删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A note of Riesz transform on $\mathscr{D}({{\mathbb{R}}^{n}})$

本站小编 Free考研考试/2021-12-25

魏明权1,2, 沈峰2, 燕敦验2
1. 信阳师范学院数学与统计学院, 河南 信阳 464000;
2. 中国科学院大学数学科学学院, 北京 100049
摘要: 证明,对于任意一个非零$\mathscr{D}({{\mathbb{R}}^{n}})$函数f,它的Riesz变换Rjf不具有紧支集。这推广了已知的Hilbert变换的结果。
关键词: Riesz变换$\mathscr{D}({{\mathbb{R}}^{n}})$紧支集
For fLp($\mathbb{R}$), 1≤p < ∞, the classical Hilbert transform is defined as
$Hf\left( x \right): = \frac{1}{{\rm{ \mathsf{ π} }}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} ,$ (1)
where "p.v."is the Cauchy principal value (see Ref.[1]), that is
${\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} = \mathop {\lim }\limits_{\varepsilon \to 0} \int_{\left| {x - t} \right| > \varepsilon } {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} .$
Yang[2] proved that $\mathscr{D}$($\mathbb{R}$)∩H($\mathscr{D}$($\mathbb{R}$))={0}, where
$\begin{array}{*{20}{c}} {\mathscr{D}\left( {{\mathbb{R}^n}} \right) = \left\{ {\phi :\phi \in C_c^\infty \left( {{\mathbb{R}^n}} \right),} \right.} \\ {\left. {\forall \alpha \in N_0^n,{\rho _\alpha }\left( \phi \right) = \mathop {\sup }\limits_{x \in {\mathbb{R}^n}} \left| {{D^\alpha }\phi \left( x \right)} \right| < \infty } \right\}} \end{array}$
for nN.
That is to say the function Hf does not have compact support for all non-zero function f$\mathscr{D}$($\mathbb{R}$).
Consider n-dimensional Euclidean space $\mathbb{R}$n (nN). For fLp($\mathbb{R}$n), 1≤p < ∞, x=(x1, x2, …, xn)∈$\mathbb{R}$n, t=(t1, t2, …, tn)∈$\mathbb{R}$n, the n-dimensional Hilbert transform Hn is defined as
${H_n}f\left( x \right): = \frac{1}{{{{\rm{ \mathsf{ π} }}^n}}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{\left( {{x_1} - {t_1}} \right)\left( {{x_2} - {t_2}} \right) \cdots \left( {{x_n} - {t_n}} \right)}}{\rm{d}}t} .$ (2)
For n=2 Cui et al.[3] obtained the result:
$\mathscr{D}\left( {{\mathbb{R}^2}} \right) \cap {H_2}\left( {\mathscr{D}\left( {{\mathbb{R}^2}} \right)} \right) = \left\{ 0 \right\}.$
When n>2, Shen[4] proved
$\mathscr{D}\left( {{\mathbb{R}^n}} \right) \cap {H_n}\left( {\mathscr{D}\left( {{\mathbb{R}^n}} \right)} \right) = \left\{ 0 \right\}.$ (3)
We have known that Hilbert transform has a relation with Fourier transform which can be presented as
$\widehat {Hf}\left( \xi \right) = - i \cdot {\mathop{\rm sgn}} \left( \xi \right)\hat f\left( \xi \right),$ (4)
where
$\rm{sgn}\left( x \right) = \left\{ \begin{array}{l}1\;\;\;\;\;\;\;{\rm{if}}\;\;x > 1,\\0\;\;\;\;\;\;\;{\rm{if}}\;\;n = 0,\\ - 1\;\;\;\;\;{\rm{if}}\;\;x < 0.\end{array} \right.$
For fLp($\mathbb{R}$n), 1≤p < ∞, x=(x1, x2, …, xn)∈$\mathbb{R}$n, the Riesz transform Rj (j∈{1, 2, …, n}) is defined as
${R_j}f\left( x \right): = \frac{{\Gamma \left( {\frac{{n + 1}}{2}} \right)}}{{{{\rm{ \mathsf{ π} }}^{\frac{{n + 1}}{2}}}}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{{x_j} - {y_j}}}{{{{\left| {x - y} \right|}^{n + 1}}}}f\left( y \right){\rm{d}}y} ,$
and we have (see Ref.[1])
$\widehat {{R_j}f}\left( \xi \right) = - i \cdot \frac{{{\xi _j}}}{{\left| \xi \right|}}\hat f\left( \xi \right).$ (5)
If n=1, the identity (5) will reduce to (4). In this sense, Riesz transform is the higher-dimensional form of Hilbert transform. Motivated by Refs.[2-4], we shall consider whether the equation
$\mathscr{D}\left( {{\mathbb{R}^n}} \right) \cap {R_j}\left( {\mathscr{D}\left( {{\mathbb{R}^n}} \right)} \right) = \left\{ 0 \right\}$ (6)
holds for n>1.
