 10.15957/j.cnki.jjdl.2016.06.015. [本文引用: 2]
[ YanXiao, TianYu, LiRongjie. Effects of industrial agglomeration on ecological efficiency in resource-based regions: Based on the empirical study of 9 typical resource-based provinces in China Chinese Journal of Applied Ecology, 2020: 1-11.] DOI: 10.13287/j.1001-9332.202006.014. [本文引用: 1]
Wu MR. Measurement of regional industrial ecological efficiency in China and an analysis of its influencing factors , 2020, 9(1):43-50. DOI: 10.11648/j.jwer.20200901.16. URL [本文引用: 1]
Zhou CS, Shi CY, Wang SJ, et al. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models , 2018, 86:67-80. DOI: 10.1016/j.ecolind.2017.12.011. URL [本文引用: 1]
[ RenShenggang, ZhangRubo, YuanBaolong. Evaluation of industrial eco-efficiency and study on regional differences in the Yangtze river economic belt Acta Ecologica Sinica, 2018, 38(15):5485-5497.] DOI: 10.5846/stxb201605261015. [本文引用: 3]
[ PanXingxia, HeYiqing. Evaluation of industrial eco-efficiency and its influencing factors are based on panel data of provinces in central and eastern China East China Economic Management, 2014, (3):33-38.] DOI: 10.3969/j.issn.1007-5097.2014.03.007. [本文引用: 2]
[ LiLi, ZhangHua. Review of regionalenvironmental performance research based on DEA Ecological Economy, 2016, 32(9):167-172.] DOI: CNKI: SUN: STJJ.0.2016-09-034. [本文引用: 1]
ZhaoY, Shang JC, ChenC. Simulation and evaluation on the eco-industrial system of Changchun economic and technological development zone, China , 2008, 139:339-349. DOI: 10.1007/s10661-007-9840-x. [本文引用: 1]
[ HuangHeiping, LiYali, WangZhipeng. Spatiotemporal evolution and influencing factors of industrial land ecological efficiency in provincial cities in China based on Super-SBM model Acta Ecologica Sinica, 2020, 40(1):100-111.] DOI: 10.5846/stxb201811162490. [本文引用: 1]
[ YuBinbin. The economic growth effect of industrial structure adjustment and productivity promotion: Based on the dynamic spatial panel model of Chinese cities China Industrial Economics, 2015, (12):83-98.] DOI: 10.19581/j.cnki.ciejournal.2015.12.007. [本文引用: 1]
BarraC, ZottiR. Investigating the non-linearity between national income and environmental pollution: International evidence of Kuznets curve 2018, 20(10):1-32. DOI: 10.1007/s10018-017-0189-2. URL [本文引用: 1]
谢里, 张敬斌. 中国制造业集聚的空间技术溢出效应: 引入制度环境差异的研究 , 2016, 35(5):909-928. DOI:10.11821/dlyj201605009 [本文引用: 1] 基于Fujita和Thisse提出的理论框架,引入制度环境变量,研究地区制造业集聚和制度环境通过地区技术创新影响空间技术溢出的机制。在此基础上,采用2003-2012年中国内地30个省、自治区和直辖市的面板数据,运用面板工具变量两阶段最小二乘法(IV-TSLS)对其机制进行实证检验。研究表明:一方面,从全国总体样本来看,加入制度环境变量后,制造业集聚与法律制度的交互项对地区技术创新和空间技术溢出有显著的正向促进作用;另一方面,从分地区的样本来看,东部地区与全国样本检验结果一致,而中西部地区的制造业集聚并未产生显著的空间技术溢出效应。进而,提出通过优化制造业集聚提高空间技术溢出效应的政策建议。 [ XieLi, ZhangJingbin. The spatial technology spillovers effect of Chinese manufacturing industries' agglomeration: The difference of institutional environment Geographical Research, 2016, 35(5):909-928.] DOI: 10.11821/dlyj201605009. [本文引用: 1]
[ JiaJun. The locking mechanism and unlocking mode of green development of Chinese manufacturing industry Soft Science, 2016, 30(11):15-18.] DOI: 10.13956/j.ss.1001-8409.2016.11.04. [本文引用: 1]
[ PengXing, LiBin. Trade opening FDI and green transformation of Chinese industry: Empirical study based on dynamic panel threshold model Journal of International Trade, 2015, (1):166-176.] DOI: 10.13510/j.cnki.jit.2015.01.016. [本文引用: 1]
Tian ZH, Tian YF, ChenY, et al. The economic consequences of environmental regulation in China: From a perspective of the environmental protection admonishing talk policy , 2020, 29(4):1723-1733. DOI: 10.1002/bse.2464. URL [本文引用: 1]
PanayotouT. Demystifying the Environmental Kuznets Curve: Turning a black box into a policy tool , 1997, 2(4):465-484. DOI: 10.1017/S1355770X97000259. URL [本文引用: 1]
[ HuangZhiji, MaYan, HeCanfei. The explanation of urban environmental pollution emissions from New Economic Geography in China Soft Science, 2013, 27(11):89-92.] DOI: 10.3969/j.issn.1001-8409.2013.11.019. [本文引用: 1]
[ SunYuyang, MuHuaizhong, FanHongmin, et al. Research on the heterogeneous linkage effect of environmental regulations on the upgrading of industrial structures Journal of Industrial Technological Economics, 2020, 39(4):89-95.] DOI: 10.3969/j.issn.1004-910X.2020.04.011. [本文引用: 1]
[ WangKang, LiZhixue, ZhouJia. The effects of environmental regulation on spatio-temporal carbon emissions patterns: Empirical analysis of prefecture-level cities in Northeast China Journal of Natural Resources, 2020, 35(2):343-357.] DOI: 10.31497/zrzyxb.20200208. [本文引用: 1]