删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Structure of SK1(Ζ[C4×C4], 2Ζ[C4×C4])

本站小编 Free考研考试/2021-12-25

杨正国, 唐国平
中国科学院大学数学科学学院, 北京 100049
摘要: 主要研究整群环Ζ[C4×C4]的K理论.证明整群环Ζ[C4×C4]的相对SK1群为秩是3的初等阿贝尔群.也证明了K2(Ζ[C4×C4])的4秩至少是1,K2(Ζ[C4×C4])的2秩至少是10.
关键词: 整群环相对SK1K2
The structure of the relative SK1 group of the integral group ring is crucial to compute the K2 group of the integral group ring. However it is very difficult to determine the exact structure of the relative SK1 group. We can only find some results about the structure of the relative SK1 group K1($\mathbb{Z}$[G]) when G is an elementary Abelian p-group. In this paper,we consider the case ofG=C4×C4=<σ,τ|σ44=1,στ=τσ>. We use the a result about the exponent of K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]) in Ref.[1] to determine the exact structure of the group K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]). We use the result about the structure of K2(F2[C4×C4]) in Ref.[2] to study the structure ofK2($\mathbb{Z}$[C4×C4]),and we obtain a lower bound of the 4-rank ofK2$\mathbb{Z}$[C4×C4]) and a lower bound of the 2-rank ofK2($\mathbb{Z}$[C4×C4]).
1 PreliminariesLet Cn be a cyclic group of order n,p be a prime number,and Fp be a finite field of p elements. Let J(R) denote the Jacobson radical of a ring R. We first introduce a basic definition which is crucial to compute the relative SK1 group.
Definition 1.1 Let G be a finite Abelian p-group and OF be the ring of integers in an algebraic number field F. A subset $S\subset \hat{G}$ is called an F-cluster of characters for G if S contains exactly one character for each simple F[G]-module. When F=Q,OF=begin{document} $mathbb{Z}$ end{document}, we will call S a cluster of characters for G. If S is a cluster of characters for G,We will define S0=$\left\{ \chi \in S\left| \mathbb{Z}\left[ \chi \right] \right.\ne \mathbb{Z} \right\}$. S0 will be called an imaginarycluster of characters for G. Note that S0=S-trivial character} when p is odd and S0={χ∈S||im(χ)|>2} when p=2.
The following two theorems will be used to determine K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]).
Theorem 1.1 (Theorem 1.10 in Ref.[1]) Let G be a finite Abelian 2-group and S0 an imaginary cluster of characters for G. Then
$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ G \right],2\mathbb{Z}\left[ G \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,\operatorname{Im}\chi \right]/{{\psi }_{\chi {{s}_{0}}}}\left( G\otimes \left( 2-\phi \right)\left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$
Note The elements $\sum {{\lambda }_{g}}g\in {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right]$,Φ is defined as follows:
$\left( \sum {{\lambda }_{g}}g \right)=\sum {{\lambda }_{g}}{{g}^{2}}$
?g,h∈G,ψχij is defined as follows:
${{\psi }_{\chi ij}}\left( g\otimes h \right)=\left\{ \begin{align} & \chi ij\left( g \right), if\chi ij\left( h \right)=1 \\ & 1, if\chi ij\left( h \right)\ne 1 \\ \end{align} \right.$
Theorem 1.2 (Proposition 4.7 in Ref.[1])
exp(SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=2.
2 Main resultsThe following are the main results of this paper.
Theorem 2.1 K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.
Proof Let G=C4×C4=<σ,τ|σ44=1,στ=τσ>, and ξ be a primitive 4th root of unity. Define the characters of C4×C4 as follows:
χij,0≤i,j≤3,
χij(σ)=ξiij(τ)=ξj,
then χijhτk)=ξhi+jk. Let S0={χ1j,0≤j≤3,χi1,i=0,2}, then by Proposition 4.7 of Ref.[1],S0 is an imaginary cluster of C4×C4.
Then by Theorem 1.1,
$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \right]/{{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$
Obviously,im χ01=im χ10=im χ11=im χ12=im χ13=im χ21=C4. In the following,we will fix the order of the product $\underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,$im χ as $\underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,$im χ=im χ01×im χ10×im χ11×im χ12×im χ13×im χ21=C46.
Next we will determine the structure of ${{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right)$.
