删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响

本站小编 Free考研考试/2022-01-01

郑成岩1, 邓艾兴1, LATIFMANESHHojatollah1, 宋振伟1, 张俊1, 王利2, 张卫建1,*,
1中国农业科学院作物科学研究所/农业部作物生理生态重点实验室, 北京 100081
2西藏职业技术学院, 拉萨 850000

Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau

ZHENGCheng-Yan1, DENGAi-Xing1, LATIFMANESHHojatollah1, SONGZhen-Wei1, ZHANGJun1, WANGLi2, ZHANGWei-Jian1,*,
1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Beijing 100081, China;
and 2Tibet Vocational Technical College, Lhasa 850000, China
通讯作者:* 通信作者Author for correspondence (E-mail: zhangweijian@caas.cn)
版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。
基金资助:国家重点研发计划(2016YFD0300803)、国家公益性行业(农业)专项(201503116-10)、国家自然科学基金(31201179)和中国农业科学院创新工程(CAAS-XTCX2016019-03和Y2016XT01-03)

展开

摘要
青藏高原是气候变化的敏感区, 该区域作物生产受气候变暖的影响较大, 但至今仍缺乏相关的田间实证研究。探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义。该研究以高产优质冬小麦(Triticum aestivum)品种‘山冬6号’为试验材料, 在拉萨市农业科学研究所科研基地进行田间远红外增温试验, 研究了日平均气温升高1.1 ℃对冬小麦物质分配和转运的影响。研究表明: 增温处理下, 播种至开花阶段群体水平的干物质积累速率、籽粒干物质分配比例和开花前贮藏同化物转运量对籽粒产量的贡献率分别比对照提高了27.5%、5.6%和68.6%, 但是开花至成熟期群体水平的干物质积累速率和籽粒干物质分配量无显著差异; 增温提高了冬小麦的氮积累能力, 成熟期氮向籽粒的分配比例及开花期营养器官中贮存的氮向籽粒的转运率均高于对照处理, 分别高6.0%和5.5%; 与对照相比, 增温处理的收获指数无显著差异, 但籽粒产量、氮吸收效率、氮肥偏生产力和氮收获指数均显著高于对照。该试验预期升温1.1 ℃将促进高海拔地区冬小麦干物质向籽粒分配和转运, 有利于冬小麦高产和氮高效利用。

关键词:气候变化;开放式增温;冬小麦;籽粒产量;氮利用效率
Abstract
Aims Global warming is expected to be the strongest in high altitude mountainous areas, which are more ecologically fragile and economically marginalized. The Qinghai-Xizang Plateau is among such areas most vulnerable to global warming, and more than 80% of its population depends on subsistence agriculture. The aim of this study is to understand the impacts of warming on indigenous crop production, which can help to devise better strategies for crop adaptation and food security in this area.Methods A field warming experiment using a facility of free air temperature increase was conducted to simulate the predicted warming level in Caigongtang town, Lhasa City, China. The experiment consisting of two treatments (warmed and non-warmed) was performed using a completely random design with three replicates. An infrared heater (180 cm in length and 20 cm in width) of 1 500 W was suspended 1.5 m above the ground in each warmed plot. In each non-warmed plot, a ‘dummy’ heater of same dimensions was also suspended to mimic the shading effects. The warming treatment was performed from the sown date to the harvest date. We measured dry matter and nitrogen accumulation, partition and translocation of winter wheat (Triticum aestivum) using ‘Shandong 6’ under warming and control treatments.Important findings Results showed that, with 1.1 °C increase in daily mean air temperature during winter wheat growing season, the dry matter accumulation rate at population level from sowing to anthesis stage, grain dry matter partition ratio and contribution of dry matter translocation amount to grain after anthesis were 27.5%, 5.6% and 68.6% higher, respectively, in the warmed plots than those in the non-warmed plots. Meanwhile, warming increased nitrogen accumulation rate at population level of winter wheat. Nitrogen distribution proportions in grain and nitrogen translocation efficiency from vegetative organs to grain after anthesis in the warmed treatment were 6.0% and 5.5% higher than those in the non-warmed treatment, respectively. Compared with non-warmed treatment, warming decreased harvest index by 3.1%, though the difference was not statistically significant. Grain yield, nitrogen uptake efficiency, nitrogen partial factor productivity and nitrogen harvest index were 8.1%, 20.8%, 8.1% and 6.0% higher, respectively, in the warmed plots than those in the non-warmed plots. In conclusion, an increase in daily mean air temperature of about 1.1 °C can enhance plant growth during the pre-anthesis phase by mitigating the low temperature limitation, and accelerate dry matter and nitrogen partition and translocation to the grain after anthesis in winter wheat. These results suggest that warming may benefit winter wheat production through increasing nitrogen use efficiency in high altitude areas.

Keywords:climate change;free air temperature increase;winter wheat;grain yield;nitrogen use efficiency

-->0
PDF (405KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响. 植物生态学报, 2017, 41(10): 1060-1068 https://doi.org/10.17521/cjpe.2017.0021
ZHENG Cheng-Yan, DENG Ai-Xing, LATIFMANESH Hojatollah, SONG Zhen-Wei, ZHANG Jun, WANG Li, ZHANG Wei-Jian. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2017, 41(10): 1060-1068 https://doi.org/10.17521/cjpe.2017.0021
全球气候正经历一个逐渐变暖的过程, 在过去的100年间, 全球地表平均气温升高了0.74 ℃。据预测, 21世纪全球平均气温还将升高2.0-5.4 ℃ (IPCC, 2014)。在2016年中国杭州G20大会上, 尽管中美签订了碳减排的共同行动计划, 但到21世纪末地球表层平均气温仍将上升1.5 ℃以上。受全球气候变暖的影响, 近50年来我国年平均气温已上升了1.1 ℃, 并且冬季、中高纬度和高海拔地区的增温尤其显著(丁一汇等, 2006; Pepin et al., 2015)。IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014)。青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006)。该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012)。 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义。
温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004)。基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009)。但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013)。由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制。有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014)。肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显。可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究。本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑。

1 材料和方法

1.1 试验地概况

本研究于2011-2012年冬小麦生长季, 在西藏自治区拉萨农业科学研究所试验基地(29.64° N, 91.22° E)进行开放式增温试验(图1)。试验地海拔3 673 m, 属典型的高原温带半干旱季风气候区, 年降水量442 mm, 降水主要集中在5-9月, 冬小麦生长季年降水量260 mm; 平均年日照时间3 100 h以上, 无霜期110天左右, 年平均气温7.8 ℃, 气温日较差大, 春季气温回升较慢。试验地土壤为沙壤土, 耕土层深厚, 其pH值7.0, 有机质21.8 g·kg-1, 全氮0.8 g·kg-1, 碱解氮64 mg·kg-1, 速效钾71.0 mg·kg-1, 速效磷31.2 mg·kg-1
显示原图|下载原图ZIP|生成PPT
图1麦田远红外开放式增温(FATI)系统。
-->Fig. 1Free air of temperature increased (FATI) facility with infrared radiation in winter wheat field.
-->

1.2 试验设计

试验选用当地高产冬小麦‘山冬6号’, 设全天增温(warmed)和不增温(non-warmed)两个处理, 采用随机区组设计, 重复3次。全天增温指冬小麦从播种到收获全生育期内昼夜不间断增温。小区面积为5 m × 6 m = 30 m2, 小区之间设置5 m宽的保护区。试验参照Nijs等(1996)的FATI系统, 设计了麦田开放式主动增温系统。 该系统增温小区全生育期地下5 cm温度和冠层温度的日变化趋势基本与不增温对照区温度的变化相似。系统采用远红外辐射加热管作为热量供给源, 通过加热管释放的红外长波辐射来提高麦田微环境下的温度。增温系统分为远红外加热部分、动力部分、控制部分和温度监测部分。远红外加热部分, 由额定功率为1 500 W的远红外加热黑体管(长1.8 m, 直径1.8 cm)、铁制支架和白色不锈钢反射罩(长2 m, 宽0.2 m)三部分组成, 加热黑体管悬挂于距地面1.5 m处。常温对照处理的上方悬挂白色不锈钢反射罩, 以避免遮光造成的影响。温度监测仪器(ZDR-41, 杭州泽大仪器有限公司, 测量精度为± 0.1 ℃)由2个温度传感器组成, 实时自动记录冬小麦冠层的温度数据, 监测时间间隔为20 min。该系统的增温效果显著, 在4 m2的有效增温区域内, 增温处理小区全生育期日平均气温升高1.1 ℃, 但增温处理开花和成熟期的0-20 cm土壤含水量与对照处理无显著差异(Zheng et al., 2016)。本研究中, 增温和对照区地下5 cm和冠层温度的日变化趋势(灌浆期中期: 2012年6月26日)基本一致(图2), 能够客观地模拟田间实际气温变化特征。为避免取样干扰, 在播种后将有效增温的4 m2区域平均分为4个1 m2的区域, 其中2个用于植株和土壤取样, 另外2个用于测定冬小麦产量。播前底肥为每公顷施纯氮105 kg、P2O5 100 kg、K2O 80 kg, 拔节期每公顷开沟追施105 kg纯氮。留苗密度180株·m-2, 分别于越冬、拔节和开花期按当地高产田进行灌水管理, 全生育期无水分胁迫。
显示原图|下载原图ZIP|生成PPT
图2灌浆期冬小麦冠层温度日变化(A)和土壤5 cm深处温度日变化(B)。
-->Fig. 2Diurnal variations of temperatures on winter wheat canopy (A) and in soil layer of 5 cm (B) at filling stage.
-->

