删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院遗传与发育生物学研究所导师教师师资介绍简介-傅向东

本站小编 Free考研考试/2020-05-26


傅向东
职称:研究员

职务:分子农业生物学中心主任

联系电话:86-

传真:

附件:
E-mail:

实验室主页:

研究方向:植物发育和环境适应的激素调控机理


傅向东,博士,研究员,博士生导师
学习经历(从大学开始)
1987-1991,武汉大学生物系遗传学专业,学士
1991-1994,中国科学院武汉植物所植物学专业,硕士
1998-2001,英国John Innes Centre和浙江大学联合培养农学专业,博士
工作经历
1994-1996,浙江农业大学生物技术研究所,助理研究员
1996-1997,英国John Innes Centre,访问****
1997-1998,浙江大学生物技术研究所,讲师
2001-2005,英国John Innes Centre,博士后
2005-至今,中科院遗传与发育生物学研究所,研究员
获奖情况
2005年,国家自然科学基金委“****基金”
2009年,国务院“享受政府特殊津贴专家”
2010年,“****”终期评估中获得优秀
2010年,“第十一届中国青年科技奖”
2013年,“第八届大北农科技奖”一等奖
2014年,中国科学技术协会“全国优秀科技工作者”荣誉
2016年,中组部 “****”科技创新领军人才
2017年,第十届“谈家桢生命科学创新奖”

研究领域
1.解析植物激素与环境因子互作调控植物生长-代谢耦合的分子机制
植物的生长发育受内源激素(如赤霉素、生长素等)和可变生长环境(如:光强度、氮水平等)的共同影响。以拟南芥、水稻和小麦为材料,利用遗传学、生物化学和生物信息学等研究手段,解析激素与环境互作调控植物生长和碳-氮代谢平衡的耦合机制,为培育“资源节约型”水稻、小麦新品种奠定理论基础。

赤霉素信号途径的DELLA-GRF4分子模块协同调控植物生长-代谢平衡,并提高作物氮肥利用效率

HY5蛋白具有长距离移动特性,协同调控碳、氮代谢以维持在可变光照环境下植物整体的碳-氮平衡

植物G蛋白γ亚基DEP1调控水稻氮素响应和氮肥利用效率

2、研究农作物穗发育和产量性状形成的遗传调控网络
高产、优质历来是农作物育种所追求的重要目标。穗发育对产量和品质性状的影响很大,是涉及SAM活性调控、侧生器官的形成及生长发育调控等过程的复杂生物学问题。通过遗传筛选、QTL分析,克隆调控穗发育和粒型的新基因,重点研究穗粒数和粒重的遗传调控网络,进一步通过分子设计育种培育高产、优质的农作物新品种。

