删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A restricted B-spline estimation of diffusion processes with applications to financial data

本站小编 Free考研考试/2021-12-25

候扬扬, 徐天戈
中国科学院大学数学科学学院, 北京 100049
摘要: 时齐扩散过程在金融领域具有重要作用,它被广泛应用于描述基础资产变量的随机波动。研究时齐扩散过程的漂移系数和扩散系数的非参数估计问题,在高阶近似的基础上给出新的非参数估计方法——B样条估计。该方法通过对B样条拟合系数加以非负约束来保证扩散系数的非负性。模拟结果验证了该方法在对扩散系数的估计上优于局部多项式估计方法。
关键词: B样条时齐扩散过程波动率
In the last decades, various well-known financial models based on the time-homogeneous diffusion processes have arisen. In this work, we are concerned about how to estimate the drift and diffusion coefficients of the processes. We generally consider the time-homogeneous Markov process {Xt} given by the stochastic differential equations
${\rm{d}}{X_t} = \mu \left( {{X_t}} \right){\rm{d}}t + \sigma \left( {{X_t}} \right){\rm{d}}{B_t}, $ (1)
where {Bt, t>0} is a standard one-dimensional Brownian motion, and μ(·) and σ(·) are the drift and diffusion coefficients, respectively, dependent on {Xt}. There have been a great amount of studies on parametric methods to estimate μ(·) and σ(·)[1, 2, 3]. One of the major limitations of these methods is that the specific parametric forms of μ(·) and σ(·) have to be assumed first. In order to model more complex drift and diffusion functions and reduce the bias of the estimators, nonparametric regression techniques have been introduced in this area. Florens-Zmirou[4] first proposed nonparametric estimation with discrete sampling observations for the diffusion term, while the nonparametric kernel estimators of the drift and diffusion functions of a stationary process based on a set of discrete sampling observations were developed by Jiang and Knight[5].
Stanton[6] constructed the first-, second-, and third-order approximation formulas for μ(·) and σ(·), in which the unknown conditional expectations estimated by Nadaraya-Watson kernel regression were given, and claimed the superiority of higher-order approximations. By deriving the higher-order approximations and computing the asymptotic variances, Fan and Zhang[7] concluded that higher-order approximations could reduce the numerical approximation errors of asymptotic biases, but the asymptotic variances would escalate nearly exponentially with the order of approximation. To overcome this difficulty, they adopted the local polynomial techniques to estimate the drift and diffusion functions and applied such techniques to some well-known short-term interest rate models. It turned out that this approach might produce the negative results for the diffusion functions when the higher-order approximations were used. To ensure the nonnegativity of the diffusion functions, Ziegelmann[8] and Yu and Jones[9] proposed positive nonparametric conditional variance estimators and Xu[10] proposed reweighted functional estimation of the diffusion coefficient based on reweighting the conventional Nadaraya-Watson estimator. In addition, Yu et al.[11] developed the log P-splines and local log-linear method to semiparametrically estimate a class of time-inhomogeneous diffusion processes. Due to the heavy reliance on the logarithmic transformation of the diffusion function, which brings additional bias term, the method is not asymptotically equivalent to the local linear estimator.
In this work, we make use of B-spline basis functions to estimate the drift and diffusion functions based on higher-order approximations, and compare it with the local polynomial techniques. Our simulation results show that the B-spline method indeed outperforms the local polynomial method.