1.3 测定项目和方法

1.3.1 地上部单茎干物质积累与氮积累测定
观测记录增温和对照处理的开花期(6月2日和6月16日)及成熟期(7月27日和8月7日)日期。于各处理的开花期和成熟期进行冬小麦单位面积群体数调查, 并连续取30个冬小麦单茎。在开花期, 将冬小麦单茎分为穗、叶片、茎秆+叶鞘3部分; 在成熟期将冬小麦单茎分为籽粒、叶片、茎秆+叶鞘和颖壳+穗轴4部分。样品于烘干箱80 ℃烘至恒质量, 称干质量。之后, 将开花期和成熟期的烘干样品粉碎, 采用浓H2SO4消煮-半微量凯氏定氮法测定植株全氮含量, 计算植株氮积累量。
开花至成熟期的个体干物质积累速率= (成熟期的单茎干物质积累量-开花期的单茎干物质积累量)/开花至成熟的天数
不同器官氮积累量=氮含量×干物质质量
开花至成熟期的个体氮积累速率= (成熟期的单茎氮积累量-开花期的单茎氮积累量)/开花至成熟的天数
1.3.2 地上部群体干物质积累与转运
冬小麦植株干物质积累与转运的计算公式(姜东等, 2004)如下:
开花至成熟期的群体干物质积累速率= (成熟期的群体干物质积累量-开花期的群体干物质积累量)/开花至成熟的天数
营养器官开花前贮藏同化物运转量=开花期干质量-成熟期干质量
营养器官开花前贮藏同化物运转率(%) = (开花期干质量-成熟期干质量)/开花期干质量× 100
开花后同化物积累输入籽粒量=成熟期籽粒干质量-营养器官开花前贮藏物质运转量
开花前贮藏同化物转运量对籽粒产量的贡献率(%) =开花前营养器官贮藏物质转运量/成熟期籽粒干质量× 100
开花后同化物积累输入籽粒量对籽粒产量的贡献率(%) =开花后同化物积累输入籽粒量/成熟期籽粒干质量× 100
1.3.3 籽粒产量和收获指数
冬小麦收获后晒干称质量计算籽粒产量, 籽粒含水量为12.5%。
收获指数(%) =籽粒产量/成熟期地上部总生物量× 100
1.3.4 氮效率计算
植株群体氮积累与转运及氮利用效率的计算公式(王月福等, 2003; Stevens et al., 2005)为:
开花至成熟期的群体氮积累速率= (成熟期的群体氮积累量-开花期的群体氮积累量)/开花至成熟的天数
营养器官氮运转量=开花期营养器官氮积累量-成熟期营养器官氮积累量
营养器官氮运转率(%) =营养器官氮运转量/开花期营养器官氮积累量× 100
开花后氮积累输入籽粒量=成熟期籽粒氮积累量-营养器官氮运转量
开花前营养器官氮转运量的贡献率(%) =营养器官氮运转量/成熟期籽粒氮积累量× 100
开花后氮积累输入籽粒量的贡献率(%) =开花后氮输入籽粒量/成熟期籽粒氮积累量× 100
氮吸收效率(kg·kg-1) =地上部植株氮总积累量/施氮量
氮肥偏生产力(kg·kg-1) =籽粒产量/施氮量
氮收获指数(%) =成熟期籽粒氮积累量/成熟期地上部植株氮积累总量× 100

1.4 数据处理和分析方法

用Microsoft Excel 2003软件进行数据计算和作图, 用SPSS 11.5统计分析软件进行数据统计分析, 用最小显著性差异法(LSD法)进行差异显著性检验。

2 结果和分析

2.1 不同生育阶段植株干物质和氮积累速率

图3A可以看出, 增温处理的个体干物质积累速率在播种至开花期与对照无显著差异, 在开花至成熟期显著低于对照, 降低了35.7%; 而增温处理的群体干物质积累速率在播种至开花期显著高于对照, 提高了27.5%, 在开花至成熟期与对照无显著差异(图3B)。上述结果表明增温不利于冬小麦个体开花后的干物质积累, 但是增温显著提高了冬小麦群体数(Zheng et al., 2016), 因此提高了开花前群体水平的干物质积累量; 同时, 开花至成熟期群体物质积累速率也较高, 为获得高的籽粒产量奠定了基础。
图3C可以看出, 增温处理的个体氮积累速率在播种至开花期与对照亦无显著差异, 在开花至成熟期比对照降低了16.3%; 而增温处理的群体水平氮积累速率在播种至开花和开花至成熟期均显著高于对照, 分别提高了21.5%和49.5% (图3D)。这些结果表明增温虽然不利于冬小麦个体开花后氮的积累, 但是提高了群体水平冬小麦对氮的吸收积累能力。

2.2 成熟期干物质在不同器官中的分配

表1可以看出, 增温处理成熟期籽粒的干物质分配比例显著高于对照处理, 提高了5.6%; 茎秆+叶鞘的分配量和分配比例均显著低于对照处理, 穗轴+颖壳及叶片的分配量和分配比例, 以及籽粒的干物质分配量与对照处理无显著差异, 表明适度的温度升高有利于干物质向籽粒分配, 其营养器官干物质分配比例低; 对照处理的光合产物过多地滞留于茎秆和叶鞘等营养器官。

2.3 成熟期氮在不同器官中的分配

表2可以看出, 成熟期冬小麦各器官中氮积累量和分配比例为: 籽粒>茎秆+叶鞘>穗轴+颖壳>叶片。增温处理籽粒的分配比例显著高于对照处理, 提高了6.0%; 茎秆+叶鞘的分配量和分配比例均显著低于对照处理; 穗轴+颖壳及叶片的分配量和分配比例以及籽粒的分配量与对照处理无显著差异, 表明温度升高促进了氮向籽粒中的分配, 有利于籽粒中氮的积累。

2.4 开花后营养器官中的物质向籽粒中的转运

表3可以看出, 增温的营养器官开花前贮藏
Table 1
表1
表1冬小麦成熟期干物质在不同器官中的分配对全天增温的响应(平均值±标准误差)
Table 1Responses of dry matter partition among different winter wheat organs at maturity to all-day warming (mean ± SE)
处理
Treatment
籽粒 Grain穗轴+颖壳 Spike axis + glume叶片 Leaf茎秆+叶鞘 Stem + sheath
分配量
Distribution amount (g·stem-1)
分配比例
Distribution
ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution
ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution
ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution
ratio (%)
不增温
Non-warmed
2.59 ± 0.04a42.88 ± 0.45b0.64 ± 0.02a10.53 ± 0.40a0.27 ± 0.01a4.49 ± 0.08a2.54 ± 0.05a42.09 ± 0.27a
增温 Warmed2.33 ± 0.05a45.28 ± 0.08a0.56 ± 0.02a10.98 ± 0.36a0.21 ± 0.01a4.09 ± 0.30a2.04 ± 0.04b39.65 ± 0.10b

Values followed by different lowercase letters within the same column are significant at 5% level.同列中不同小写字母表示处理间差异达5%显著水平。
新窗口打开
Table 2
表2
表2冬小麦成熟期氮在不同器官中的分配对全天增温的响应(平均值±标准误差)
Table 2Responses of plant nitrogen partition among winter wheat organs at maturity to all-day warming (mean ± SE)
处理
Treatment
籽粒 Grain穗轴+颖壳 Spike axis + glume叶片 Leaf茎秆+叶鞘 Stem + sheath
分配量
Distribution amount (g·stem-1)
分配比例
Distribution ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution ratio (%)
分配量
Distribution amount (g·stem-1)
分配比例
Distribution
ratio (%)
不增温
Non-warmed
56.34 ± 0.76a73.26 ± 0.63b4.62 ± 0.25a6.01 ± 0.35a2.88 ± 0.11a3.75 ± 0.12a13.05 ± 0.26a16.98 ± 0.40a
增温 Warmed55.18 ± 0.55a77.68 ± 0.27a4.31 ± 0.18a6.07 ± 0.29a1.88 ± 0.14a2.65 ± 0.19a9.66 ± 0.13b13.60 ± 0.20b

Values followed by different lowercase letters within the same column are significant at 5% level.同列中不同小写字母表示处理间差异达5%显著水平。
新窗口打开
Table 3
表3
表3开花后营养器官干物质向籽粒的转运量和开花后积累量对全天增温的响应(平均值±标准误差)
Table 3Responses of dry matter translocation amount from vegetative organs to grain and dry matter accumulation amount after anthesis to all-day warming (mean ± SE)
处理
Treatment
不增温
Non-warmed
增温
Warmed
营养器官花前贮藏同化物转运量
DMTA (kg·hm-2)
1 164.95 ± 48.69b2 126.69 ± 129.66a
开花前贮藏同化物转运率
DMTR (%)
8.51 ± 0.52b12.96 ± 0.91a
开花前贮藏同化物转运量对籽粒
贡献率 CDMTAAG (%)
13.29 ± 0.93b22.40 ± 1.67a
开花后同化物积累输入籽粒量
DMAAA (kg·hm-2)
7 635.10 ± 293.44a7 390.02 ± 309.59a
开花后同化量对籽粒贡献率
CDMAAAG (%)
86.71 ± 0.93a77.60 ± 1.67b

Values followed by different lowercase letters within the same column are significant at 5% level. CDMAAAG, contribution of dry matter assimilation amount after anthesis to grain; CDMTAG, contribution of dry matter translocation amount to grain; DMAAA, dry matter accumulation amount after anthesis; DMTAA, dry matter translocation amount; DMTR, dry matter translocation ratio.同列中不同小写字母表示处理间差异达5%显著水平。
新窗口打开
同化物转运量、转运率和开花前贮藏同化物转运量对籽粒的贡献率显著高于对照处理, 分别提高了82.6%、52.3%和68.6%; 增温处理的开花后干物质同化量对籽粒的贡献率低于对照, 但其开花后干物质积累量与对照处理无显著差异。 上述结果表明温度升高提高了开花前贮藏同化物的转运能力, 增加了籽粒中来自开花前干物质的比例, 冬小麦开花后同化物的积累量也较高, 有利于获得较高的籽粒产量。

2.5 开花后营养器官中的氮向籽粒中的转运

籽粒中的氮来源于两部分, 一部分为开花前贮存在营养器官于开花后转移到籽粒中的氮, 一部分为开花后植株吸收同化的氮。表4显示, 增温处理营养器官中的氮转运量和转运率显著高于对照处理, 分别高出20.6%和5.5%; 增温处理的开花前转运量对籽粒贡献率低于对照, 其开花后氮积累量和开花后氮积累量对籽粒贡献率显著高于对照。上述结果
Table 4
表4
表4开花后营养器官氮向籽粒的转运量和开花后积累量对全天增温的响应(平均值±标准误差)
Table 4Responses of plant nitrogen translocation amount from vegetative organs to grain and plant nitrogen accumulation amount after anthesis to all-day warming (mean ± SE)
处理
Treatment
不增温
Non-warmed
增温
Warmed
营养器官氮转运量
NTA (kg·hm-2)
149.92 ± 3.37b180.79 ± 2.24a
营养器官氮转运率 TE (%)67.34 ± 0.77b71.07 ± 0.31a
开花前转运量对籽粒贡献率 CP (%)75.24 ± 0.69a70.61 ± 0.26b
开花后氮积累量 NAA (kg·hm-2)49.37 ± 2.08b75.24 ± 0.94a
开花后积累量对籽粒贡献率
CPNAA (%)
24.76 ± 0.69b29.39 ± 0.26a

