删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院遗传与发育生物学研究所导师教师师资介绍简介-韩方普

本站小编 Free考研考试/2020-05-26


韩方普
职称:研究员

职务:

联系电话:86-

传真:

附件:
E-mail:

实验室主页:

研究方向:


韩方普,博士,研究员,博士生导师
东北师范大学遗传与细胞研究所获博士学位;1998-2001年在以色列 Weizmann 研究所做博士后,从事小麦多倍体基因组进化研究;2001-2004年在加拿大农业部做Visiting Fellow 和 Biologist,从事小麦抗赤霉病分子标记和种质创新及小麦多倍体基因组进化研究;2004-2008年在美国 University of Missouri-Columbia 从事玉米功能基因组及植物人工染色体研究。2009年入选中国科学院"****"。韩方普研究组主要从事小麦和玉米功能基因组、小麦染色体工程育种及植物人工染色体研究。

主要研究领域
远缘杂交育种和多倍体基因组进化
重点研究多倍体作物小麦及小偃麦的形成过程及机制。高效地转移、鉴定和跟踪外缘基因,发掘具有重要育种价值的易位系和关键基因。揭示多倍体作物中基因组之间的互作与优势的分子机理;创制、鉴定和评价小片段易位系和近缘种全基因组渗入系;分离并详细研究来自野生物种的高产、优质、抗病虫和抗逆基因;培育高产稳产、优质高效、抗病和耐逆的作物新品种。
植物着丝粒的结构和功能
在玉米着丝粒功能研究领域:研究玉米染色体着丝粒功能“失活-激活”的表观遗传学调控机制。探讨DNA甲基化、组蛋白修饰以及小RNA与着丝粒功能的内在联系。
植物减数分裂
减数分裂过程中同源染色体的配对起始、重组、取向和分离的分子机理是国际上研究的热点。将以小麦和玉米的特殊突变体为材料来研究上述问题,分离减数分裂相关基因并阐明其功能。
植物人工染色体
将利用不同的方法构建植物人工染色体。构建和优化适合多基因或完整代谢途径遗传转化的转基因载体。
植物基因定点突变及定向重组
随着玉米基因组序列的完成,需要发展一种有效的方法来利用已知的序列信息进行定点突变和置换,避免位置效应而进行重要基因功能的鉴定。利用人工锌指蛋白核酸酶技术对小麦和玉米的基因进行定点突变和置换, 将对基因功能研究和分子设计育种提供新的方法。
发表论文:
1. Zhang J, Feng C, Su H, Liu Y, Liu Y and Han F. 2020. The Cohesin Complex Subunit ZmSMC Participates in Meiotic Centromere Pairing in Maize. Plant Cell doi: 10.1105/tpc.19.00834.
2. Liu Y, Su H, Zhang J, Liu Y, Feng C and Han F. 2020. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize.PLoS Biol.18(1):e**.
3. Wang J, Shi Q, Guo X and Han F.2019. Establishment and characterization of a complete set of Triticum durum-Thinopyrum elongatum monosomic addition lines with resistance to Fusarium head blight in wheat. J Genet Genomics 46(11):547-549.
4. Wang H, Liu Y, Yuan J, Zhang J and Han F.2019. The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. Plant J. doi: 10.1111/tpj.14639.
5. Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA and Han F. 2019. The deposition of CENH3 in maize is stringently regulated. Plant J. doi: 10.1111/tpj.14606.
6. Su H, Liu Y, Liu C, Shi Q, Huang Y and Han F.2019.Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 31(9):2035-2051.
7. Su H, Liu Y, Liu Y, Birchler JA andHan F.2018. The Behavior of the Maize B Chromosome and Centromere.Genes9: 476.
8.Han F, Lamb JC, McCaw ME, Gao Z, Zhang B, Swyers NC and Birchler JA. 2018. Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize.Front Plant Sci.9: 785.
9. Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA andHan F. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.Plant Biotechnol J.16: 1848-1857.
10. Birchler JA andHan F. 2018. Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution.Plant Cell30: 771-779.
11. Yuan J, Shi Q, Guo X, Liu Y, Su H, Guo X, Lv Z andHan F. 2017. Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes.J Genet Genomics44: 531-539.
12. Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA andHan F. 2017. Cohesion and centromere activity are required for phosphorylation of histone H3 in maize.Plant J.92: 1121-1131.
13. Zhang J andHan F. 2017. Centromere pairing precedes meiotic chromosome pairing in plants.Sci China Life Sci.60: 1197-1202.
14. Wang J, Liu Y, Su H, Guo X andHan F. 2017. Centromere structure and function analysis in wheat-rye translocation lines.Plant J.91: 199-207.
15. Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler J andHan F. 2017. Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions.New Phytol.214: 682-694.
16. Su H, Liu Y, Liu Y, Lv Z, Xie S, Gao Z, Pang J, Wang X andHan F. 2016. Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin.Plant J.88: 854-866.
17. Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X andHan F. 2016. De nove centromere formation and centromeric sequence expansion in wheat and its wide hybrids.PLoS Genet.12: e**.
18. Feng C, Yuan J, Wang R, Liu Y, Birchler J andHan F. 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system.J Genet Genomics43: 37-43.
19. Liu Y, Su H, Pang J, Gao Z, Wang X, Birchler J andHan F.2015. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.Proc Natl Acad Sci U S A112: 1263-1271.
20. Feng C, Liu Y, Su H, Wang H, Birchler J andHan F.2015. Recent advances in plant centromere biology.Sci China Life Sci.58: 240-245.
21. Guo X, Shi Q, Wang J, Hou Y, Wang Y andHan F.2015. Characterization and genome changes of new amphiploids from wheat wide hybridization.J Genet Genomics42: 459-461.
22. Guo X,Han F.2014. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.Plant Cell26: 1-18.