In section 1, we will give an affirmative answer for (6).
1 Main resultsBefore we prove our main theorem, we need the following lemmas.
Lemma 1.1?? Suppose that fL1($\mathbb{R}$n) with compact support. Then we have ${\hat{f}}$C($\mathbb{R}$n).
This lemma is a basic result which appears in many books on real analysis and we refer readers to Ref.[5].
Lemma 1.2?? Suppose that f, gC($\mathbb{R}$n) and $g\left( x \right)=\frac{{{x}_{j}}}{|x|}f\left( x \right)$ for some j∈{1, …, n}. Then we have ${{\left( \frac{\partial }{\partial x} \right)}^{\alpha }}f\left( 0 \right)=0$ for all multi-index $\alpha \in \mathbb{N}_{0}^{n}$.
Proof?? Considering the continuity of the function g, we have
$g\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}f\left( 0 \right).$ (7)
The equality (7) implies that f(0)=0.
When |α|=1, taking derivatives on g, we have
$\begin{array}{*{20}{c}}{\frac{{\partial g}}{{\partial {x_i}}}\left( x \right) = \frac{{\partial f}}{{\partial {x_i}}}\left( x \right)\frac{{{x_j}}}{{\left| x \right|}} + f\left( x \right)\frac{\partial }{{\partial {x_i}}}\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right),i \ne j;}\\{\frac{{\partial g}}{{\partial {x_j}}}\left( x \right) = \frac{{\partial f}}{{\partial {x_j}}}\left( x \right)\frac{{{x_j}}}{{\left| x \right|}} + f\left( x \right)\frac{\partial }{{\partial {x_j}}}\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right).}\end{array}$ (8)
By substituting x=0 into (8), there hold
$\begin{array}{*{20}{c}}{\frac{{\partial g}}{{\partial {x_i}}}\left( 0 \right) = \frac{{\partial f}}{{\partial {x_i}}}\left( 0 \right)\mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}},i \ne j;}\\{\frac{{\partial g}}{{\partial {x_j}}}\left( 0 \right) = \frac{{\partial f}}{{\partial {x_j}}}\left( 0 \right)\mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}.}\end{array}$ (9)
Since $\frac{\partial g}{\partial {{x}_{i}}}\left( 0 \right)$ and $\frac{\partial g}{\partial {{x}_{j}}}\left( 0 \right)$ all exist and lim$\frac{{{x}_{i}}}{|x|}$, (i=1, …, n) does not exist while x tends to 0, we derive from (9) that
$\frac{{\partial f}}{{\partial {x_i}}}\left( 0 \right) = 0,$ (10)
for all 1≤in.
Now we use induction method to solve the case |α|≥2.
Suppose that for any multiple-index β with |β| < |α|, there holds
${\left( {\frac{\partial }{{\partial x}}} \right)^\beta }f\left( 0 \right) = 0.$ (11)
Furthermore,
$\begin{array}{*{20}{c}}{{{\left( {\frac{\partial }{{\partial x}}} \right)}^\alpha }g\left( x \right) = \frac{{{x_j}}}{{\left| x \right|}}{{\left( {\frac{\partial }{{\partial x}}} \right)}^\alpha }f\left( x \right) + }\\{\sum\limits_{\gamma + \delta = \alpha } {{{\left( {\frac{\partial }{{\partial x}}} \right)}^\gamma }f\left( x \right){{\left( {\frac{\partial }{{\partial x}}} \right)}^\delta }\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right)} .}\end{array}$ (12)
The assumption gC($\mathbb{R}$n) implies that ${{\left( \frac{\partial }{\partial x} \right)}^{\alpha }}g\left( x \right)$ exists for all x$\mathbb{R}$n. Then we obtain from (11) and (12) that
${\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }g\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}{\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }f\left( 0 \right).$ (13)
Thus we immediately get ${{\left( \frac{\partial }{\partial x} \right)}^{\alpha }}f\left( 0 \right)=0$ from (13).