Values followed by different lowercase letters within the same column are significant at 5% level. CP, contribution proportion; CPNAA, contribution proportion of nitrogen accumulation after anthesis; NAA, nitrogen accumulation after anthesis; NTA, nitrogen translocation amount; TE, translocation efficiency.同列中不同小写字母表示处理间差异达5%显著水平。
新窗口打开
表明温度升高促进了开花期营养器官中贮存的氮向籽粒中的转运, 同时提高了植株开花后的氮吸收积累量以及对籽粒的贡献率, 这是增温处理籽粒氮积累高的生理基础。

2.6 籽粒产量和氮利用率

表5可以看出, 增温处理的籽粒产量显著高于对照, 提高了8.1%, 但收获指数与对照处理无显著差异。增温处理的氮吸收效率、氮肥偏生产力和氮收获指数均高于对照处理, 分别提高了20.8%、8.1%和6.0%。表明适度的温度升高能够促进小麦对氮的吸收利用, 有利于籽粒产量和氮利用率的提高, 达到高产高效。

3 讨论

作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素。 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008)。而外界环境对作物干物质积累、转运和产量有重要影响。Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高。而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001)。温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016)。在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015)。本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照。其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加。该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致。本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响。而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高。
Table 5
表5
表5冬小麦籽粒产量和氮素利用效率对全天增温的响应(平均值±标准误差)
Table 5Responses of grain yield and nitrogen use efficiency of winter wheat to all-day warming (mean ± SE)
处理
Treatment
籽粒产量
Grain yield (kg·hm-2)
收获指数
Harvest index (%)
氮吸收效率
NUE (kg·kg-1)
氮肥偏生产力
NPFP (kg·kg-1)
氮收获指数
NHI (%)
不增温 Non-warmed8 800.04 ± 246.65b41.22 ± 0.54a1.30 ± 0.02b41.91 ± 1.17b73.26 ± 0.63b
增温 Warmed9 516.71 ± 220.48a39.94 ± 0.67a1.57 ± 0.01a45.32 ± 1.05a77.68 ± 0.27a

Values followed by different lowercase letters within the same column are significant at 5% level. NHI, nitrogen harvest index; NPFP, nitrogen partial factor productivity; NUE, nitrogen uptake efficiency.同列中不同小写字母表示处理间差异达5%显著水平。
新窗口打开
氮的吸收利用对作物产量有重要的影响。研究发现, 作物开花前的氮积累量和开花至成熟期的干物质积累量与产量显著正相关, 提高作物产量的关键在于提高开花前的氮积累量(Ntanos & Koutroubas, 2002; Jiang et al., 2004)。温度影响根的呼吸、各种酶的活性等, 从而影响氮的吸收速率。研究表明, 小麦根吸收氮的适宜温度是20-25 ℃, 小麦根对氮的吸收随温度升高而加快, 但温度超过40 ℃时, 氮吸收速率就会下降(陈丹丹, 2012)。廖建雄和王根轩(2000)研究发现高温胁迫引起小麦营养器官含氮量显著降低, 而Gebbing等(1998)、Tahir和Nakata (2005)的研究表明, 花后温度适度升高有利于籽粒氮的积累, 但是高于32 ℃籽粒氮含量随温度升高而下降。前人虽然研究了花后增温对小麦氮吸收积累的影响, 但不能完全反映全球增温背景下小麦对氮的吸收和利用情况。本试验设置了冬小麦全生育期增温处理, 温度升高1.1 ℃促进了群体水平冬小麦对氮的吸收积累及开花期营养器官中贮存的氮向籽粒中的转运, 其籽粒中的氮分配比例高于对照处理。这可能与冬小麦生育期的背景温度有关。本研究的试验区年平均气温在7.4 ℃, 最高气温低于30 ℃, 因此增温1.1 ℃, 加快了冬小麦地上部生长(图3B), 可能提高了根系的生物量和根系活力, 有利于冬小麦群体对氮的吸收积累及向籽粒的转运分配。
显示原图|下载原图ZIP|生成PPT
图3冬小麦不同发育阶段地上部干物质积累速率(A和B)和氮积累速率(C和D)对全天增温的响应(平均值±标准误差)。 DMA, 干物质积累; NA, 氮积累。不同小写字母表示差异达5%显著水平。
-->Fig. 3Responses of dry matter accumulation rate (A and B) and nitrogen accumulation rate (C and D) during different developmental stage to all-day warming in winter wheat (mean ± SE). DMA, dry matter accumulation; NA, nitrogen accumulation. Different lowercase letters in the figure are significant at 5% level.
-->

氮利用效率是联系氮积累与物质生产和产量的重要指标, 提高干物质生产效率和氮生产效率是遗传改良和栽培调控的重点(徐富贤等, 2009)。本研究中, 增温处理的氮吸收效率、氮肥偏生产力和氮收获指数均高于对照处理, 适度增温促进了冬小麦对氮的吸收利用, 有利于籽粒产量和氮利用率的同步提高, 实现高产高效。其原因可能在于增温处理使冬小麦前期生长速率加快, 加大了冬小麦根系对氮的吸收(Tian et al., 2014)。本试验结果还表明, 增温处理的氮积累能力和开花后氮的转运效率高, 促进了营养器官中氮的输出和向籽粒中的转运, 从而提高了氮利用效率。对照处理开花前氮转运量对籽粒贡献率虽然较高, 但其开花前干物质积累量低于增温处理, 开花前积累的氮并未有效地促进物质生产, 导致植株对氮的吸收效率低下, 加之开花后干物质向穗部分配不合理, 造成对照处理碳氮在营养器官冗余。

4 结论

日平均气温升高1.1 ℃, 提高了冬小麦群体干物质积累能力、籽粒干物质分配比例和开花前贮藏同化物转运量对籽粒产量的贡献率; 增加了冬小麦群体氮积累量、成熟期氮向籽粒的分配比例及开花期营养器官中贮存的氮向籽粒的转运率; 其籽粒产量和氮吸收效率分别比对照提高了8.1%和20.8%。本试验预期升温1.1 ℃将促进青藏高原等高海拔地区冬小麦干物质和氮向籽粒分配和转运, 有利于冬小麦高产和氮高效利用。
The authors have declared that no competing interests exist.
作者声明没有竞争性利益冲突.