1 The estimators of the drift and diffusion functionsWe introduce the estimators of the drift and diffusion functions based on higher-order approximations[7]. Given a time-homogeneous diffusion process {Xt} satisfying (0.1) and an arbitrary n+1 order continuous differentiable function f(·), the conditional expected increment can be expressed as
$\begin{array}{*{20}{c}}{E\left[{\left. {f\left( {{X_{t + \mathit{\Delta } }}} \right)-f\left( {{X_t}} \right)} \right|{X_t}} \right] = {\cal L}f\left( {{X_t}} \right)\mathit{\Delta } + }\\{\frac{1}{2}{{\cal L}^2}f\left( {{X_t}} \right){\mathit{\Delta } ^2} + \cdots + \frac{1}{{n!}}{{\cal L}^n}f\left( {{X_t}} \right){\mathit{\Delta } ^n} + O\left( {{\mathit{\Delta } ^{n + 1}}} \right), }\end{array}$ (2)
where the infinitesimal generator ${\cal L} $ of the process {Xt} is defined as
${\cal L}f\left( x \right) = f'\left( x \right)\mu \left( x \right) + \frac{1}{2}f''\left( x \right){\sigma ^2}\left( x \right).$ (3)
Setting f(x)=x-Xt and (x-Xt)2 in (3), we have ${\cal L} $f(x)=μ(Xt) and ${\cal L} $f(x)=σ2(Xt).
Furthermore, we rewrite (2) at the different time steps , j=1, …, k, and get a kth-order approximation scheme
$\frac{1}{\mathit{\Delta } }\sum\limits_{j = 1}^k {{a_{k, j}}E\left[{f\left( {{X_{t + j\mathit{\Delta } }}} \right)-f\left( {{X_t}} \right)\left| {{X_t}} \right.} \right]} \approx {\cal L}f\left( {{X_t}} \right)$ (4)
with the approximation error (-1)$ ^{k + 1}\frac{{{{\cal L}^{k + 1}}f\left( {{X_t}} \right)}}{{\left( {k + 1} \right)}}{\Delta ^k} + O\left( {{\Delta ^{k + 1}}} \right)$, where ${a_{k, j}} = {\left( {-1} \right)^{j + 1}}\left( \begin{array}{l} k\\ j \end{array} \right)/j, j = 1, \cdots, k $ (see Ref.[7] for details). Setting f(x)=x-Xt and (x-Xt)2 in (4), we reach the kth-order approximation schemes of μ(·) and σ2(·)
$\begin{array}{*{20}{c}}{\mu \left( {{X_t}} \right) = \frac{1}{\mathit{\Delta } }\sum\limits_{j = 1}^k {{a_{k, j}}E\left( {{X_{t + j\mathit{\Delta } }} - {X_t}\left| {{X_t}} \right.} \right)} + O\left( {{\mathit{\Delta } ^k}} \right), }\\{{\sigma ^2}\left( {{X_t}} \right) = \frac{1}{\mathit{\Delta } }\sum\limits_{j = 1}^k {{a_{k, j}}E\left( {{{\left( {{X_{t + j\mathit{\Delta } }} - {X_t}} \right)}^2}\left| {{X_t}} \right.} \right)} + }\\{O\left( {{\mathit{\Delta } ^k}} \right).}\end{array}$ (5)
2 B-spline techniquesFan and Zhang[7] proposed the qth-degree (q≥0) local polynomial techniques for estimating the conditional expectations in (5), and computed the asymptotic variances of nonparametric estimators. In this section, we will adopt B-spline techniques to estimate μ(·) and σ2(·).
2.1 Estimation for μ(·) using B-SplineOur goal is to obtain the smooth function μ(x)=E(Y|X). To this end, we fit the discrete (n-k) pairs of synthetic data (X, Y), X∈[α, β], i=1, …, n-k by the model Y=μ(X)+εi, where ${Y_{i\mathit{\Delta }}} = \frac{1}{\mathit{\Delta }}\sum\limits_{j = 1}^k {{a_{k, j}}\left( {{X_{\left( {i + j} \right)\mathit{\Delta }}}-{X_{i\mathit{\Delta }}}} \right)} $. Let p1 be the order of the B-spline and define a sequence of knots α=x1=x2=…=xp1 < xp1+1 < … < xp1+J1+1=xp1+J1+2=…=x2p1+J1=β on an interval [α, β]. Then μ(x) can be expanded in terms of B-spline basis functions as μ(x)=B1(x)a, where a=(a1, …, am1)′, B1(x)=(B1(x), …, Bm1(x)), m1=J1+p1, and Bj(x) is defined as
