删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Full implicit schemes for stochastic differential equations with one noise

本站小编 Free考研考试/2021-12-25

孙丽莹, 王丽瑾
中国科学院大学数学科学学院, 北京 100049
摘要: 通过将It?型随机微分方程转换为等价的Stratonovich型和向后It?型随机微分方程,构造出分别与Stratonovich型和向后It?型随机微分方程相容的两种全隐式随机数值格式.这两种数值格式应用于带一个噪声的随机微分方程,且均为均方1阶收敛的.
关键词: 随机微分方程全隐式数值格式It?型随机微分方程Stratonovich型随机微分方程
Consider the numerical approximations for stochastic differential equations (SDEs) in the It? sense as follows
$\left\{ \begin{align} & dX=a\left( t,X \right)dt+b\left( t,X \right)dW\left( t \right), \\ & X\left( {{t}_{0}} \right)={{X}_{0}}, \\ \end{align} \right.$ (1)
where X,a(t,x1,…,xn),b(t,x1,…,xn) are n-dimensional column-vectors and W(t) is a standard Wiener process. In addition,we suppose that the coefficients a(t,x1,…,xn) and b(t,x1,…,xn) are sufficiently smooth functions that guarantee the existence and the uniqueness of the solution in the interval [t0,t0+T](see Refs.[1-2] for details). Let X(t;t0,x,ω),t0≤t≤t0+T, be the solution of the SDE (1) where ω is an elementary event. Moreover,we denote by Xk,k=0,…,N,tk+1-tk=h,tN=t0+T, the numerical method for (1) based on the one-step approximation X=X(t+h;t,x).
As is known in Refs.[3-6],there are many kinds of numerical schemes for the SDE (1). However,the construction of these approximations are usually based on the SDEs in the It? sense. Hence,it is meaningful to investigate whether we could construct the methods by using their equivalent SDEs in the sense of Stratonovich and Backward-It?.
1 Full implicit schemes1.1 Equivalentequations in the sense of Stratonovich and Backward-It?
As is known in Refs.[1-2, 5-6],the equivalent equation with respect to the SDE (1) in the sense of Stratonovich is as follows:
$dX=\left( \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( t,X \right) \right)dt+b\left( t,X \right){}^\circ dW\left( t \right)$ (2)
where X(t0)=X0 and $\frac{\partial b}{\partial x}$ is the matrix with entry $\frac{\partial {{b}^{i}}}{\partial {{x}^{j}}}$ at the intersection of the ith row and jth column. In addition,we also require that the column vectors $\frac{\partial b}{\partial x}b$ satisfy a uniform Lipschitz condition with respect to x∈Rn.
Based on the relationship between the It? integral and the Stratonovich integral,we can obtain the SDE (2). Analogously,we can define another stochastic integral,Backward-It? integral,and get the equivalent equation of SDE (1) in the sense of Backward-It?. Let (Ω,F) be a measure space with the probability P and Ft be the σ-algebra generated by the n-dimensional Brownian motions Bi(s)(1≤i≤n,0≤s≤t). We denote by V(S,T) the class of functions
f(t,ω):[0,∞)×ΩR,
such that
1) (t,ω)→f(t,ω) is B×F-measurable,where B denotes the Borel σ-algebra on [0,∞);
2) f(t,ω) is Ft-adapted and $E\left[ \int\limits_{s}^{t}{f{{\left( \theta ,\omega \right)}^{2}}d\theta } \right]\le \infty $.
Furthermore,let L2(P) be a Hilbert space with the following inner product
(X,Y)L2(P):=E[X·Y];X,Y∈L2(P).
Definition 1.1 Suppose that f∈V(0,T) and t→f(t,ω) is continuous for a.e.ω. Then the Backward-It? integral of f is defined by
$\int\limits_{0}^{T}{f\left( t,\omega \right)*dW\left( t \right)}=\underset{h\to 0}{\mathop{\lim }}\,\sum\limits_{j}{f}\left( {{t}_{j+1}},\omega \right)\Delta {{W}_{j}}$
whenever the limit exists in L2(P).
Note that this kind of integral has been introduced in Ref.[3]. For convenience,we give it the name Backward-It? integral. According to the definition of the Backward-It? integral,we can easily get the relationship between the It? integral and the Backward-It? integral as follows:
$\int\limits_{0}^{T}{f\left( t,\omega \right)*dW\left( t \right)}=\int\limits_{0}^{T}{f\left( t \right)dW\left( t \right)}+\int\limits_{0}^{T}{\frac{\partial f\left( t \right)}{\partial W}}dt,$ (3)
where f∈V(0,T) and t→f(t,ω) is continuous for a.e. ω. Then using formula (3),we can obtain the equivalent SDE in the sense of Backward-It?