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality.
Agricultural and Forest Meteorology, 149, 1791-1799.
https://doi.org/10.1016/j.agrformet.2009.06.007URL [本文引用: 1]摘要
The temperature of the Earth is rising, and is highly likely to continue to do so for the foreseeable future. The study of the effects of sustained heating on the ecosystems of the world is necessary so that we might predict and respond to coming changes on both large and small spatial scales. To this end, ecosystem warming studies have been performed for more than 20 years using a variety of methods. These warming methods fall into two general categories: active and passive. Active warming methods include heat-resistance cables, infrared (IR) lamps and active field chambers. Passive warming methods include nighttime warming and passive field chambers. An extensive literature review was performed and all ecosystem warming study sites were compiled into a master list. These studies were divided by latitude and precipitation, as well as the method type used and response variables investigated. The goals of this study were to identify: (1) the most generally applicable, inexpensive and effective heating methods; and (2) areas of the world that are understudied or have been studied using only limited warming methods. It was found that the most generally applicable method, and the one that is most true to climate change predictions, is IR heating lamp installation. The least expensive method is passive chambers. The extreme lower and upper latitudes have been investigated least with ecosystem warming methods, and for the upper-mid-latitudes (60 80掳) there have been limited studies published using methods other than passive chambers. Ecosystem warming method limitations and recommendations are discussed.
[2]Badeck FW, Bondeau A, B?ttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change.
New Phytologist, 162, 295-309.
https://doi.org/10.1111/j.1469-8137.2004.01059.xURL [本文引用: 1]摘要
Summary Climate change effects on seasonal activity in terrestrial ecosystems are significant and well documented, especially in the middle and higher latitudes. Temperature is a main driver of many plant developmental processes, and in many cases higher temperatures have been shown to speed up plant development and lead to earlier switching to the next ontogenetic stage. Qualitatively consistent advancement of vegetation activity in spring has been documented using three independent methods, based on ground observations, remote sensing, and analysis of the atmospheric CO 2 signal. However, estimates of the trends for advancement obtained using the same method differ substantially. We propose that a high fraction of this uncertainty is related to the time frame analysed and changes in trends at decadal time scales. Furthermore, the correlation between estimates of the initiation of spring activity derived from ground observations and remote sensing at interannual time scales is often weak. We propose that this is caused by qualitative differences in the traits observed using the two methods, as well as the mixture of different ecosystems and species within the satellite scenes.
[3]Chen DD (2012). Effects of Different Day and Night Temperature Enhancement After Anthesis on Quality and Physiological Mechanism of Wheat Under Free Air Controlled Condition.
Master degree dissertation, Nanjing Agricultural University, Nanjing.(in Chinese with English abstract)
[陈丹丹 (2012). 花后开放式增温对小麦品质的影响及其生理机制
. 硕士研究论文, 南京农业大学, 南京.]
https://doi.org/10.7666/d.Y2362197URL [本文引用: 1]摘要
以耐热品种镇麦5号和热敏感品种扬麦16为材料,利用田间开放式增温系统模拟气候变暖6种增温情景(全天增温1.5和3.0℃、白天增温1.5和3.0℃、夜间增温1.5和3.0℃),研究了花后开放式增温对小麦产量、品质、内源激素及碳氮代谢相关酶活性的影响,主要结果如下。 1.花后开放式增温导致小麦穗粒数和千粒重降低,产量下降。其中,镇麦5号降低不显著,扬麦16降低显著,并呈现增温水平越高穗粒数和千粒重下降越多的规律,且在低水平增温下白天增温的减产效应大于夜间增温,在高水平增温下夜间增温的减产效应大于白天增温。 2.花后开放式增温对小麦籽粒外形有一定程度的影响,在增温处理下,镇麦5号和扬麦16籽粒的长度和厚度都有不同程度的降低,其中扬麦16的降低程度稍高于镇麦5号,但多数情况下都未达到显著水平。 3.花后开放式增温提高了小麦籽粒粗蛋白和湿面筋的含量,增幅最大可达10.4%和20.5%,镇麦5号和扬麦16两品种表现基本一致;花后开放式增温降低了小麦籽粒容重和出粉率,降低了面粉中的粗脂肪含量、灰分含量和降落值;增温增加了面粉中干湿面筋含量。 4.花后开放式增温对小麦面粉蛋白组分也有一定程度的影响,但因品种和增温情景的不同其结果表现不一致。增温显著提高了镇麦5号面粉的清蛋白含量,增加幅度最大可达68.9%;增温提高了扬麦16谷蛋白含量,增幅最大可达51.0%,且夜间增温处理对其蛋白组分的影响较大一些,两年趋势基本一致。 5.花后开放式增温对小麦面粉中的淀粉含量及其组分影响不显著,但对淀粉RVA特性有一定的影响,并因品种和增温情景的不同而有较大差异。增温显著降低了扬麦16的峰值粘度和崩解值,降幅分别为17.3%和38.5%,镇麦5号与之趋势基本一致,但并未达到显著水平。 6.花后开放式增温对小麦内源激素含量有一定程度的影响,但因品种的不同而有较大的差异。增温显著提高了扬麦16号花后0-10d叶片及籽粒IAA的含量,但显著降低了花后15-20d叶片及籽粒IAA的含量;增温对镇麦5号变化叶片及籽粒IAA含量的影响虽然与扬麦16号表现一致,但与对照相比均不显著;增温显著降低了扬麦16号叶片及籽粒ZR和iPA的含量,显著增加了ABA的含量,两品种趋势一致,但镇麦5号差异不显著。花后开放式增温对小麦碳氮代谢相关酶活性的影响比较复杂,处理间未表现出规律性的差异。
[4]Chen J, Tian YL, Zhang X, Zheng CY, Song ZW, Deng AX, Zhang WJ (2014). Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China.
Journal of Plant Growth Regulation, 33, 397-407.
https://doi.org/10.1007/s00344-013-9390-0URL [本文引用: 2]摘要
A better understanding of the actual impacts of nighttime warming on winter wheat growth will assist in breeding new varieties and agronomic innovation for food security under future climates. A 3-year experiment was conducted over an entire growth period of winter wheat using a passive warming facility in North China. An increase of 1.102°C in mean nighttime temperature promoted wheat development, causing a 6-day reduction of the preanthesis period but a 5-day extension of the postanthesis period. This warming significantly stimulated the rate of leaf respiration at nighttime, resulting in higher carbohydrate depletion compared to that of the unwarmed control. However, stimulation of nighttime respiration and carbohydrate depletion could be compensated for by warming-led promotion of daytime photosynthesis and carbohydrate assimilation. Meanwhile, the flag leaf area per plant and the total green leaves area were significantly higher in the warmed plots than in the unwarmed plots. Besides extending the duration of grain filling, nighttime warming significantly promoted the filling rates of the superior and inferior grains, resulting in a significant increase in the 1,000-grain weight by 6.302%. Consequently, this moderate increase in nighttime air temperature significantly increased wheat aboveground biomass and grain yield by 12.3 and 12.002% ( p 02<020.05), respectively. A moderate warming at nighttime can improve the sink-source balance of winter wheat for higher yield. Our results suggest that climatic warming may benefit winter wheat production through improvement of plant development and grain growth in North China.
[5]Chen XY, Luo YP (2001). Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat.
Acta Agronomica Sinica, 27, 513-516. (in Chinese with English abstract)
[陈晓远, 罗远培 (2001). 开花期复水对受旱冬小麦的补偿效应研究
. 作物学报, 27, 513-516.]
https://doi.org/10.3321/j.issn:0496-3490.2001.04.018URL [本文引用: 1]摘要
以冬小麦品种北农6号为材料,研究了开花期复水对小麦生长的影 响。结果表明,前期受旱程度不同的植株开花期恢复供水后,其株高、单株叶面积、生物量及产量等都超过相应的干旱对照,表现出明显的补偿生长效应。同时,各 复水处理与对照相比,分配到冠部的干物质比例均增加, R/S下降。中度水分胁迫后充分供水的处理,可以在少减产的情况下节约大量用水,从而达到节水的目的。
[6]Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006). National assessment report of climate change (I). Climate change in China and its future trend.
Advances in Climate Change Research, 2(1), 3-8. (in Chinese with English abstract)
[丁一汇, 任国玉, 石广玉, 宫鹏, 郑循华, 翟盘茂, 张德二, 赵宗慈, 王绍武, 王会军, 罗勇, 陈德亮, 高学杰, 戴晓苏 (2006). 气候变化国家评估报告(I): 中国气候变化的历史和未来趋势
. 气候变化研究进展, 2(1), 3-8.]
https://doi.org/10.3969/j.issn.1002-2511.2006.02.004URLMagsci [本文引用: 2]摘要
中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球变暖背景下,近100 a来中国年平均地表气温明显增加,升温幅度比同期全球平均值略高。近100 a和近50 a的降水量变化趋势不明显,但1956年以来出现了微弱增加的趋势。近50 a来中国主要极端天气气候事件的频率和强度也出现了明显的变化。研究表明,中国的CO2年排放量呈不断增加趋势,温室气体正辐射强迫的总和是造成气候变暖的主要原因。对21世纪气候变化趋势做出的预测表明:未来20~100 a,中国地表气温增加明显,降水量也呈增加趋势。
[7]Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability.
European Journal of Agronomy, 28, 138-147.
https://doi.org/10.1016/j.eja.2007.06.002URL摘要
Durum wheat ( Triticum durum Desf.) is commonly grown in dryland conditions, where environmental stress during grain filling can limit productivity and increase the dependency on stored assimilate. We investigated current assimilation and remobilization of dry matter and nitrogen during grain filling in N fertilized and unfertilized durum wheat subjected to different levels of water deficit during grain filling. Two durum wheat varieties, Appio and Creso, were grown in open-air containers with three rates of nitrogen fertilizer (not applied, N0; normal amount, NN; high amount, NH) and four water regimes during grain filling (fully irrigated treatment, FI; low, LWS, moderate, MWS and high water stress, HWS) across 2 years. Grain yield and dry matter and N accumulation and remobilization were positively affected by N availability and negatively by water stress during grain filling. The reduction of grain yield by severe post-anthesis water stress amounted to 27 and 37% for N0 and NN, respectively, and was associated with a decrease in kernel weight. There was also a small negative effect on the number of kernels per spike. Conversely, the duration of grain filling was not modified either by water stress or by nitrogen treatments. Severe water stress also reduced dry matter accumulation and remobilization by 36 and 14% in N0 plants and by 48 and 25% in NH plants. Similarly, N accumulation and N remobilization was reduced by 43% and by 16% in N0 plants and by 51% and by 15% in NH plants. Conversely, low and moderate water stress did not substantially modify the patterns of dry matter and nitrogen deposition in grain. Although remobilization of dry matter and N was less affected by water stress than accumulation, it was not able to counterbalance the reduction of assimilation and consequently it was not able to stabilize grain yield under drought.
[8]Fang SB, Tan KY, Ren SX, Zhang XS, Zhao JF (2012).Field experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5 °C.
Science China Earth Sciences, 55, 1021-1027.
URL
[9]Gebbing T, Schnyder H, Kühbauch W (1998). Carbon mobilization in shoot parts and roots of wheat during grain filling: Assessment by 13C/12C steady-state labelling, growth analysis and balance sheets of reserves.
Plant, Cell & Environment, 21, 301-313.
https://doi.org/10.1046/j.1365-3040.1998.00286.xURL摘要
The steady-state labelling of all post-anthesis photosynthates of pot-grown wheat cv. Kadett and Star plants was undertaken during 1991-92 to assess the mobilization of pre-anthesis C in vegetative plant parts during grain filling. P and K fertilizers were applied once during tillering and N fertilizer applied at 8 mg N/plant at stages 27, 31 and 37. Additional N fertilizer was applied to half the plants at stages 45 (booting), 51 and 61 (beginning of anthesis). Results were compared with estimatesobtained by growth analysis and balance sheets of water soluble carbohydrates (WSC) and proteins. The fraction of pre-anthesis C mobilized in aboveground vegetative biomass ranged between 24 and 34% of total C present at anthesis. Treatment effects on mobilization of pre-anthesis C in total aboveground vegetative biomass were closely related to the effects on mobilization of WSC-C plus protein-C (estimated as N mobilized X 3.15). On average, 81% of pre-anthesis C mobilization was attributable to the balance of pre-anthesis WSC (48%) and protein (33%) between anthesis and maturity. In roots, WSC and protein mobilization accounted for only 29% of the loss of pre-anthesis C. Notably, mobilization of pre-anthesis C was 1.4 to 2.6 times larger than the netloss of C from aboveground vegetative biomass between anthesis and maturity. This discrepancy was primarily due to post-anthesis C accumulation in the glumes and stem. Post-anthesis C accumulation was related to continued synthesis of structural biomassafter anthesis and accounted for a mean 15% of total C contained in above-ground vegetative plant parts at maturity. A close correspondence between net loss of C and mobilization of pre-anthesis C was only apparent in leaf blades and leaf sheaths. Although balance sheets of WSC and protein also underrated the mobilization of pre-anthesis C by锝19%, they gave a much better estimate of pre-anthesis C mobilization than growth analysis.
[10]IPCC (Intergovernmental Panel on Climate Change) (2014). Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press,Cambridge, UK. [本文引用: 4]
[11]Jiang D, Xie ZJ, Cao WX, Dai TB, Jing Q (2004).Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat.
Acta Agronomica Sinica, 30, 175-182. (in Chinese with English abstract)
[姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇 (2004). 花后干旱和渍水对冬小麦光合特性和物质运转的影响
. 作物学报, 30, 175-182.]
https://doi.org/10.3321/j.issn:0496-3490.2004.02.016URL摘要
Four winter wheat(Triticum aestivum L.) genotypes differing in grain protein content, Heixiaomai76, Wanmai38, Yangmai10 and Yangmai9, were used in pot experiment in greenhouse to investigate the effects of drought (Soil relative water content, SRWC=45%-50%), waterlogging and moderate soil water sta
[12]Jiang LG, Dai TB, Jiang D, Cao WX, Gan XQ, Wei SQ (2004). Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.
Field Crops Research, 88, 239-250.