${B_{j, 1}}\left( x \right) = \left\{ \begin{array}{l}1, \;\;\;\;{x_j} < \cdots < {x_{j + 1}}\\0, \;\;\;\;{\rm{otherwise}}{\rm{.}}\end{array} \right.$
$\begin{array}{*{20}{c}}{{B_{j, p1}}\left( x \right) = \frac{{x - {x_j}}}{{{x_{j + {p_1} - 1}} - {x_j}}}{B_{j, {p_1} - 1}}\left( x \right) + }\\{\frac{{{x_{j + {p_1}}} - x}}{{{x_{j + {p_1}}} - {x_{j + 1}}}}{B_{j + 1, {p_1} - 1}}\left( x \right), }\end{array}$
for j=1, …, m1 (the convention x/0=0 is used). When p1 is chosen as the order of B-spline basis functions, Bj(x)=Bj, p1(x), j=1, …, m1 for the simplicity.
To avoid the excessively "wiggly" estimated curve $ \hat \mu \left( x \right)$, we take the roughness penalty aR1a into account[12]. Then the coefficients aj can be obtained by minimizing
${\rm{PENSSE}}\left( {\rm{a}} \right) = {\left( {\mathit{\boldsymbol{Y}} - {\mathit{\boldsymbol{H}}_1}\mathit{\boldsymbol{a}}} \right)^\prime }\left( {\mathit{\boldsymbol{Y}} - {\mathit{\boldsymbol{H}}_1}\mathit{\boldsymbol{a}}} \right) + {\lambda _1}\mathit{\boldsymbol{a'}}{\mathit{\boldsymbol{R}}_1}\mathit{\boldsymbol{a}}, $ (6)
where Y=(Y1Δ, …, Y(n-k)Δ)′, R1=$\int {{D^2}{\mathit{\boldsymbol{B}}_1}\left( x \right){D^2}\mathit{\boldsymbol{B}}{'_1}\left( x \right){\rm{d}}x}, {\mathit{\boldsymbol{H}}_1} = \left( {{\mathit{\boldsymbol{B}}_1}\left( {{X_{1\mathit{\Delta }}}} \right), \cdots, {\mathit{\boldsymbol{B}}_1}\left( {{X_{\left( {n-k} \right)\mathit{\Delta }}}} \right)} \right)' $, D2 is the second-order differential operator, λ1 is the smoothing parameter which controls the smoothness of a fitted curve.
In this work, we choose the best value of λ1 by minimizing GCV(λ1)(generalized cross-validation)
${\rm{GCV}}\left( {{\lambda _1}} \right) = \frac{{{\rm{RS}}S\left( {{\lambda _1}} \right)}}{{{{\left\{ {1 - {{\left( {n - k} \right)}^{ - 1}}{\rm{tr}}\left( {{\mathit{\boldsymbol{S}}_{{\lambda _1}}}} \right)} \right\}}^2}}}, $
where RSS$\left( {{\lambda _1}} \right) = \left( {\mathit{\boldsymbol{Y}}-{\mathit{\boldsymbol{H}}_1}\mathit{\boldsymbol{\hat a}}} \right)'\left( {\mathit{\boldsymbol{Y}}-{\mathit{\boldsymbol{H}}_1}\mathit{\boldsymbol{\hat a}}} \right) $ is the residual sum of squares and the smoother matrix of Sλ1=H1(H1H1+λ1R1)-1H1, tr(Sλ1) is the trace of Sλ1. By minimizing (2.8), we get the penalized B-spline regression estimator of the vector of coefficients $\mathit{\boldsymbol{\hat a}} = {\left( {\mathit{\boldsymbol{H}}{'_1}{\mathit{\boldsymbol{H}}_1} + {\lambda _1}{\mathit{\boldsymbol{R}}_1}} \right)^{-1}}\mathit{\boldsymbol{H}}'\mathit{\boldsymbol{Y}} $, and furthermore reach the estimator for the drift function
$\hat \mu \left( x \right) = {\mathit{\boldsymbol{B}}_1}\left( x \right)\mathit{\boldsymbol{\hat a}} + {\mathit{\boldsymbol{B}}_1}\left( x \right){\left( {{{\mathit{\boldsymbol{H'}}}_1}{\mathit{\boldsymbol{H}}_1} + {\lambda _1}{\mathit{\boldsymbol{R}}_1}} \right)^{ - 1}}{{\mathit{\boldsymbol{H'}}}_1}\mathit{\boldsymbol{Y}}.$ (7)
2.2 Estimation for σ2(·) using B-spline with nonnegative restrictionsSimilarly, the square of diffusion function σ2(x) can be also expressed as a linear combination of the B-splines Bj(x) in the form σ2(x)=B2(x)c, where c=(c1, …, cm2), B2(x)=(B1(x), …, Bm2(x)), m2=J2+p2, J2 and p2 are the numbers of interval knots and the order of B-spline, respectively. In order to ensure the positivity of σ2(x), we impose the reasonable constraint cj≥0, (j=1, …, m2) due to the property of the coefficients cj of B-spline Bj(x) that there are no more sign changes in σ2(x) than those in the sequence cj.