Now we shall prove our main theorem.
Theorem 1.1?? Suppose that f$\mathscr{D}$($\mathbb{R}$n). If Rjf has compact support, then $\widehat{{{R}_{j}}f}$C($\mathbb{R}$n) and f≡0.
Proof ??First we obtain fL2($\mathbb{R}$n). from f$\mathscr{D}$($\mathbb{R}$n).
Since the Riesz transform Rj is of strong type (p, p) with 1 < p < ∞, we obtain that Rjf is also in L2($\mathbb{R}$n). Furthermore, Rjf $\subset $ L1($\mathbb{R}$n) from the assumption that Rjf has compact support. By Lemma 1.1, there holds $\widehat{{{R}_{j}}f}$ $\subset $ C($\mathbb{R}$n).
Since f$\mathscr{D}$($\mathbb{R}$n) means that fL1($\mathbb{R}$n) and f has compact support, by using Lemma 1.1 again, it yields ${\hat{f}}$C($\mathbb{R}$n).
Noting $\widehat{{{R}_{j}}f}$ (ξ)= $-i\frac{{{\xi }_{j}}}{|\xi |}\hat{f}\left( \xi \right)$ by (5), we conclude
${\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }\hat f\left( 0 \right) = 0,$ (14)
for all $\alpha \in \mathbb{N}_{0}^{n}$ by Lemma 1.2.
That is to say,
$\int_{{\mathbb{R}^n}} {{{\left( { - 2{\rm{ \mathsf{ π} }}ix} \right)}^\alpha }f\left( x \right){\rm{d}}x} = 0$ (15)
holds for all $\alpha \in \mathbb{N}_{0}^{n}$.
Let supp fQ, then the identity
$\int_Q {P\left( x \right)f\left( x \right){\rm{d}}x} = 0$ (16)
holds for all polynomials P by (15).
The collection of all continuous functions defined on Q is denoted by C(Q). Considering that the polynomials are dense in the functional space C(Q), it immediately follows f≡0 from (16).
Obviously, Theorem 1.1 implies (6), which is our main conclusion.
References
[1] Grafakos L. Classical and modern Fourier analysis[M].New Jersey: Pearson Education Inc, 2004.
[2] Yang L. A distribution space for Hilbert transform and its applications[J].Science in China Series A:Mathematics, 2008, 51(12):2217–2230.DOI:10.1007/s11425-008-0007-1
[3] Cui X, Wang R, Yan D. Some properties for double Hilbert transform on $\mathscr{D}({{\mathbb{R}}}^2)$[J].Frontiers of Mathematics in China, 2013, 8(4):783–799.DOI:10.1007/s11464-013-0269-y
[4] Shen F. High-dimensional Hilbert transform on $\mathscr{D}({{\mathbb{R}}^{n}})$[D]. Beijing: University of Chinese Academy of Sciences, 2014(in Chinese).
[5] Royden H L, Fitzpatrick P. Real analysis[M].New York: Macmillan, 1988.


相关话题/数学 北京 科学学院 中国科学院大学 河南

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25
  • 新型三轴离心机系统构型及数学建模
    现代军事、国防领域对某些无人高速飞行器的机动性能要求很高,即要求其具有很强的承受机动过载的能力[1,2].国内外的实践证明,如果某些产品只做地面普通试验,不测试其承受高过载下的性能,可能会导致产品在机动飞行中失效[3],为了在地面上验证无人高速飞行器的整体强度,就需要有一套可以模拟其在运动中承受载荷 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 中国数学学科成果评价方式研究
    doi:10.12202/j.0476-0301.2020048赵静1,刘姝2,,1.北京大学数学科学学院,100871,北京2.北京大学图书馆,100871,北京基金项目:北京大学科研管理项目“促进数学学科深远发展的科研机制研究”的资助项目(2016005)详细信息通讯作者:刘姝(1979-),女 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25