[13]Liao JX, Wang GX (2000). The effects of increasing CO2, temperature and drought on the chemical composition of wheat leaves.
Acta Phytoecologica Sinica, 24, 744-747. (in Chinese with English abstract)
[廖建雄, 王根轩 (2000). CO2和温度升高及干旱对小麦叶片化学成分的影响
. 植物生态学报, 24, 744-747.]
https://doi.org/10.1088/0256-307X/17/9/008URL [本文引用: 1]摘要
研究了CO2浓度升高、高温和干旱对干旱区小麦叶片化学成分的影响,结果表明:CO2浓度升高时各化学成分之间的差异只有在40%田间持水量时才表现显著,说明未来CO2浓度升高对干旱区小麦化学成分的影响可能大于在非干旱区的影响;CO2浓度升高可减小因为土壤水分不同而造成的小麦化学成分之间的差异;高温对小麦化学成分的主要影响是引起N含量的显著降低;CO2浓度升高、高温和干旱三因子对干旱区小麦化学成分的复合影
[14]Lobell DB, Schlenker W, Costa-Roberts J (2011). Climate trends and global crop production since 1980.
Science, 333, 616-620.
https://doi.org/10.1126/science.1204531URLPMID:21551030 [本文引用: 1]摘要
Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
[15]Mu HR, Jiang D, Dai TB, Jing Q, Cao WX (2008). Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Scientia Agricultura Sinica, 41, 599-606.
( in Chinese with English abstract)
[牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星 (2008). 遮荫对小麦旗叶光合及叶绿素荧光特性的影响
. 中国农业科学, 41, 599-606.]
https://doi.org/10.3864/j.issn.0578-1752.2008.02.040URL摘要
【目的】研究长期遮荫对小麦旗叶光合作用及叶绿素荧光参数的影响。【方法】以扬麦158、扬麦11、南农9918和南农02Y393等4个冬小麦(Triticum aestivumL.)品种为材料,从拔节至成熟期进行遮光22%和33%处理。【结果】灌浆前中期,遮荫对较耐荫的品种扬麦158和南农02Y393旗叶SPAD(Soil-PlantAnalysesDevelopment)值无显著影响,而降低不耐荫品种扬麦11和南农9918的旗叶SPAD值,但遮荫显著提高了灌浆后期小麦旗叶SPAD值。遮荫降低了小麦旗叶光合速率(Pn)、PSⅡ实际光化学效率(ΦPSⅡ)和光化学荧光猝灭系数(qP)与干物质积累量,而提高了光系统Ⅱ的初始荧光强度(Fo)和最大光化学转化效率(Fv/Fm)。【结论】遮荫主要是通过降低叶片光系统Ⅱ的实际光化学效率和光化学荧光猝灭系数,引起单叶光合速率下降,最终降低小麦干物质积累。
[16]Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996). Free air temperature increase (FATI): A new tool to study global warming effects on plants in the field.
Plant, Cell & Environment, 19, 495-502.
https://doi.org/10.1111/j.1365-3040.1996.tb00343.xURL [本文引用: 1]摘要
A new technique, called Free Air Temperature Increase (FATI), was developed to artificially induce increased canopy temperature in field conditions without the use of enclosures. This acronym was chosen in analogy with FACE (Free Air CO 2 Enrichment), a technique which produces elevated CO 2 concentrations [CO 2 ] in open field conditions. The FATI system simulates global warming in small ecosystems of limited height, using infrared heaters from which all radiation below 800 nm is removed by selective cut-off filters to avoid undesirable photomorpho-genetic effects. An electronic control circuit tracks the ambient canopy temperature in an unheated reference plot with thermocouples, and modulates the radiant energy from the lamps to produce a 2.5 C increment in the canopy temperature of an associated heated plot (continuously day and night). This pre-set target differential is relatively-constant over time due to the fast response of the lamps and the use of a proportional action controller (the standard deviation of this increment was <1 C in a 3 week field study with 1007 measurements). Furthermore, the increase in leaf temperature does not depend on the vertical position within the canopy or on the height of the stand. Possible applications and alternative designs are discussed.
[17]Ntanos DA, Koutroubas SD (2002). Dry matter and N accumulation and translocation for
indica and japonica rice under Mediterranean conditions. Field Crops Research, 74, 93-101.
[本文引用: 1]
[18]Pepin NR, Bradley S, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Sch?ner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015). Elevation-dependent warming in mountain regions of the world.
Nature Climate Change, 5, 424-430.
https://doi.org/10.1038/nclimate2563URL [本文引用: 1]摘要
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.
[19]Sadras VO, Monzon JP (2006). Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina.
Field Crops Research, 99, 136-146.
https://doi.org/10.1016/j.fcr.2006.04.003URL [本文引用: 1]摘要
Modelled time from sowing to maturity was reduced up to 650.302d02y 611 ; time to flowering accounted for most of the variation in time to maturity. The rate of change in the duration of modelled wheat phenophases was more marked with early sowing. Owing to the cumulative effect of temperature on crop development assumed in the models, significant changes in rate of development were detected in some cases when change in temperature was statistically undetected. A minimum rate of mean temperature increase 650.0202°C02y 611 was required for significant shortening of time to flowering and season length. In agreement with rates derived from field experiments, the rate of change in modelled time to flowering and maturity was ≈702d02°C 611 . The duration of the post-flowering phase was largely unchanged. This was associated with lack of change in temperature, or where temperature increased, earlier flowering that shifted post-flowering development to relatively cooler conditions, thus neutralising the trend of increasing temperature.
[20]Shen KY, Xu MF (2012). On the rapid development of Tibet’s characteristic agriculture under climate change.
Journal of Tibet University, 27(2), 32-39. (in Chinese with English abstract)
[沈开艳, 徐美芳 (2012). 气候变化条件下的西藏特色农业跨越式发展研究
. 西藏大学学报, 27(2), 32-39.]
https://doi.org/10.3969/j.issn.1005-5738.2012.02.004URL摘要
应对气候变化是促进西藏特色农业发展的重要措施之一.目前西藏已 采取的适应措施主要集中在农业技术和资金投入两个方面;主要不足表现为农户主动性适应行为没有明显改善和适应气候变化的市场能力相对较弱.为进一步提升西 藏特色农业适应气候变化能力,文章建议提高农户非农业收入水平,完善对口支援模式并积极探索巨灾保险机制.
[21]Shi JJ, Jiang XD, Shi HB, Chen YJ, Yuan JK, Jiang M (2015). Effects of winter warming treatments on photosynthesis and yield of wheat.
Journal of Triticeae Crops, 35, 352-356. (in Chinese with English abstract)
[石姣姣, 江晓东, 史宏斌, 陈元珺, 袁久坤, 姜鸣 (2015). 冬季增温对田间小麦光合作用及产量的影响
. 麦类作物学报, 35, 352-356.]
https://doi.org/10.7606/j.issn.1009-1041.2015.03.10URL [本文引用: 1]摘要
Using Yangmai13 as the material,we investigated the impacts of asymmetric warming on the photosynthesis and yield of wheat based on field study with FATI (Free Air Temperature Increased) facility.During the winter (November 13 to March 14 next year),three kinds of treatments of the day and night warming (DN),night (N) and day (D) warming were set up to analyze the changes of photosynthetic parameters and yield under different warming treatments during over wintering stage and booting stage.The results showed that,during wintering stage,the apparent quantum yield,light saturation point,and actual photochemical efficiency of PSⅡwere higher in DN treatment than CK with the increase of 28.21%,16.32% and 43.78%,respectively;Compared with CK,the apparent quantum yield,light saturation point,and actual photochemical efficiency of PSⅡ in N and D treatments increased by 15.38%,13.67%,81.93% and 7.69%,0.99% and 1.61%,respectively;The apparent quantum yield,light saturation point,and actual photochemical efficiency of PSⅡ in N treatment reached their minimum values at booting stage.And these indexes were decreased by 3.33%,1.87% and 4.91%,compared with CK,respectively;DN and N treatments significantly improved the photosynthetic capacity of winter wheat at wintering stage.Three warming treatments leaded to a decline in photosynthetic capacity at booting stage,but compared with CK,there was no significant difference in the grain number per spike and 1 000 grain weight of winter wheat among three warming treatments.Warming winter increased the number of spike.The yield of D and DN treatments were increased,but that of N treatment was reduced.
[22]Sommer R, Glazirina M, Yuldashev T, Otarov A, Ibraeva M, Martynova L, Bekenov M, Kholov B, Ibragimov N, Kobilov R, Karaev S, Sultonov M, Khasanova F, Esanbekov M, Mavlyanov D, Isaev S, Abdurahimov S, Ikramov R, Shezdyukova L, de Pauw E (2013). Impact of climate change on wheat productivity in Central Asia.
Agriculture Ecosystems Environment, 178, 78-99.
https://doi.org/10.1016/j.agee.2013.06.011URL [本文引用: 1]摘要
Climate change (CC) may pose a challenge to agriculture and rural livelihoods in Central Asia, but in-depth studies are lacking. To address the issue, crop growth and yield of 14 wheat varieties grown on 18 sites in key agro-ecological zones of Kazakhstan, Kyrgyzstan, Uzbekistan and Tajikistan in response to CC were assessed. Three future periods affected by the two projections on CC (SRES A1B and A2) were considered and compared against historic (1961 1990) figures. The impact on wheat was simulated with the CropSyst model distinguishing three levels of agronomic management. Averaged across the two emission scenarios, three future periods and management scenarios, wheat yields increased by 12% in response to the projected CC on 14 of the 18 sites. However, wheat response to CC varied between sites, soils, varieties, agronomic management and futures, highlighting the need to consider all these factors in CC impact studies. The increase in temperature in response to CC was the most important factor that led to earlier and faster crop growth, and higher biomass accumulation and yield. The moderate projected increase in precipitation had only an insignificant positive effect on crop yields under rainfed conditions, because of the increasing evaporative demand of the crop under future higher temperatures. However, in combination with improved transpiration use efficiency in response to elevated atmospheric CO 2 concentrations, irrigation water requirements of wheat did not increase. Simulations show that in areas under rainfed spring wheat in the north and for some irrigated winter wheat areas in the south of Central Asia, CC will involve hotter temperatures during flowering and thus an increased risk of flower sterility and reduction in grain yield. Shallow groundwater and saline soils already nowadays influence crop production in many irrigated areas of Central Asia, and could offset productivity gains in response to more beneficial winter and spring temperatures under CC. Adaptive changes in sowing dates, cultivar traits and inputs, on the other hand, might lead to further yield increases.
[23]Stevens WB, Hoeft RG, Mulvaney RL (2005). Fate of nitrogen-15 in a long-term nitrogen rate study II. Nitrogen uptake efficiency.
Agronomy Journal, 97, 1046-1053.