Under the constraint c≥0, the estimation of c can be achieved by the following optimization problem with a linear inequality constraint
$\begin{array}{*{20}{c}}{{\rm{minimise}} \to {{\left( {\mathit{\boldsymbol{Z}} - {\mathit{\boldsymbol{H}}_2}\mathit{\boldsymbol{c}}} \right)}^\prime }\left( {\mathit{\boldsymbol{Z}} - {\mathit{\boldsymbol{H}}_2}\mathit{\boldsymbol{c}}} \right) + {\lambda _2}\mathit{\boldsymbol{c'}}{\mathit{\boldsymbol{R}}_2}\mathit{\boldsymbol{c}}}\\{{\rm{with}}\;\mathit{\boldsymbol{c}} \ge 0, }\end{array}$ (8)
where Z=(Z1Δ, …, Z(n-k)Δ)′, Z=$ \frac{1}{\mathit{\Delta }}{\sum\limits_{j = 1}^k {{a_{k, j}}\left( {{X_{\left( {i + j} \right)\mathit{\Delta }}}-{X_{i\mathit{\Delta }}}} \right)} ^2}$$, i = 1, \cdots, n-k, {\mathit{\boldsymbol{R}}_2} = \int {{D^2}{\mathit{\boldsymbol{B}}_2}\left( x \right){D^2}\mathit{\boldsymbol{B}}{'_2}\left( x \right){\rm{d}}x} $, and ${\mathit{\boldsymbol{H}}_2} = \left( {{\mathit{\boldsymbol{B}}_2}\left( {{Z_{1\mathit{\Delta }}}} \right), \cdots, {\mathit{\boldsymbol{B}}_2}\left( {{Z_{\left( {n-k} \right)\mathit{\Delta }}}} \right)} \right)' $,
The smoothing parameter λ2 can be chosen by minimizing GCV(λ2),
${\rm{GCV}}\left( {{\lambda _2}} \right) = \frac{{{\rm{RS}}S\left( {{\lambda _2}} \right)}}{{{{\left\{ {1 - {{\left( {n - k} \right)}^{ - 1}}{\rm{tr}}\left( {{\mathit{\boldsymbol{S}}_{{\lambda _2}}}} \right)} \right\}}^2}}}, $
where RSS(λ2)=$\left( {\mathit{\boldsymbol{Z}}-{\mathit{\boldsymbol{H}}_2}\mathit{\boldsymbol{\hat c}}} \right)'\left( {\mathit{\boldsymbol{Z}}-{\mathit{\boldsymbol{H}}_2}\mathit{\boldsymbol{\hat c}}} \right) $ is the residual sum of squares, ${\mathit{\boldsymbol{\hat c}}} $ is the estimator of c, and the smoother matrix Sλ2=H2(H2H2+λ2R2)-1H2, and tr(Sλ2) is the trace of Sλ2.
2.3 Choosing the order k of approximationAccording to the view of Stanton[6], the approximations to the drift and diffusion functions converge pointwise to μ(·) and σ(·) at a rate Δk, and the first-order approximation performs well when the data are sampled weekly or more frequently. However, as the frequency of data decreases, the approximation error of the first-order approximation increases. In order to reduce asymptotic bias of the approximation error, Fan and Zhang[7] proposed higher-order approximation method. However, the asymptotic variances of such approximations escalate nearly exponentially with the approximations order.
In this work, we balance the asymptotic bias and variance by choosing k=1 for the data sampled weekly or more frequently and opting for the second-order approximation when the sampling frequency decreases or the data over a small range of values.
2.4 Selection of the number of knots and order pRuppert[13] pointed out that the number of the interval knots was not so crucial as the penalty parameter λ. When the chosen number of knot is enough to fit the feature of data, any increase in J will have little effect on the fitting result. Moreover, the computation time will increase as J rises. As a trade-off, Yoshimoto et al.[14] proposed the statistical criterion BIC to select a suitable J. Apart from BIC statistical criterion, one might use a simple default value. In Ref.[13], Matt Wand suggested that min([$ \frac{{n-k}}{4}$], 35) interval knots were chosen ([x] is the integral part of x), where n is the number of observations, and k is the order of approximation.