For any $x\in J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right)=<2,g-1\left| g\in G> \right.$, we have ${{\psi }_{\chi {{S}_{0}}}}\left( \sigma \tau \otimes \left( 2-\phi \right)\left( x \right) \right)={{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( x \right) \right)\cdot {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( x \right) \right)$, then ${{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right)$ is generated by the following 34 elements,
$\begin{align} & \left\{ {{\psi }_{\chi {{S}_{0}}}} \right.\left( \sigma \otimes \left( 2-\phi \right)\left( 2 \right) \right),{{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( 2 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right),0\le i,j\le \left. 3 \right\} \\ \end{align}$
We will compute the value of ${{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( \sigma \tau -1 \right) \right)$ as an example,and the same method can be used to determine the values of the other 33 elements. For
$\begin{align} & \left( 2-\phi \right)\left( \sigma \tau -1 \right)=2\sigma \tau -2-{{\sigma }^{2}}{{\tau }^{2}}+1 \\ & =-{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \\ \end{align}$
we have
$\begin{align} & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( \sigma \tau -1 \right) \right)= \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right)= \\ & \left( {{y}_{ij}} \right)\in \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \\ \end{align}$
where
$\begin{align} & {{y}_{ij}}={{\psi }_{\chi ij}}\left( \sigma \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right) \\ & ={{\psi }_{\chi ij}}{{\left( \sigma \otimes {{\sigma }^{2}}{{\tau }^{2}} \right)}^{-1}}{{\psi }_{\chi ij}}{{\left( \sigma \otimes \sigma \tau \right)}^{2}}\times \\ & {{\psi }_{\chi ij}}{{\left( \sigma \otimes 1 \right)}^{-1}} \\ \end{align}$
By the definition of ψχij,we have y01=1,y103,y112,y123,y13=1,and y212. Hence
ψχS0(σ?(2-φ)(στ-1))=(1,ξ323,1,ξ2).
Using the same method,we can get the following generators:
ψχS0(σ?(2-φ)(1-1)
=ψχS0(τ?(1-1))=(1,1,1,1,1,1),
χS0(σ?(2-φ)(2))=(1,ξ2222,1),
ψχS0(τ?(2-φ)(2))=(ξ2,1,ξ2,1,ξ22),
ψχS0(σ?(2-φ)(τ-1))=(1,1,ξ3232),
ψχS0(σ?(2-φ)(τ2-1))=(1,1,ξ2,1,ξ2,1),
ψχS0(σ?(2-φ)(τ3-1))=(1,1,ξ3232),
ψχS0(σ?(2-φ)(σ-1))=(1,ξ3333,1),
ψχS0(σ?(2-φ)(στ-1))=(1,ξ323,1,ξ2),
ψχS0(σ?(2-φ)(στ2-1))=(1,ξ3333,1),
ψχS0(σ?(2-φ)(στ3-1))=(1,ξ3,1,ξ322),
ψχS0(σ?(2-φ)(σ2-1))=(1,ξ2222,1),
ψχS0(σ?(2-φ)(σ2τ-1))=(1,ξ23,1,ξ32),
ψχS0(σ?(2-φ)(σ2τ2-1))=(1,ξ2,1,ξ2,1,1),
ψχS0(σ?(2-φ)(σ2τ3-1))=(1,ξ23,1,ξ32),
ψχS0(σ?(2-φ)(σ3-1))=(1,ξ3333,1),
ψχS0(σ?(2-φ)(σ3τ-1))=(1,ξ3ξ3,1,ξ322),
ψχS0(σ?(2-φ)(σ3τ2-1))=(1,ξ3ξ3333,1),
ψχS0(σ?(2-φ)(σ3τ3-1))=(1,ξ323,1,ξ2),
ψχS0(τ?(2-φ)(τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ?(2-φ)(τ2-1))=(ξ2,1,ξ2,1,ξ22),
ψχS0(τ?(2-φ)(τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ?(2-φ)(σ-1))=(1,1,ξ32,ξ,ξ2),
ψχS0(τ?(2-φ)(στ-1))=(ξ3,1,ξ22,1,ξ3),
ψχS0(τ?(2-φ)(στ2-1))=(ξ2,1,ξ32,ξ,1),
ψχS0(τ?(2-φ)(στ3-1))=(ξ3,1,1,ξ223),
ψχS0(τ?(2-φ)(σ2-1))=(1,1,ξ2,1,ξ2,1),
ψχS0(τ?(2-φ)(σ2τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ?(2-φ)(σ2τ2-1))=(ξ2,1,1,1,1,ξ2),
ψχS0(τ?(2-φ)(σ2τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ?(2-φ)(σ3-1))=(1,1,ξ32,ξ,ξ2),
ψχS0(τ?(2-φ)(σ3τ-1))=(ξ3,1,1,ξ223),
ψχS0(τ?(2-φ)(σ3τ2-1))=(ξ2,1,ξ32,ξ,1),
ψχS0(τ?(2-φ)(σ3τ3-1))=(ξ3,1,ξ22,1,ξ3)}.