[24]Tahir ISA, Nakata N (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling.
Journal of Agronomy and Crop Science, 191, 106-115.
https://doi.org/10.1111/j.1439-037X.2004.00127.xURL [本文引用: 2]摘要
When wheat (Triticum aestivum L.) is grown under heat-stress conditions during grain filling, preanthesis stored total non-structural carbohydrates (TNC) and nitrogen (N) could serve as alternative source of assimilates. This study was performed to evaluate wheat genotypes for their ability to accumulate and remobilize TNC and N stored in their stem to support grain filling under heat stress. Eighteen genotypes were used for N remobilization study while nine of them were used for TNC remobilization study. They were grown in pots and placed in a vinyl house with the maximum temperature kept below 30 C. Five days after anthesis (5DAA), half of the pots were taken to phytotrons where temperature was gradually increased and the maximum was set at 38 掳C. Grain yield and grain weight decreased by about 35 % under heat stress. Significant differences were found among genotypes in percentage reduction in grain yield, grain weight, grain filling duration and harvest index because of heat stress. The N and TNC concentrations of the stem at 5DAA were significantly different among genotypes. Heat stress significantly reduced the N remobilization efficiency of most of genotypes. However, heat stress significantly increased TNC remobilization efficiency and significant variation were observed among genotypes. N remobilization efficiency across treatments significantly correlated with grain yield, grain weight, harvest index and grain filling duration. TNC at 5DAA negatively correlated with N at 5DAA and harvest index, but the TNC remobilization efficiency under heat stress positively correlated with mainstem grain yield, grain weight and harvest index. The rate of chlorophyll loss from flag leaf positively correlated with N and TNC remobilization efficiencies under heat stress suggesting a link between leaf senescence and remobilization efficiency. The results indicate that heat stress negatively affected grain yield, its components and N remobilization while it increased TNC remobilization because of the increasing demand for resources.
[25]Tian YL, Chen J, Chen CQ, Deng AX, Song ZW, Zheng CY, Hoogmoed W, Zhang WJ (2012). Warming impacts on winter wheat phenophase and grain yield under ?eld conditions in Yangtze Delta Plain, China.
Field Crops Research, 134, 193-199.
[本文引用: 1]
[26]Tian YL, Zheng CY, Chen J, Chen CQ, Deng AX, Song ZW, Zhang BM, Zhang WJ (2014). Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China.
PLOS ONE, 9, e95108. doi: 10.1371/journal.pone.0095108.
https://doi.org/10.1371/journal.pone.0095108URLPMID:3988157 [本文引用: 1]摘要
Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5掳C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5掳C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.
[27]Wang YF, Yu ZW, Li SX, Yu SL (2003). Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat.
Chinese Journal of Applied Ecology, 14, 1868-1872. (in Chinese with English abstract)
[王月福, 于振文, 李尚霞, 余松烈 (2003). 土壤肥力和施氮量对小麦氮吸收运转及籽粒产量和蛋白质含量的影响
. 应用生态学报, 14, 1868-1872.]
URL摘要
The results of this study showed that nitrogen application improved the nitrogen uptake by wheat, especially during its late growth stage. Although a higher nitrogen application rate could increase the amount of absorbed nitrogen, an excess of nitrogen would remain in vegetative organs at the stage after flowering, owing to the low translocation rate of nitrogen from these organs to the grain, and hence, the nitrogen use efficiency and nitrogen harvest index were decreased. Compared with that on high fertility soil, the ratio of nitrogen absorbed from fertilizer to total absorbed nitrogen was higher when the wheat was grown on low fertility soil. On high fertility soil, wheat plant absorbed more nitrogen from top-dressed fertilizer than from basis fertilizer, and top-dressed fertilizer contributed more nitrogen to the grain. It was reversed on low fertility soil.
[28]Xiao GJ, Zhang Q, Zhang FJ, Luo CK, Wang RY (2011). The impact of rising temperature on spring wheat production in the Yellow River irrigation region of Ningxia.
Acta Ecologica Sinica, 31, 6588-6593. (in Chinese with English abstract)
[肖国举, 张强, 张峰举, 罗成科, 王润元 (2011). 增温对宁夏引黄灌区春小麦生产的影响
. 生态学报, 31, 6588-6593.]
URL [本文引用: 1]摘要
近40a来,宁夏引黄灌区年平均增温幅度高于全国平均值,对春小麦生产已经产生了重大影响。基于哥本哈根联合国气候变化大会控制未来50a全球升温幅度的范围值,设计增温幅度为0.5-2.5℃,采用红外线辐射器大田增温模拟实验,研究增温对宁夏引黄灌区春小麦生长发育和产量的影响。结果表明:增温0.5-2.5℃,宁夏引黄灌区春小麦全生育期(播种-收获)缩短1-22d,减产0.5%-18.5%;增温2.0-2.5℃,春小麦全生育期缩短18-22d,减产16.5%-18.5%。增温引起春小麦三叶期和孕穗期光合速率下降,穗粒数减少,千粒重下降,最终导致减产。
[29]Xu FX, Xiong H, Xie R, Zhang L, Zhu YC, Guo XY, Yang DJ, Zhou XB, Liu M (2009). Advance of rice fertilizer- nitrogen use efficiency.
Plant Nutrition and Fertilizer Science, 15, 1215-1225. (in Chinese with English abstract)
[徐富贤, 熊洪, 谢戎, 张林, 朱永川, 郭晓艺, 杨大金, 周兴兵, 刘茂 (2009). 水稻氮利用效率的研究进展及其动向
. 植物营养与肥料学报, 15, 1215-1225.]
https://doi.org/10.3321/j.issn:1008-505X.2009.05.033URL [本文引用: 1]摘要
本文综述了国内外有关水稻基因型、根系生长、物质积累、生理代谢、植株性状与氮素利用效率关系的研究进展。指出水稻发根力强、根系发达的品种有利于提高对土壤氮素的吸收能力;分蘖力强,齐穗期粒叶比大,抽穗后干物质积累量大,库容量大,结实率、千粒重、生物产量和收割指数高的品种对氮素的利用效率高;其生理学特征表现为硝酸还原酶、谷氨酸合成酶和RuBP羧化酶的活性高。总结了从氮肥种类与平衡施肥、施肥方法与肥水运筹、氮肥精准施用技术方面提高稻田氮肥利用率的有效途径。提出了提高水稻氮效率的研究重点,即建立水稻氮素效率间接评价的有效方法、突出水稻氮素效率的遗传规律与品种选育工作、协调氮素高效吸收与高效利用矛盾的栽培策略和深化以叶色为基础的高效定量施氮技术研究4个方面。
[30]Yang JC, Zhang JH, Huang ZL, Zhu Q, Wang L (2000). Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat.
Crop Science, 40, 1645-1655.
URL [本文引用: 1]
[31]You LZ, Rosegrant MW, Wood S, Sun DS (2009). Impact of growing season temperature on wheat productivity in China.
Agricultural and Forest Meteorology, 149, 1009-1014.
https://doi.org/10.1016/j.agrformet.2008.12.004URL [本文引用: 1]摘要
Climate change continues to have major impact on crop productivity all over the world. Many researchers have evaluated the possible impact of global warming on crop yields using mainly indirect crop simulation models. Here we use a 1979–2000 Chinese crop-specific panel dataset to investigate the climate impact on Chinese wheat yield growth. We find that a 102°C increase in wheat growing season temperature reduces wheat yields by about 3–10%. This negative impact is less severe than those reported in other regions. Rising temperature over the past two decades accounts for a 4.5% decline in wheat yields in China while the majority of the wheat yield growth, 64%, comes from increased use of physical inputs. We emphasize the necessity of including such major influencing factors as physical inputs into the crop yield-climate function in order to have an accurate estimation of climate impact on crop yields.
[32]Zhang K, Wang RY, Feng Q, Wang HL, Zhao H, Zhao FN, Yang FL, Lei J (2015). Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area.
Transactions of the CSAE, 31(Supp.1), 161-170. (in Chinese with English abstract)
[张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊 (2015). 模拟增温和降水变化对半干旱区春小麦生长及产量的影响
. 农业工程学报, 31(增刊1), 161-170.]
https://doi.org/10.3969/j.issn.1002-6819.2015.z1.019URLMagsci [本文引用: 2]摘要
为了探索和验证未来气候变化对半干旱区春小麦生产的影响,了解春小麦生长发育和产量对增温和降水变化协同响应的基本特征,利用开放式增温系统和水分控制装置,设置不同水分和温度梯度来模拟气候变化对半干旱区春小麦的影响。结果表明:正常和增加30%降水条件下,增温2.0℃使春小麦株高降低。在不增温和增温2.0℃条件下,增加30%降水使春小麦株高增加;正常和增加降水条件下,增温的叶面积指数比不增温的低。正常和增温条件下,水分对叶面积指数的影响规律性不是很明显;增温和增水协同条件下的株高、叶面积指数小于不增温和正常降水条件下的株高、叶面积指数;增温导致叶绿素含量降低,增温情况下增水会使叶绿素含量提高;正常和增加降水条件下,增温的干物质质量比不增温的低。正常和增温条件下,降水增多则有利于干物质质量的积累;营养生长阶段和生殖生长阶段,在正常和增加降水条件下,增温对叶的分配系数有负效应,增水为正效应。增温对茎的分配系数有正效应,增水为负效应。增温对穗的分配系数有负效应,增水为正效应;增加降水对春小麦的产量有正效应,而增温则不利于产量的提高,即便是在增加降水的情况下,增温还是对产量有不利的影响。研究结果为中国半干旱区春小麦对全球气候变化下的敏感性及适应性提供理论参考。
[33]Zhang K, Wang RY, Wang HL, Zhao H, Qi Y, Zhao FN, Lei J (2016). Effects of simulated warming on dry matter production and distribution of rainfed spring wheat in semi-arid area.
Transactions of the CSAE, 32, 223-232. (in Chinese with English abstract)
[张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 雷俊 (2016). 模拟增温对半干旱雨养区春小麦物质生产与分配的影响
. 农业工程学报, 32, 223-232.]
URL [本文引用: 2]
[34]Zheng CY, Chen CQ, Zhang X, Song ZW, Deng AX, Zhang BM, Wang L, Mao NW, Zhang WJ (2016). Actual impacts of global warming on winter wheat yield in Eastern Himalayas.
International Journal of Plant Production, 10, 159-174.
URL摘要
Himalayas, are among the areas most vulnerable to global warming, however, little is knownabout warming impacts on the crops. Therefore, the actual affects of anticipated warming onwinter wheat were tested in Tibet, China. During the period 1988-2012, Tibet region hasexperienced a large increase in daily mean, minimum and maximum temperatures during wheatgrowing seasons by 0.50, 0.67 and 0.51 oC every ten years, respectively. The de-trended wheatyield increased by 34.4 kg ha-1 year-1 during this period. According to the historical data, 1 oCincrease in daily mean temperature could get 370.6 kg ha 1 gain in wheat yield. Similar gains inwheat yield were found in a field warming experiment with an increase of 1.1 oC in daily meantemperature. The field warming caused a significant reduction in the pre-anthesis phase andentire growth period by 14 and 13 days, respectively. The green leaf areas and spike number inthe warmed plots were significantly higher than that in non-warmed plots, while the grainnumber per spike was significantly lower in the former than the later (P<0.05). The mainmechanism underlying the positive affects of this moderate warming on wheat yield is throughimproving plant development and growth during the pre-anthesis phase by mitigating the lowtemperature limitation. This study suggests that further efforts should be directed towards theimprovement on agriculture infrastructure to utilize the positive affects of climatic warming oncrop production.
Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality.
1
2009