To simplify the computation, we set J1=J2=min([$\frac{{n-k}}{4} $], 35) and choose equally spaced knots. This turns out not to affect the results. Other choices of the number of knots have also been tried, and similar results display.
As for the selection of p, we choose p1=p2=4. The reason for such selection is that the simulation results show the order 4 B-splines fit the drift and diffusion functions well enough and the higher order spline functions will increase the computation, which overwhelms the approximation precision.
3 SimulationIn this section, we apply our proposed method to three examples. Then we compare our method with local polynomial method. To assess the performance of the two estimation methods, we use the following two measures[15].
Measure 1??Mean absolute deviation error
${\rm{MADE}}\left( {\hat \sigma _t^2} \right) = {m^{ - 1}}\sum\limits_{i = 1}^m {\left| {{Z_{i\mathit{\Delta } }} - \hat \sigma _i^2} \right|}, $
Measure 2??Ideal mean absolute deviation error
${\rm{IMADE}}\left( {\hat \sigma _t^2} \right) = {m^{ - 1}}\sum\limits_{i = 1}^m {\left| {\hat \sigma _i^2 - \sigma _i^2} \right|}, $
where m is the length of the testing sample, $ {{\hat \sigma }_i}$ is the estimation of the volatility, and σi is the true. These measures are used to assess the performance of different procedures for estimating the volatility. However, for the real data analysis, Measure 2 is not applicable. For the drift function, these measures can also be employed.
3.1 Cox-ingersoll-ross squared-root(CIR SR) modelIn this example, we consider the well-known CIR SR model
${\rm{d}}{X_t} = \left( {\alpha + \beta {X_t}} \right){\rm{d}}t + \sigma X_t^{1/2}{\rm{d}}{B_t}, t \ge {t_0}, $ (9)
where {Xt} is a measurable Markov process. Bt is a standard Brownian motion. Our simulation data are generated by using the discrete time order 1.0 strong approximation scheme (see Ref.[16] for details) as follows:
$\begin{array}{l}{X_{{t_{i + 1}}}} \approx {X_{{t_i}}} + \left[ {\alpha + \beta {X_{{t_i}}} - {4^{ - 1}}{\sigma ^2}} \right]{\mathit\Delta } + \\\;\;\;\;\;\;{2^{ - 1}}\sigma \left\{ {\left[ {{X_{{t_i}}} + \left( {\alpha + \beta {X_{{t_i}}} - {4^{ - 1}}{\sigma ^2}} \right){\mathit\Delta } + } \right.} \right.\\\;\;\;\;\;\;\left. {\left. {\sigma \left( {{X_{{t_i}}}} \right)_ + ^{1/2}{\varepsilon _i}\sqrt {\mathit\Delta } } \right]_ + ^{1/2} + \left( {{X_{{t_i}}}} \right)_ + ^{1/2}} \right\}{\varepsilon _i}\sqrt {\mathit\Delta } ,\\\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{for}}\;i = 1, \cdots ,n - 1,\end{array}$ (10)
where {εi}i=1n-1 are independent and standard normal variables, x+=max(x, 0), the time points t1 < … < tn, are equally spaced, and Δ is the step size.
In order to compare with local polynomial techniques, we adopt the same values of model parameters for simulation: α=0.018 392 5, β=-0.214 59, σ=0.078 30, and Δ=1/52. To begin with, a sample path of length 5 000 is generated by the discretization scheme (10) and setting the initial value X0=0.1, where the first 4 500 observations are in-sample data and the remaining 500 observations out-sample data. Then the estimators of the drift and diffusion functions are calculated respectively through kth-order approximation. Here we choose k=1, as the simulation data are weekly ones. For the purpose of comparison, we simulate 100 sample paths with range interval =[0.03, 0.15], and set the number of interval knots J1=J2=35 on the interval . The simulation results are presented in Fig. 1 and Table 1.
Fig. 1
Download: JPG
larger image