23. Yuan J, Guo X, Hu J, Lv Z andHan F.2014. Characterization of two CENH3 genes and their roles in wheat evolution.New Phytol.206: 839-851.
24. Zhang J, Zhang B, Su H, Birchler J andHan F.2014. Molecular mechanisms of homologous chromoso me pairing and segregation in plants.J Genet Genomics41: 117-123.
25. Zhang B, Dong Q, Su H, Birchler J andHan F.2014. Histone phosphorylation: its role during cell cycle and centromere identity in plants.Cytogenet Genome Res.143: 144-149.
26. Zhang J, Pawloski W andHan F.2013. Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize.Plant Cell25: 3900-3909.
27. Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang X, Birchler J andHan F.2013. De novo centromere formation on a chromosome fragment in maize.Proc Natl Acad Sci U S A110: 6033-6036.
28. Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu H, Gao Z, Wang X andHan F.2013. A functional centromere after loss of centromeric and gain of ectopic sequences.Plant Cell25: 1979-1989.
29. Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H,Han F, Jiang J, Wettstein D and Liu B. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat.Proc Natl Acad Sci U S A110: 3447-3452.
30. Fu S, Lv Z, Guo X, Zhang X andHan F.2013. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids.J Genet Genomics40: 413-420.
31. Birchler J andHan F. 2013. Centromere epigenetics in plants.J Genet Genomics40: 201-204.
32. Gao Z,Han F, Danilova T, Lamb J, Albert P and Birchler J. 2013. Labeling meiotic chromosomes in maize with fluorescence in situ hybridization.Methods Mol Biol.990:35-43.
33. Masonbrink R, Fu S,Han Fand Birchler J. 2013. Heritable loss of replication control of a minichromosome derived from the B chromosome of Maize.Genetics193: 77-84.
34. Dong Q andHan F. 2012. Phosphorylation of H2A is associated with centromere function and maintenance in meiosis.Plant J.71: 800-809.
35. Fu S, Lv Z, Qi B, Guo X, Li J, Liu B andHan F. 2012. Molecular cytogenetic characterization of wheat-Thinopyrum elongatumaddition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight.J Genet Genomics39: 103-110.
36. Fu S, Gao Z, Birchler J andHan F. 2012. Dicentric chromosome formation and epigenetics of centromere formation in plants.J Genet Genomics39: 125-130.
37. Gao Z, Fu S, Dong Q,Han Fand Birchler J. 2011. Inactivation of a centromere during the formation of a translocation in maize.Chromosome Res.19: 755-761.
38. Koo D,Han F, Birchler J and Jiang J. 2011. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome.Genome Res.21: 908-914.
39. Birchler J, Gao Z, Shanma A, Presting G andHan F. 2011. Epigenetic aspects of centromere function in plants.Curr Opin in Plant Biol.14: 217–222.
40. Yin W, Birchler J andHan F. 2011. Maize centromeres: where sequences meets epigenetics.Frontiers Biol.6: 102-108.
41. Zhao N, Xu L, Li M, Zhang H, Zhu B, Qi B, Xu C,Han Fand Liu B. 2011.Chromosomal and genome wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental.Genome54: 692-699.
42. Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B,Han Fand Liu B. 2011. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat.Genetics188: 499-510.
43.Han F, Gao Z and Birchler J. 2009. Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize.Plant Cell21: 1929-1939.
44. Birchler J andHan F.2009. Maize Centromeres: Structure, Function and Epigenetics.Annu Rev Genet.43: 287-303.
45. Birchler J, Gao Z andHan F.2009. Pairing in Plant: import is important.Proc Natl Acad Sci USA106: 19751-19752.
46. Wolfgruber T, Sharma A, Schneider K, Albert P, Koo D, Shi J, Gao Z,Han F, Lee H, Xu R, Allison J, Birchler J, Jiang J, Dawe K and Presting G. 2009. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals a major role for retrotransposons.PLoS Genetics5: e**.
47.Han F, Gao Z, Yu W, and Birchler J. 2007. Minichromosome analysis of chromosome pairing, disjunction and cohesion in maize.Plant Cell19: 3853-3863.
48.Han F, Lamb J, Yu W, Gao Z and Birchler J. 2007. Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism.Plant Cell19: 524-533.
49. Yu W, Lamb J,Han Fand Birchler J. 2007. Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize.Genetics175: 31-39.
50. Yu W,Han F, Vega J, Gao Z and Birchler J. 2007. Construction and behavior of engineered minichromosome in maize.Proc Natl Acad Sci U S A104: 8924-8929.
51.Han F, Lamb J and Birchler J. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize.Proc Natl Acad Sci USA103: 3238-3243.



相关话题/遗传 中国科学院