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

Responses of spring phenology to climate change.
1
2004

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

花后开放式增温对小麦品质的影响及其生理机制
1
2012

... 氮的吸收利用对作物产量有重要的影响.研究发现, 作物开花前的氮积累量和开花至成熟期的干物质积累量与产量显著正相关, 提高作物产量的关键在于提高开花前的氮积累量(Ntanos & Koutroubas, 2002; Jiang et al., 2004).温度影响根的呼吸、各种酶的活性等, 从而影响氮的吸收速率.研究表明, 小麦根吸收氮的适宜温度是20-25 ℃, 小麦根对氮的吸收随温度升高而加快, 但温度超过40 ℃时, 氮吸收速率就会下降(陈丹丹, 2012).廖建雄和王根轩(2000)研究发现高温胁迫引起小麦营养器官含氮量显著降低, 而Gebbing等(1998)、Tahir和Nakata (2005)的研究表明, 花后温度适度升高有利于籽粒氮的积累, 但是高于32 ℃籽粒氮含量随温度升高而下降.前人虽然研究了花后增温对小麦氮吸收积累的影响, 但不能完全反映全球增温背景下小麦对氮的吸收和利用情况.本试验设置了冬小麦全生育期增温处理, 温度升高1.1 ℃促进了群体水平冬小麦对氮的吸收积累及开花期营养器官中贮存的氮向籽粒中的转运, 其籽粒中的氮分配比例高于对照处理.这可能与冬小麦生育期的背景温度有关.本研究的试验区年平均气温在7.4 ℃, 最高气温低于30 ℃, 因此增温1.1 ℃, 加快了冬小麦地上部生长(图3B), 可能提高了根系的生物量和根系活力, 有利于冬小麦群体对氮的吸收积累及向籽粒的转运分配. ...

Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China.
2
2014

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

开花期复水对受旱冬小麦的补偿效应研究
1
2001

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

气候变化国家评估报告(I): 中国气候变化的历史和未来趋势
2
2006

... 全球气候正经历一个逐渐变暖的过程, 在过去的100年间, 全球地表平均气温升高了0.74 ℃.据预测, 21世纪全球平均气温还将升高2.0-5.4 ℃ (IPCC, 2014).在2016年中国杭州G20大会上, 尽管中美签订了碳减排的共同行动计划, 但到21世纪末地球表层平均气温仍将上升1.5 ℃以上.受全球气候变暖的影响, 近50年来我国年平均气温已上升了1.1 ℃, 并且冬季、中高纬度和高海拔地区的增温尤其显著(丁一汇等, 2006; Pepin et al., 2015).IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

... ).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability.
2008

Field experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5 °C.
2012

Carbon mobilization in shoot parts and roots of wheat during grain filling: Assessment by 13C/12C steady-state labelling, growth analysis and balance sheets of reserves.
1998


4

... 全球气候正经历一个逐渐变暖的过程, 在过去的100年间, 全球地表平均气温升高了0.74 ℃.据预测, 21世纪全球平均气温还将升高2.0-5.4 ℃ (IPCC, 2014).在2016年中国杭州G20大会上, 尽管中美签订了碳减排的共同行动计划, 但到21世纪末地球表层平均气温仍将上升1.5 ℃以上.受全球气候变暖的影响, 近50年来我国年平均气温已上升了1.1 ℃, 并且冬季、中高纬度和高海拔地区的增温尤其显著(丁一汇等, 2006; Pepin et al., 2015).IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

... ).IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

... 冬小麦植株干物质积累与转运的计算公式(姜东等, 2004)如下: ...

... 氮的吸收利用对作物产量有重要的影响.研究发现, 作物开花前的氮积累量和开花至成熟期的干物质积累量与产量显著正相关, 提高作物产量的关键在于提高开花前的氮积累量(Ntanos & Koutroubas, 2002; Jiang et al., 2004).温度影响根的呼吸、各种酶的活性等, 从而影响氮的吸收速率.研究表明, 小麦根吸收氮的适宜温度是20-25 ℃, 小麦根对氮的吸收随温度升高而加快, 但温度超过40 ℃时, 氮吸收速率就会下降(陈丹丹, 2012).廖建雄和王根轩(2000)研究发现高温胁迫引起小麦营养器官含氮量显著降低, 而Gebbing等(1998)、Tahir和Nakata (2005)的研究表明, 花后温度适度升高有利于籽粒氮的积累, 但是高于32 ℃籽粒氮含量随温度升高而下降.前人虽然研究了花后增温对小麦氮吸收积累的影响, 但不能完全反映全球增温背景下小麦对氮的吸收和利用情况.本试验设置了冬小麦全生育期增温处理, 温度升高1.1 ℃促进了群体水平冬小麦对氮的吸收积累及开花期营养器官中贮存的氮向籽粒中的转运, 其籽粒中的氮分配比例高于对照处理.这可能与冬小麦生育期的背景温度有关.本研究的试验区年平均气温在7.4 ℃, 最高气温低于30 ℃, 因此增温1.1 ℃, 加快了冬小麦地上部生长(图3B), 可能提高了根系的生物量和根系活力, 有利于冬小麦群体对氮的吸收积累及向籽粒的转运分配. ...

花后干旱和渍水对冬小麦光合特性和物质运转的影响
2004

Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.
2004

CO2和温度升高及干旱对小麦叶片化学成分的影响
1
2000

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

Climate trends and global crop production since 1980.
1
2011

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

遮荫对小麦旗叶光合及叶绿素荧光特性的影响
2008

Free air temperature increase (FATI): A new tool to study global warming effects on plants in the field.
1
1996

... 氮的吸收利用对作物产量有重要的影响.研究发现, 作物开花前的氮积累量和开花至成熟期的干物质积累量与产量显著正相关, 提高作物产量的关键在于提高开花前的氮积累量(Ntanos & Koutroubas, 2002; Jiang et al., 2004).温度影响根的呼吸、各种酶的活性等, 从而影响氮的吸收速率.研究表明, 小麦根吸收氮的适宜温度是20-25 ℃, 小麦根对氮的吸收随温度升高而加快, 但温度超过40 ℃时, 氮吸收速率就会下降(陈丹丹, 2012).廖建雄和王根轩(2000)研究发现高温胁迫引起小麦营养器官含氮量显著降低, 而Gebbing等(1998)、Tahir和Nakata (2005)的研究表明, 花后温度适度升高有利于籽粒氮的积累, 但是高于32 ℃籽粒氮含量随温度升高而下降.前人虽然研究了花后增温对小麦氮吸收积累的影响, 但不能完全反映全球增温背景下小麦对氮的吸收和利用情况.本试验设置了冬小麦全生育期增温处理, 温度升高1.1 ℃促进了群体水平冬小麦对氮的吸收积累及开花期营养器官中贮存的氮向籽粒中的转运, 其籽粒中的氮分配比例高于对照处理.这可能与冬小麦生育期的背景温度有关.本研究的试验区年平均气温在7.4 ℃, 最高气温低于30 ℃, 因此增温1.1 ℃, 加快了冬小麦地上部生长(图3B), 可能提高了根系的生物量和根系活力, 有利于冬小麦群体对氮的吸收积累及向籽粒的转运分配. ...

Dry matter and N accumulation and translocation for
1
2002

... 全球气候正经历一个逐渐变暖的过程, 在过去的100年间, 全球地表平均气温升高了0.74 ℃.据预测, 21世纪全球平均气温还将升高2.0-5.4 ℃ (IPCC, 2014).在2016年中国杭州G20大会上, 尽管中美签订了碳减排的共同行动计划, 但到21世纪末地球表层平均气温仍将上升1.5 ℃以上.受全球气候变暖的影响, 近50年来我国年平均气温已上升了1.1 ℃, 并且冬季、中高纬度和高海拔地区的增温尤其显著(丁一汇等, 2006; Pepin et al., 2015).IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

Elevation-dependent warming in mountain regions of the world.
1
2015

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina.
1
2006

... 全球气候正经历一个逐渐变暖的过程, 在过去的100年间, 全球地表平均气温升高了0.74 ℃.据预测, 21世纪全球平均气温还将升高2.0-5.4 ℃ (IPCC, 2014).在2016年中国杭州G20大会上, 尽管中美签订了碳减排的共同行动计划, 但到21世纪末地球表层平均气温仍将上升1.5 ℃以上.受全球气候变暖的影响, 近50年来我国年平均气温已上升了1.1 ℃, 并且冬季、中高纬度和高海拔地区的增温尤其显著(丁一汇等, 2006; Pepin et al., 2015).IPCC报告认为气候变暖将对全球农业, 尤其是对适应性低、调整能力差、生产异常脆弱地区的农业产生重大影响(IPCC, 2014).青藏高原被称为世界“第三极”, 对气候变化反应敏感, 近50年来, 该地区增温幅度达1.9 ℃, 明显高于全国平均水平(丁一汇等, 2006).该地区社会经济发展主要以农业为主, 当地居民缺乏应对气候变化的知识和经验, 受气候变化及其灾害的影响较大(沈开艳和徐美芳, 2012). 因此, 探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义. ...