Because some of these generators are the same,we use ai to denote the different generators:
{a1=(1,ξ2222,1);
a2=(ξ2,1,ξ2,1,ξ22);
a3=(1,1,ξ3232);
a4=(1,1,ξ2,1,ξ2,1);
a5=(1,ξ3333,1);
a6=(1,ξ323,1,ξ2);
a7=(1,ξ3,1,ξ322);
a8=(1,ξ23,1,ξ32);
a9=(1,ξ2,1,ξ2,1,1);
a10=(ξ3,1,ξ3,1,ξ,ξ3);
a11=(1,1,ξ32,ξ,ξ2);
a12=(ξ3,1,ξ22,1,ξ3);
a13=(ξ2,1,ξ32,ξ,1);
a14=(ξ3,1,1,ξ223);
a15=(ξ2,1,1,1,1,ξ2);
a16=(ξ3,1,ξ22,1,ξ3).}
Next we will determine the structure of the group generated by ai which is ψχS0(G?(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))).
For 1≤i≤6,let bi be the vector of dimension 6 in which the ith component is ξ2 and the other components are all equal to 1. Let b7=(ξ,1,1,1,1,ξ),b8=(1,ξ,1,ξ,1,1),b9=(1,1,ξ,1,ξ,1). We show that {bi,1≤i≤9} is a generating set of the group generated by {ai,1≤i≤16}.
On one hand,{bi,1≤i≤9} can be generated by {ai,1≤i≤16}:
a5·a6·a11=(1,ξ2,1,1,1,1)=b2,
a9·b2=(1,1,1,ξ2,1,1)=b4,
a5·a7·a8·b4=(1,1,ξ2,1,1,1)=b3,
a4·b3=(1,1,1,1,ξ2,1)=b5,
a3·a4·a10·a12·a14·a16=(1,1,1,1,1,ξ2)=b6,
a15·b6=(ξ2,1,1,1,1,1)=b1,
a12·b1·b3·b4·b6=(ξ,1,1,1,1,ξ)=b7,
a7·b2·b4·b5·b6=(1,ξ,1,ξ,1,1)=b8,
a8·b2·b3·b5·b6=(1,1,ξ,1,ξ,1)=b9.
On the other hand,{ai,1≤i≤16} can be generated by {bi,1≤i≤9}:
a1=b2·b3·b4·b5,a2=b1·b3·b5·b6,
a3=b3·b4·b5·b6·b9,a4=b3·b5,
a5=b2·b3·b4·b5·b8·b9,a6
=b2·b3·b4·b6·b8,
a7=b2·b4·b5·b6·b8,a8=b2·b3·b5·b6·b9,
a9=b2·b4,a10=b1·b3·b6·b7·b9,
a11=b3·b4·b6·b9,a12=b1·b3·b4·b6·b7,
a13=b1·b3·b4·b9,a14=b1·b4·b5·b6·b7,
a15=b1·b6,a16=b1·b3·b4·b6·b7.
Hence {bi,1≤i≤9} is an generating set of ψχS0(G?(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))).
It is easy to know that these 6 elements {bi,1≤i≤6} generate an elementary Abelian 2-group of rank 6. We denote this group by H. Then the 8 cosets,
{H,b7H,b8H,b9H,b7b8H,b7b9H,b8b9H,b7b8b9H},
are disjoint with each other and their union is ψχS0(G?(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))). Hence
χS0(G?(2-φ)(J(${\hat{\mathbb{Z}}}$2[G])))|=26·8=29,
and
$\left| S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \right|\frac{{{4}^{6}}}{{{2}^{9}}}={{2}^{3}}$
By Theorem 1.2,
exp(SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=2.