$dX=\left( \left( a-\frac{\partial b}{\partial x}b \right)\left( t,X \right) \right)dt+b\left( t,X \right)*dW\left( t \right),$ (4)
where X(t0)=X0.
1.2 The convergence theorem on mean-square methods from Ref.[4]Theorem 1.1 See Ref.[4]. Suppose that the one-step approximation X(t+h;t,x) has the order of accuracy p1 for the mathematical expectation of the deviation and order of accuracy p2 for the mean-square deviation. More precisely,for arbitrary t0≤t≤t0+T-h,x∈Rn the following inequalities hold:
$\begin{align} & \left| E\left( \left( X-\bar{X} \right)\left( t+h;t,x \right) \right) \right|\le K{{\left( 1+{{\left| x \right|}^{2}} \right)}^{\frac{1}{2}}}{{h}^{{{p}_{1}}}} \\ & {{\left[ E{{\left| \left( X-\bar{X} \right)\left( t+h;t,x \right) \right|}^{2}} \right]}^{\frac{1}{2}}}\le K{{\left( 1+{{\left| x \right|}^{2}} \right)}^{\frac{1}{2}}}{{h}^{{{p}_{2}}}} \\ \end{align}$ (5)
Also,let
p2≥12,p1≥p2+12.
Then for any N and k=0,…,N the following inequality holds:
$\begin{align} & {{\left[ E{{\left| \left( X-\bar{X} \right)\left( {{t}_{k}};{{t}_{0}},{{X}_{0}} \right) \right|}^{2}} \right]}^{\frac{1}{2}}} \\ & \le K{{\left( 1+{{\left| {{X}_{0}} \right|}^{2}} \right)}^{\frac{1}{2}}}{{h}^{{{p}_{2}}-\frac{1}{2}}}, \\ \end{align}$ (6)
i.e. the order of accuracy of the method constructed using the one-step approximation X(t+h;t,x) is p=p2-$\frac{1}{2}$.
Theorem 1.2 See Refs.[5-6]. Let the one-step approximation X(t+h;t,x) satisfy the condition of Theorem 2.1. Suppose that $\tilde{X}\left( t+h;t,x \right)$ is such that
$\begin{align} & \left| E \right.\left( \bar{X}\left( t+h;t,x \right)-\tilde{X}\left( t+h;t,x \right) \right)=O\left( {{h}^{{{p}_{1}}}} \right), \\ & {{\left[ E{{\left| \bar{X}\left( t+h;t,x \right)-\tilde{X}\left( t+h;t,x \right) \right|}^{2}} \right]}^{\frac{1}{2}}}=O\left( {{h}^{{{p}_{2}}}} \right), \\ \end{align}$ (7)
with the same h1p and h2p. Then the method based on the one-step approximation $\tilde{X}\left( t+h;t,x \right)$ has the same mean-square order of accuracy as the method based on X(t+h;t,x),i.e.,its order is equal to p=p2-$\frac{1}{2}$.
Besides,the authors of Refs.[4-6] have mentioned that the increments of Wiener processes should be substituted by truncated random variables in implicit schemes. In detail,$\Delta \omega \left( h \right)=\xi \sqrt{h}$,where ξ is N(0,1)-distributed random variable,is replaced by another random variable ${{\zeta }_{h}}\sqrt{h}$ such that ${{\zeta }_{h}}\sqrt{h}$ is bounded,and
${{\zeta }_{h}}=\left\{ \begin{align} & \xi ,if\left| \xi \right|\le {{A}_{h}}, \\ & {{A}_{h}},if\xi >{{A}_{h}}, \\ & -{{A}_{h}},if\xi <{{A}_{h}}, \\ \end{align} \right.$ (8)
where ${{A}_{h}}=\sqrt{2l\left| Inh \right|}$,l≥1.