气候变化条件下的西藏特色农业跨越式发展研究
2012

冬季增温对田间小麦光合作用及产量的影响
1
2015

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

Impact of climate change on wheat productivity in Central Asia.
1
2013

... 植株群体氮积累与转运及氮利用效率的计算公式(王月福等, 2003; Stevens et al., 2005)为: ...

Fate of nitrogen-15 in a long-term nitrogen rate study II. Nitrogen uptake efficiency.
2005

Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling.
2
2005

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

Warming impacts on winter wheat phenophase and grain yield under ?eld conditions in Yangtze Delta Plain, China.
1
2012

... 氮利用效率是联系氮积累与物质生产和产量的重要指标, 提高干物质生产效率和氮生产效率是遗传改良和栽培调控的重点(徐富贤等, 2009).本研究中, 增温处理的氮吸收效率、氮肥偏生产力和氮收获指数均高于对照处理, 适度增温促进了冬小麦对氮的吸收利用, 有利于籽粒产量和氮利用率的同步提高, 实现高产高效.其原因可能在于增温处理使冬小麦前期生长速率加快, 加大了冬小麦根系对氮的吸收(Tian et al., 2014).本试验结果还表明, 增温处理的氮积累能力和开花后氮的转运效率高, 促进了营养器官中氮的输出和向籽粒中的转运, 从而提高了氮利用效率.对照处理开花前氮转运量对籽粒贡献率虽然较高, 但其开花前干物质积累量低于增温处理, 开花前积累的氮并未有效地促进物质生产, 导致植株对氮的吸收效率低下, 加之开花后干物质向穗部分配不合理, 造成对照处理碳氮在营养器官冗余. ...

Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China.
1
2014

... 植株群体氮积累与转运及氮利用效率的计算公式(王月福等, 2003; Stevens et al., 2005)为: ...

土壤肥力和施氮量对小麦氮吸收运转及籽粒产量和蛋白质含量的影响
2003

增温对宁夏引黄灌区春小麦生产的影响
1
2011

... 氮利用效率是联系氮积累与物质生产和产量的重要指标, 提高干物质生产效率和氮生产效率是遗传改良和栽培调控的重点(徐富贤等, 2009).本研究中, 增温处理的氮吸收效率、氮肥偏生产力和氮收获指数均高于对照处理, 适度增温促进了冬小麦对氮的吸收利用, 有利于籽粒产量和氮利用率的同步提高, 实现高产高效.其原因可能在于增温处理使冬小麦前期生长速率加快, 加大了冬小麦根系对氮的吸收(Tian et al., 2014).本试验结果还表明, 增温处理的氮积累能力和开花后氮的转运效率高, 促进了营养器官中氮的输出和向籽粒中的转运, 从而提高了氮利用效率.对照处理开花前氮转运量对籽粒贡献率虽然较高, 但其开花前干物质积累量低于增温处理, 开花前积累的氮并未有效地促进物质生产, 导致植株对氮的吸收效率低下, 加之开花后干物质向穗部分配不合理, 造成对照处理碳氮在营养器官冗余. ...

水稻氮利用效率的研究进展及其动向
1
2009

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat.
1
2000

... 温度是大多数作物生长发育的主要驱动因子, 气候变暖改变了作物生长发育的温度环境, 进而影响了作物产量和区域布局(Badeck et al., 2004).基于历史数据的分析和模型模拟, 有研究发现, 由于气温升高, 全球小麦(Triticum aestivum)产量从1980年到2008年已经降低了5.5% (Lobell et al., 2011), 而且平均气温每升高1.0 ℃, 小麦产量就会降低0.5% (You et al., 2009).但也有****研究认为, 温度升高可以减少小麦花前冷害的发生和避开灌浆期高温胁迫, 有利于小麦产量的提高(Sadras & Monzon, 2006; Sommer et al., 2013).由于当前模型研究在反映区域气候变暖影响方面存在一定的局限性和不确定性(Aronson & McNulty, 2009), 需要进一步开展田间试验, 以定量分析气温升高对作物的影响及其机制.有研究表明: 在田间开放式增温条件下, 增温1.5 ℃以下, 华北地区小麦生育期缩短, 但是有利于小麦地上部物质积累和粒重增加, 籽粒产量提高12.0%-16.3% (Tian et al., 2012; Chen et al., 2014).肖国举等(2011)和张凯等(2016)的试验表明, 增温0.5-2.5 ℃的条件下, 西北半干旱区小麦全生育期显著缩短, 穗粒数和粒重减少, 产量降低0.5%-45.5%, 而且增温幅度越高, 减产越明显.可见, 不同区域的研究结果差异较大, 而对气候变暖响应脆弱的青藏高原的相关研究尚未见报道, 特别是冬小麦干物质和氮在不同器官中的分配及花后转运对温度升高的响应等诸多问题有待进一步研究.本文利用开放式远红外增温系统开展田间增温试验, 研究青藏高原冬小麦干物质和氮的积累速率、分配及转运的变化规律, 分析增温对冬小麦籽粒产量和氮利用率的影响, 以期为青藏高原作物生产应对气候变暖的技术创新提供理论和技术支撑. ...

Impact of growing season temperature on wheat productivity in China.
1
2009

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

模拟增温和降水变化对半干旱区春小麦生长及产量的影响
2
2015

... 作物生产能力和同化产物向经济器官的运转能力是影响作物产量形成的两个关键因素. 研究表明, 小麦籽粒中干物质约有1/3来源于开花前营养器官贮藏物质的转运, 2/3来自开花后功能叶片的光合产物积累(牟会荣等, 2008).而外界环境对作物干物质积累、转运和产量有重要影响.Ercoli等(2008)研究表明, 水分胁迫可使小麦植株的干物质积累能力降低, 开花前干物质向籽粒转移比例提高.而适度的干旱有利于茎鞘等营养器官中同化产物向籽粒中的再转运(Yang et al., 2000; 陈晓远和罗远培, 2001).温度是作物生长发育的主要气象因子, 温度升高会导致土壤含水量降低和小麦生育期缩短, 影响小麦不同生育阶段的物质积累和籽粒产量(Tian et al., 2012; Chen et al., 2014; 张凯等, 2016).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

... ).在西北地区雨养条件下的研究表明, 温度升高使0-20 cm土壤含水量降低了12.81%-31.96%, 生育期缩短7-11天, 不利于小麦拔节之后叶和茎秆的干物质积累, 成熟期叶和穗的干物质分配比例显著低于对照处理(张凯等, 2016), 导致千粒重和籽粒产量降低(张凯等, 2015).本试验结果表明, 在青藏高原区灌溉充足的条件下, 增温对开花期和成熟期0-20 cm土壤含水量无显著影响; 从冬小麦个体和群体两个水平的干物质积累进行分析, 全生育期增温处理不利于冬小麦个体开花之后干物质的积累, 但是开花前群体的物质积累能力高于对照.其原因是: 在本试验无水分胁迫条件下, 适度增温提高了冬小麦生育期的最低温度, 减缓了拔节之前低温对冬小麦生长发育的限制, 分蘖数和有效穗数显著增加.该结果与Fang等(2012)和石姣姣等(2015)的研究结果一致.本研究结果还表明, 增温处理下, 干物质向籽粒的转运量和转运比例高于对照处理, 这在一定程度上减轻了开花后个体光合能力下降对产量的影响.而且, 成熟期干物质向籽粒的分配比例显著高于对照处理, 弥补了开花后贮藏干物质向籽粒的转运量较小而造成的产量损失, 有利于产量的提高. ...

模拟增温对半干旱雨养区春小麦物质生产与分配的影响
2
2016

... 试验选用当地高产冬小麦‘山冬6号’, 设全天增温(warmed)和不增温(non-warmed)两个处理, 采用随机区组设计, 重复3次.全天增温指冬小麦从播种到收获全生育期内昼夜不间断增温.小区面积为5 m × 6 m = 30 m2, 小区之间设置5 m宽的保护区.试验参照Nijs等(1996)的FATI系统, 设计了麦田开放式主动增温系统. 该系统增温小区全生育期地下5 cm温度和冠层温度的日变化趋势基本与不增温对照区温度的变化相似.系统采用远红外辐射加热管作为热量供给源, 通过加热管释放的红外长波辐射来提高麦田微环境下的温度.增温系统分为远红外加热部分、动力部分、控制部分和温度监测部分.远红外加热部分, 由额定功率为1 500 W的远红外加热黑体管(长1.8 m, 直径1.8 cm)、铁制支架和白色不锈钢反射罩(长2 m, 宽0.2 m)三部分组成, 加热黑体管悬挂于距地面1.5 m处.常温对照处理的上方悬挂白色不锈钢反射罩, 以避免遮光造成的影响.温度监测仪器(ZDR-41, 杭州泽大仪器有限公司, 测量精度为± 0.1 ℃)由2个温度传感器组成, 实时自动记录冬小麦冠层的温度数据, 监测时间间隔为20 min.该系统的增温效果显著, 在4 m2的有效增温区域内, 增温处理小区全生育期日平均气温升高1.1 ℃, 但增温处理开花和成熟期的0-20 cm土壤含水量与对照处理无显著差异(Zheng et al., 2016).本研究中, 增温和对照区地下5 cm和冠层温度的日变化趋势(灌浆期中期: 2012年6月26日)基本一致(图2), 能够客观地模拟田间实际气温变化特征.为避免取样干扰, 在播种后将有效增温的4 m2区域平均分为4个1 m2的区域, 其中2个用于植株和土壤取样, 另外2个用于测定冬小麦产量.播前底肥为每公顷施纯氮105 kg、P2O5 100 kg、K2O 80 kg, 拔节期每公顷开沟追施105 kg纯氮.留苗密度180株·m-2, 分别于越冬、拔节和开花期按当地高产田进行灌水管理, 全生育期无水分胁迫. ...

... 由图3A可以看出, 增温处理的个体干物质积累速率在播种至开花期与对照无显著差异, 在开花至成熟期显著低于对照, 降低了35.7%; 而增温处理的群体干物质积累速率在播种至开花期显著高于对照, 提高了27.5%, 在开花至成熟期与对照无显著差异(图3B).上述结果表明增温不利于冬小麦个体开花后的干物质积累, 但是增温显著提高了冬小麦群体数(Zheng et al., 2016), 因此提高了开花前群体水平的干物质积累量; 同时, 开花至成熟期群体物质积累速率也较高, 为获得高的籽粒产量奠定了基础. ...

Actual impacts of global warming on winter wheat yield in Eastern Himalayas.
2016




相关话题/物质 作物 营养 比例 青藏高原