So
K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.

Corollary 2.1 K1($\mathbb{Z}$[C4×C4×C2])=C24.
Proof By Theorem 1.11 in Ref.[1],we have K1($\mathbb{Z}$[C4×C4×C2])⊕SK1($\mathbb{Z}$[C4×C4)SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]). By Theorem 5.5 in Ref.[1],K1($\mathbb{Z}$[C4×C4])=C2 . Then by Theorem 2.1,we have
K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.
So K1($\mathbb{Z}$[C4×C4×C2])=C24. □
Theorem 2.2 The 4-rank ofK2($\mathbb{Z}$[C4×C4]) is at least 1 and its 2-rank is at least 10.
Proof By the long exact sequence of K-theory,we have
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}{{K}_{2}}\left( {{\mathbb{Z}}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{2}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right),2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right]\xrightarrow{{{f}_{3}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{4}}}S{{K}_{1}}\left( {{F}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \\ \end{align}$
By Theorem 1.2 in Ref.[2], K2(F2[C4×C4])=C29⊕C43. By Theorem 2.1,
K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23. By Theorem 5.5 in Ref.[1],we have K1($\mathbb{Z}$[C4×C4])=C2. Then the exact sequence becomes
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{3}\xrightarrow{{{f}_{3}}}{{C}_{2}}\xrightarrow{{{f}_{4}}}1 \\ \end{align}$
By the exactness, im(f2)=ker(f3)=C22. Then we get the following exact sequence,
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{2}\to 1 \\ \end{align}$
By the exactness, im(f1)=ker(f2) can only be one of the following three cases,
{C211⊕C4;C29⊕C42;C27⊕C43}.
In any of these cases, im(f1) contains one cyclic subgroup of order 4 as its direct summand. Then the 4-rank ofK2($\mathbb{Z}$[C4×C4]) is at least 1 and the 2-rank is at least 10. □
References
[1] Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups[J].Invent Math, 1987, 87:253–302.DOI:10.1007/BF01389416
[2] Chen H, Gao Y B, Tang G P. Calculation of K2(F2[J].Journal of Graduate University of Chinese Academy of Sciences, 2011, 28(4):419–423.
[3] Rosenberg, J. Algebraic K-Theory and Its Applications[M].Grad Texts in Math 147,New York: Springer-Verlag, 1994.
[4] Dunwoody M J. K2( Z π) for π a group of order two or three[J].J London Math Soc (2), 1975, 11(4):481–490.
[5] Stein M R. Excision and K2 of group rings[J].J Pure Appl Algebra, 1980, 18:213–224.DOI:10.1016/0022-4049(80)90130-9
[6] Dennis R K, Keating M E, Stein M R. Lower bounds for the order of K2( Z G) and Wh2(G)[J].Math Ann, 1976, 223:97–103.DOI:http://html.rhhz.net/ZGKXYDXXB/10.1007/BF01360875
[7] Gao Y B, Tang G P. K2 of finite abelian group algebras[J].J Pure Appl Algebra, 2009, 213:1.DOI:10.1016/j.jpaa.2008.05.001
[8] Milnor J. Introduction to algebraic K-theory[M].Annals of Math Studies,Vol 72, Princeton: Princeton Univ Press, 1971.


相关话题/北京 科学学院 数学 中国科学院大学 原文

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25
  • 新型三轴离心机系统构型及数学建模
    现代军事、国防领域对某些无人高速飞行器的机动性能要求很高,即要求其具有很强的承受机动过载的能力[1,2].国内外的实践证明,如果某些产品只做地面普通试验,不测试其承受高过载下的性能,可能会导致产品在机动飞行中失效[3],为了在地面上验证无人高速飞行器的整体强度,就需要有一套可以模拟其在运动中承受载荷 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 中国数学学科成果评价方式研究
    doi:10.12202/j.0476-0301.2020048赵静1,刘姝2,,1.北京大学数学科学学院,100871,北京2.北京大学图书馆,100871,北京基金项目:北京大学科研管理项目“促进数学学科深远发展的科研机制研究”的资助项目(2016005)详细信息通讯作者:刘姝(1979-),女 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25