1.3 Fullimplicit schemes
First,we consider the SDE (2). As is known,the exact solution is
$\begin{align} & X\left( t+h;t,x \right)=x+\int\limits_{t}^{t+h}{b\left( s,X\left( s \right) \right)}\circ dW\left( s \right)+ \\ & \int\limits_{t}^{t+h}{\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( s,X\left( s \right) \right) \right]}ds, \\ \end{align}$ (9)
which coincides with the solution of the SDE (1) by using the Stratonovich integrals. Let the mid-rectangle formula approximate the integrals in (9). We can get a full implicit scheme of the first mean-square order as follows
$\begin{align} & {{X}_{k+1}}={{X}_{k}}+b\left( {{t}_{k}}+\frac{h}{2},\frac{{{X}_{k}}+{{X}_{k+1}}}{2} \right){{\zeta }_{h}}\sqrt{h}+ \\ & \left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( {{t}_{k}}+\frac{h}{2},\frac{{{X}_{k}}+{{X}_{k+1}}}{2} \right) \right]h. \\ \end{align}$ (10)
Similarly,the solution of the SDE (4) is
$\begin{align} & X\left( t+h;t,x \right)=x+\int\limits_{t}^{t+h}{b\left( s,X\left( s \right) \right)}*dW\left( s \right)+ \\ & \int\limits_{t}^{t+h}{\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( s,X\left( s \right) \right) \right]}ds, \\ \end{align}$ (11)
which is also in agreement with the solution of the SDE (1). Similarly,if the integrals in (11) are approximated by the right-rectangle formula,the numerical scheme has the form:
${{X}_{k+1}}={{X}_{k}}+b\left( {{t}_{k}}+h,{{X}_{k+1}} \right){{\zeta }_{h}}\sqrt{h}+\left[ \left( a-\frac{\partial b}{\partial x}b \right)\left( {{t}_{k}}+h,{{X}_{k+1}} \right) \right]h,$
which we can prove to be of mean-square order 0.5. However,based on an analog of Taylor expansion of the solution (11),another full implicit method
$\begin{align} & {{X}_{k+1}}={{X}_{k}}+\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( {{t}_{k+1}},{{X}_{k+1}} \right) \right]h+ \\ & \left[ \frac{1}{2}\frac{\partial b}{\partial x}b\left( {{t}_{k+1}},{{X}_{k+1}} \right) \right]\zeta _{h}^{2}h+ \\ & b\left( {{t}_{k}},{{X}_{k}} \right){{\zeta }_{h}}\sqrt{h}, \\ \end{align}$ (12)
which is of the first mean-square order,could be constructed.
2 Mean-square order of the full implicit schemesTheorem 2.1 The numerical method (10) with ${{A}_{h}}=\sqrt{4\left| Inh \right|}$is of mean-square order 1.
Proof According to an analog of Taylor expansion of the solution (9),the one-step approximation X(t+h;t,x) as follows
$\begin{align} & \bar{X}=x+\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( t+h,x \right) \right]h+ \\ & b\left( t,x \right)\Delta W\left( h \right)+\frac{1}{2}\frac{\partial b}{\partial x}b\left( t,x \right){{\left( \Delta W\left( h \right) \right)}^{2}}. \\ \end{align}$ (13)
has the first mean-square order of convergence under appropriate conditions. The full implicit method (10) we propose is
$\begin{align} & \tilde{X}=x+\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( t+\frac{h}{2},\frac{x+\tilde{X}}{2} \right) \right]h+ \\ & b\left( t+\frac{h}{2},\frac{x+\tilde{X}}{2} \right){{\zeta }_{h}}\sqrt{h}. \\ \end{align}$ (14)
After expanding the right side of (14) about x,we get
$\begin{align} & \tilde{X}=x+\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( t+\frac{h}{2},x \right) \right]h+ \\ & b\left( t,x \right){{\zeta }_{h}}\sqrt{h}+\frac{1}{2}\frac{\partial b}{\partial x}\left( t,x \right)b\left( t,x \right)\zeta _{h}^{2}{{\rho }_{1}}. \\ \end{align}$ (15)
It is obvious that |E(ρ1)|=O(h2) and E(ρ1)2=O(h3). Since
$\begin{align} & \bar{X}-\tilde{X}=b\left( t,x \right)\left( \Delta W\left( h \right)-{{\zeta }_{h}}\sqrt{h} \right)+ \\ & \frac{1}{2}\frac{\partial b}{\partial x}\left( t,x \right)b\left( t,x \right)\left( {{\xi }^{2-}}\zeta _{h}^{2} \right)h-{{\rho }_{1}} \\ \end{align}$ (16)
it is possible to show that $\left| E\left( \bar{X}-\tilde{X} \right) \right|=O\left( {{h}^{2}} \right)$ and
$\begin{align} & E{{\left( \bar{X}-\tilde{X} \right)}^{2}}\le KE{{\left( \xi -{{\zeta }_{h}} \right)}^{2}}+ \\ & K{{h}^{2}}E{{\left( {{\xi }^{2}}-\zeta _{h}^{2} \right)}^{2}}+O\left( {{h}^{3}} \right), \\ \end{align}$ (17)
where K is a sufficiently large constant. Using the inequalities E(ξ-ζh)h2=O(h2) and E(ξ22)2≤27h in Ref.[7],we can easily prove $E{{\left( \bar{X}-\tilde{X} \right)}^{2}}\le +O\left( {{h}^{3}} \right)$. Finally,by applying Theorem 2.2,we prove the theorem. □
Theorem 2.2 The numerical method (12) with ${{A}_{h}}=\sqrt{4\left| {} \right.Inh\left. {} \right|}$ is of mean-square order 1.