优异等位基因dep1能够提高SAM的活力,促进细胞分裂,进而增加水稻穗粒数和产量


GW8-GW7分子调控模块协同提高水稻的品质和产量

发表论文情况
1.Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., and Fu, X.* (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature DOI:10.1038/s41586-018-0415-5.
2.Wu, K., Xu, X., Zhong, N., Huang, H., Yu, J., Ye, Y., Wu, Y., and Fu, X.* (2018). The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. J Genet. Genomics DOI: 10.1016/j.jgg.2018.03.007.
3.Ye, Y., Wu, K., Chen, J., Liu, Q., Wu, Y., Liu, B., and Fu, X.* (2018). OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice DOI: 10.1186/s12284-018-0228-z.
4.Liu, Q., Han, R., Wu, K., Zhang, J., Ye, Y., Wang, S., Chen, J., Pan, Y., Li, Q., Xu, X., Zhou, J., Tao, D., Wu, Y., and Fu X. * (2018). G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice, Nat. Commun. DOI:10.1038/s41467-018-03047-9.
5.Wang, S., Wu, K., Qian, Q., Liu, Q., Li, Q., Pan, Y., Ye, Y., Liu, X., Wang, J., Zhang, J., Li, S., Wu, Y., and Fu, X.* (2017). Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res. 27, (9):1142-1156.
6.Yu, J., Xiong, H., Zhu, X., Zhang, H., Li, H., Miao, J., Wang, W., Tang, Z., Zhang, Z., Yao, G., Zhang, Q., Pan, Y., Wang, X., Rashid, MAR., Li, J., Gao, Y., Li, Z., Yang, W., and Fu, X., Li, Z. (2017). OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol. 15(1):28.
7.Wang, Y., Geng, L., Yuan, M., Wei, J., Jin, C., Li, M., Yu, K., Zhang, Y., Jin, H., Wang, E., Chai, Z., Fu, X., and Li, X. (2017). Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Rep. 36(8):1333-1343.
8.Liu, Q., Harberd, N.P., and Fu, X.* (2016). SQUAMOSA Promoter Binding Protein-like Transcription Factors: Targets for Improving Cereal Grain Yield. Mol Plant. 9(6):765-7.
9.Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N.P., and Fu, X.* (2016). Shoot-to-Root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26, 640-646.
10. Liu, Q., Chen, X., Wu, K., and Fu, X.* (2015). Nitrogen signaling and use efficiency in plants: what’s new? Curr. Opin. Plant Biol. 27, 192-198.
11. Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y., Gao, C., Wang, F., Huang, H., and Fu, X.* (2015). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47(8), 949-954.
12. Ye, Y., Liu, B., Zhao, M., Wu, K., Cheng, W., Chen, X., Liu, Q., Liu, Z., Fu, X.*, and Wu, Y.* (2015). CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Mol. Biol. 89(4-5): 385-401.
13. Huang, D., Wang, S., Zhang, B., Shang-Guan, K., Shi, Y., Zhang, D., Liu, X., Wu, K., Xu, Z., Fu, X., and Zhou, Y. (2015). A Gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27(6): 1681-1696.
14. Zhao, M., Liu, B., Wu, K., Ye, Y., Huang, S., Wang, S., Wang, Y., Han, R., Liu, Q., Fu, X.*, and Wu, Y.* (2015). Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice. PLOS ONE 10(5): e**.
15. Xu, H., Liu, Q., Yao, T., and Fu, X.* (2014). Shedding light on integrative GA signaling. Curr. Opin. Plant Biol. 21, 89-95.
16. Sun, H., Qian, Q., Wu, K., Luo, J., Wang, S., Zhang, C., Ma, Y., Liu, Q., Huang, X., Yuan, Q., Han, R., Zhao, M., Dong, G., Guo, L., Zhu, X., Gou, Z., Wang, W., Wu, Y., Lin, H., and Fu, X.* (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat. Genet. 46, 652-656.
17. Ma, W., Li, J., Qu, B., He, X., Zhao, X., Li, B., Fu, X.*, and Tong, Y. * (2014). Auxin biosynthetic gene TAR2 is involved in low nitrogen mediated reprogramming of root architecture in Arabidopsis. Plant J. 78, 70-79.
18. Lu, Z., Yu, H., Xiong, G., Wang, J., Jiao, Y., Liu, G., Jing, Y., Meng, X., Hu, X., Qian, Q., Fu, X., Wang, Y., and Li, J. (2013). Genome-wide binding analysis of the transcription activator IPA1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743-3759.
19. Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., Zhang, G.*, and Fu, X.* (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950-954.
20. Li, S., Liu, Y., Zheng, L., Chen, L., Li, N., Corke, F., Lu, Y., Fu, X., Zhu, Z., Bevan, M.W., and Li, Y. (2012). The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol. 194, 690-703.
21. Gao, X., Xiao, S., Yao, Q., Wang, Y., and Fu, X.* (2011). An Updated GA Signaling ’Relief of Repression’ Regulatory Model. Mol. Plant 4, 601-606.
22. Wu, J., Kong, X., Wan, J., Liu, X., Zhang, X., Guo, X., Zhou, R., Zhao, G., Jing, R., Fu, X.*, and Jia J.* (2011). Dominant and Pleiotropic Effects of a GAI Gene in Wheat Results from a Lack of Interaction between DELLA and GID1. Plant Physiol. 157, 2120-2130.
23. Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., and Fu, X.* (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494-497.
24. Wang, F., Zhu, D., Huang, X., Li, S., Gong, Y., Yao, Q., Fu, X., Fan, L., and Deng, X. (2009). Biochemical Insights on Degradation of Arabidopsis DELLA Proteins Gained From a Cell-Free Assay System. Plant Cell 21, 2378-2390.
25. Gao, X., Huang, X., Xiao, S., and Fu, X.* (2008). Evolutionarily conserved DELLA mediated gibberellin signaling in plants. J. Integr. Plant Biol. 50, 825-834.
26. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schafer, E., Fu, X., Fan, L., and Deng, X. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479.
27. Liu, B., Wu. Y., Fu, X., and Qian, Q. (2008). Characterizations and molecular mapping of a novel dominant semi-dwarf gene Sdd(t) in rice (Oryza sativa). Plant Breeding 127(2):125-130.
28. Jiang, C., Gao, X., Liao, L., Harberd, N.P., and Fu, X.* (2007). Phosphate-starvation root architecture and anthocyanin accumulation responses are modulated by the GA-DELLA signaling pathway in Arabidopsis. Plant Physiol. 145, 1460-1470.
29. Jiang, C., and Fu, X.* (2007). GA action: turning on de-DELLA repressing signaling. Curr. Opin. Plant Biol. 10, 461-465.
30. Achard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X.*, and Harberd, N.P.* (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol. 143, 1163-1172.



相关话题/遗传 中国科学院