Solid: true function, dashed-dotted: the median of the estimates, and dashed: the 25th and 75th percentiles of the estimates.
Fig. 1 Estimated drift and diffusions among 100 simulations for CIR SR model


Table 1
Table 1 Comparisons between B-spline and local polynomial methods
measure empirical formula local polynomial B-spline
Drift MADE ave 0.178 7 0.125 0
std 0.529 4 0.017 9
IMADE ave 0.058 2 0.003 9
std 0.527 6 0.003 0
Volitity MADE ave(×10-4) 9.153 0 4.819 3
std(×10-3) 4.300 0 0.140 7
IMADE ave(×10-4) 4.532 5 0.603 3
std(×10-3) 4.300 0 0.145 1

Table 1 Comparisons between B-spline and local polynomial methods

In this example, smoothing parameters λ1 and λ2 are chosen as 1×10-3 and 1×10-4 by minimizing GCV(λ1) and GCV(λ2), respectively. The bandwidth parameter for the local linear estimation is generated from the rule
$h = C \times {\rm{std}}\left( {{X_\mathit{\Delta } }, \cdots, {X_{\left( {n - k} \right)\mathit{\Delta } }}} \right){n^{ - 1/5}}, $ (11)
where C=6. In Table 1 it is shown that the B-spline method possesses certain superior performance because of its lower MADE and IMADE.
3.2 Geometric Brownian motion (GBM) modelWe consider another familiar example of geometric Brownian motion determined by
${\rm{d}}{X_t} = \left( {\mu + \frac{1}{2}{\sigma ^2}} \right){X_t}{\rm{d}}t + \sigma {X_t}{\rm{d}}{B_t}, t \ge {t_0}, $ (12)
where Bt is a standard one-dimensional Brownian motion. The used parameter values are the same as these in Ref.[7]. μ=0.087, σ=0.178, and the state value X0=1, Δ=1/250, h=2×std(XΔ, …, X(n-k)Δ)n-1/5. Using these values and following the order 1.0 scheme, we generate 1 000 sample paths of length 1 000 observations,
$\begin{array}{*{20}{c}}{{X_{{t_{i + 1}}}} \approx {X_{{t_i}}} + \left( {\mu + {2^{ - 1}}{\sigma ^2}} \right){X_{{t_i}}}{\mathit\Delta } + \sigma {X_{{t_i}}}{\varepsilon _i}\sqrt {\mathit\Delta } + }\\{{2^{ - 1}}{\sigma ^2}{X_{{t_i}}}\left( {\varepsilon _i^2 - 1} \right){\mathit\Delta } .}\end{array}$ (13)
For each simulation, we set the first 900 observations as in-sample data and the remaining observations as out-sample data. In this example, smoothing parameters λ1=0.01 and λ2=0.005. Other parameters are the same as these in subsection 3.1. The results are summarized in Table 2.
Table 2
Table 2 Comparison between the two methods
measure empirical formula local polynomial B-spline
Drift MADE ave 7.338 0 3.399 7
std 18.526 0 1.273 8
IMADE ave 4.909 8 0.357 1
std 18.662 0 0.338 6
Volitity MADE ave 0.210 9 0.080 6
std 0.887 2 0.072 6
IMADE ave 0.154 9 0.034 3
std 0.884 7 0.056 9

Table 2 Comparison between the two methods

3.3 Verifying the nonnegativity of diffusion functionIn this part, we generate 600 observations from model (9), and use the first 500 observations as in-sample observations and the remaining as out-sample observations. The simulation data set is presented in Fig. 2(a). Stanton[6] proposed that the first-order approximation had a bad performance over a small range of values or when the sampling frequency decreased. In order to illustrate that the local polynomial techniques are not suitable for the higher-order approximations, we use the second-order approximation to estimate the squared volatility and set h=0.016, λ2=1×10-5. In Fig. 2(b) we display the discrete points of second-order approximation of squared volatility, many of which are negative.The results are shown in Fig. 3 and Table 3. It is seen in Fig. 3 that the fitting results of the squared volatility have negative values at the right boundary when we use the local polynomial method.
Fig. 2
Download: JPG
larger image


Fig. 2 Simulation data


Fig. 3
Download: JPG
larger image


Fig. 3 Estimated squared volatility


Table 3
Table 3 Comparison between the two volatility estimation methods
measure local polynomial B-spline
drift MADE 0.289 3 0.289 0
IMADE 0.030 7 0.030 1
volitity MADE(×10-3) 1.500 0 1.500 0
IMADE(×10-4) 1.133 3 0.998 4