Proof Considering the numerical method (12),we expand the right side of the solution (11) and obtain
$\begin{align} & X\left( t+h;t,x \right) \\ & =x+\int\limits_{t}^{t+h}{b\left( s,X\left( s \right) \right)}*dW\left( s \right)+ \\ & \int\limits_{t}^{t+h}{\left[ \left( a-\frac{\partial b}{\partial x}b \right)\left( s,X\left( s \right) \right) \right]}ds, \\ & =x+\left[ \left( a-\frac{\partial b}{\partial x}b \right)\left( t,x \right) \right]h+b\left( t,x \right)\Delta W\left( h \right)+ \\ & \int\limits_{t}^{t+h}{\int_{t}^{s}{Lb}\left( \theta ,X\left( \theta \right) \right)}d\theta *dW\left( s \right)+ \\ & \int\limits_{t}^{t+h}{\int_{t}^{s}{\frac{\partial b}{\partial x}}b\left( \theta ,X\left( \theta \right) \right)}dW\theta *dW\left( s \right)+{{\rho }^{1}} \\ & =x+\left[ \left( a-\frac{\partial b}{\partial x}b \right)\left( t,x \right) \right]h+b\left( t,x \right)\Delta W\left( h \right)+ \\ & \int\limits_{t}^{t+h}{\int_{t}^{s}{\frac{\partial b}{\partial x}}b\left( t,x \right)}dW\theta *dW\left( s \right)+{{\rho }^{2}}, \\ \end{align}$ (18)
where |E(ρ1)|=O(h2),E(ρ1)2=O(h3),|E(ρ2)|=O(h2), and E(ρ2)2=O(h3). Since ${{\int\limits_{t}^{t+h}{\int_{t}^{s}{dW\left( \theta \right)*dW=}\frac{1}{2}\Delta W\left( h \right)}}^{2}}+\frac{h}{2}$, we can get
$\begin{align} & X\left( t+h;t,x \right) \\ & =x+\left[ \left( a-\frac{\partial b}{\partial x}b \right)\left( t,x \right) \right]h+ \\ & \frac{1}{2}\frac{\partial b}{\partial x}b\left( t,x \right){{\left( \Delta W\left( h \right) \right)}^{2}}+\frac{1}{2}\frac{\partial b}{\partial x}b\left( t,x \right)h+ \\ & b\left( t,x \right)\Delta W\left( h \right)+{{\rho }^{3}} \\ & =x+\left[ \left( a-\frac{1}{2}\frac{\partial b}{\partial x}b \right)\left( t+h,X \right) \right]h+ \\ & \frac{1}{2}\frac{\partial b}{\partial x}b\left( t+h,X \right){{\left( \Delta W\left( h \right) \right)}^{2}}+ \\ & b\left( t,x \right)\Delta W\left( h \right){{\rho }^{4}} \\ \end{align}$ (19)
where |E(ρ3)|=O(h2),E(ρ3)2=O(h3),|E(ρ4)|=O(h2), and E(ρ4)2=O(h3). However,the increments of the Wiener processes in (19) should be substituted by truncated random variables. Finally,by using Theorem 2.1,we prove the theorem. □
3 Numerical testExample Consider the stochastic differential equation
$dX=tX\left( t \right)dW\left( t \right),X\left( 0 \right)={{X}_{0}}$ (20)
whose exact solution is
$X\left( t \right)={{X}_{0}}\exp \left( \frac{1}{2}\int\limits_{0}^{t}{{{s}^{2}}}ds+\int\limits_{0}^{t}{sdW\left( s \right)} \right).$
In application to (20),the Euler Method reads
${{X}_{n+1}}={{X}_{n}}+{{t}_{n}}{{X}_{n}}\Delta {{W}_{n}},$ (21)
and the two full implicit methods we proposed have the forms
$\begin{align} & {{X}_{n+1}}={{X}_{n}}-\frac{h}{4}\left( {{t}_{n}}+\frac{h}{2} \right)\left( {{X}_{n}}+{{X}_{n+1}} \right)+ \\ & \frac{1}{2}\left( {{t}_{n}}+\frac{h}{2} \right)\left( {{X}_{n}}+{{X}_{n+1}} \right){{\zeta }_{h}}\sqrt{h} \\ \end{align}$ (22)
and
$\begin{align} & {{X}_{n+1}}={{X}_{n}}-\frac{h}{2}{{\left( {{t}_{n}}+h \right)}^{2}}{{X}_{n+1}}+ \\ & {{t}_{n}}{{X}_{n}}{{\zeta }_{h}}\sqrt{h}+\frac{1}{2}{{\left( {{t}_{n}}+h \right)}^{2}}{{X}_{n+1}}\zeta _{h}^{2}, \\ \end{align}$ (23)
which are of the first mean-square order.
The numerical tests examine the behaviors of the numerical methods in two aspects: the sample trajectories produced by the numerical methods and the true solution shown in Fig. 1(d) and the convergence rates of the numerical methods shown in Fig. 1(a),1(b),and 1(c).
Fig. 1
Download: JPG
larger image
Fig. 1 Numerical test of the example

Figures 1(a),1(b),and 1(c) show that,comparing with the reference line,the Euler method is of mean-square order 0.5 and the numerical methods (22) and (23) are of the first mean square order. In our experiments we take t=1,X0=10, and h=[0.01,0.02,0.025,0.05,0.1].
Figure 1(d) presents that the numerical approximations (22) and (23) are much closer to the exact solution than the Euler method for X0=2 and h=0.04 within the time interval 0≤t≤1.2.
References
[1] Mao X R. Stochastic differential equations and applications[M].2nd ed. Horwood Publishing Limited, 2007.
[2] ?ksendal B. Stochastic differential equations[M].6th ed. Springer, 2003.
[3] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M].Berlin Heidelberg: Springer-Verlag, 1992.
[4] Milstein G N, Tretyakov M V. Stochastic numerics for mathematical physics[M].Berlin Heidelberg: Springer-Verlag, 2004.
[5] Milstein G N, Repin Y M, Tretyakov M V. Symplectic integration of Hamiltonian systems with additive noise[J].SIAM J Numer Anal, 2002, 39:2066–2088.DOI:10.1137/S0036142901387440
[6] Milstein G N, Repin Y M, Tretyakov M V. Numerical methods for stochastic systems preserving symplectic structure[J].SIAM J Numer Anal, 2002, 40:1583–1604.DOI:10.1137/S0036142901395588
[7] Deng J, Anton C A, Wong Y S. High-order symplectic schemes for stochastic Hamiltonian systems[J].Commun Comput Phys, 2014, 16(1):169–200.DOI:10.4208/cicp.311012.191113a


相关话题/图片 北京 科学学院 数学 中国科学院大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25
  • 新型三轴离心机系统构型及数学建模
    现代军事、国防领域对某些无人高速飞行器的机动性能要求很高,即要求其具有很强的承受机动过载的能力[1,2].国内外的实践证明,如果某些产品只做地面普通试验,不测试其承受高过载下的性能,可能会导致产品在机动飞行中失效[3],为了在地面上验证无人高速飞行器的整体强度,就需要有一套可以模拟其在运动中承受载荷 ...
    本站小编 Free考研考试 2021-12-25
  • 一种多视角高精度图片的深度估计方法
    一种多视角高精度图片的深度估计方法李剑,陈宇航1.北京邮电大学人工智能学院收稿日期:2020-11-29修回日期:2020-12-17出版日期:2021-10-28发布日期:2021-09-06通讯作者:陈宇航E-mail:lijian@bupt.edu.cn基金资助:国家自然科学基金项目(U163 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 中国数学学科成果评价方式研究
    doi:10.12202/j.0476-0301.2020048赵静1,刘姝2,,1.北京大学数学科学学院,100871,北京2.北京大学图书馆,100871,北京基金项目:北京大学科研管理项目“促进数学学科深远发展的科研机制研究”的资助项目(2016005)详细信息通讯作者:刘姝(1979-),女 ...
    本站小编 Free考研考试 2021-12-25