Table 3 Comparison between the two volatility estimation methods

This example shows that the restricted B-spline method not only has a lower MADE and IMADE, but also guarantees the nonnegativity of the volatility which is shown in Fig. 3.
4 Application4.1 Application of the B-spline techniques to HS300 indexTo understand the dynamics of the stock market of China, we apply our proposed techniques to the HS300 index data. The data consist of 2 610 daily observations from 8 April 2005 to 31 December 2015, and are presented in Fig. 4.
Fig. 4
Download: JPG
larger image


Fig. 4 Index of HS300 from 2005-04-08 to 2015-12-31

Because the data are the daily ones, the first-order approximation is a good choice in the light of the estimation effect and variance inflation. Following the conventional practice in finance research, we first take the logarithmic transformation of the price index and then obtain the range interval =[6.706 9, 8.678 8]. We set the number of equally spaced interval knots J1=J2=35. By using the rule proposed in section 2, smoothing parameters λ1=0.1 and λ2=0.02 are chosen. The estimation results of drift and volatility are presented in Fig. 5. The solid curves are the estimation, and the dashed curves are the 95% bootstrap confidence intervals.
Fig. 5
Download: JPG
larger image

Solid—estimator, dashed—95% bootstrap confidence bond.
Fig. 5 Estimation of the coefficients of diffusion processes using B-spline

Regression bootstrap technique is used to calculate the bootstrap confidence intervals (see Ref[17] for details). We denote Sti=Xti+1-Xti for the original HS300 data {Xti, i=1, …, n}, and then generate the bootstrap responses {Sti*} using $ S_{{t_i}}^* = \hat \mu \left( {{X_{{t_i}}}} \right)\mathit{\Delta} + \hat \sigma \left( {{X_{{t_i}}}} \right){\sqrt {\mathit\Delta }}\varepsilon _i^*, i = 1, \cdots, n-1$, where the bootstrap residuals {εi*, i=1, …, n-1} are sampled randomly with replacement from $\left\{ {{{\hat \varepsilon }_i}, i = 1, \cdots, .n-1} \right\} $ and $ {{\hat \varepsilon }_i} = \frac{{{S_{{t_i}}}-\hat \mu \left( {{X_{{t_i}}}} \right)\mathit{\Delta }}}{{\hat \sigma \left( {{X_{{t_i}}}} \right){\sqrt {\mathit\Delta }}}}$. It is easy to obtain the bootstrap samples $\left\{ {\left( {{X_{{t_i}}}, Y_{i\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}}^*} \right)_{i = 1}^{n-1}} \right\} $ and $\left\{ {\left( {{X_{{t_i}}}, Z_{i\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}}^*} \right)_{i = 1}^{n-1}} \right\} $ when the first-order approximation is used. If a higher-order approximation is involved, we just need to set X*t1=Xt1, and then generate a regression bootstrap sample {X*ti, i=1, …, n}. Similarly, the bootstrap sample $\left\{ {\left( {{X_{{t_i}}}, Y_{i\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}}^*} \right)_{i = 1}^{n-1}} \right\} $ and $ \left\{ {\left( {{X_{{t_i}}}, Z_{i\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}}^*} \right)_{i = 1}^{n-1}} \right\}$ can be obtained. In our studies, the bootstrap confidence intervals are calculated based on 1 000 bootstrap samples.
4.2 Treasury bond case studyWe apply the two techniques proposed above to the three-year treasury bond from the secondary market rates on the last trading day of each month and compare the estimation effects of squared volatility between the two methods. The data set contains 753 monthly observations from 30 April 1953 to 31 December 2015, and is presented in Fig. 6.
Fig. 6
Download: JPG
larger image


Fig. 6 Three-year treasury bond data set

Here we use the second-order approximation to estimate the squared volatility of model (1) for the monthly three-year treasury bond data. The estimation of squared volatility with the 95% bootstrap confidence bond based on 1 000 bootstrap samples by the penalized B-spline with nonnegative restriction techniques is displayed in Fig. 7 (the solid curve). In Fig. 7 the dashed-dotted curve denotes the estimation obtained by local polynomial techniques. It is obvious that the squared volatility estimated by local polynomial techniques with h=0.028 9 is negative when the treasury bond rate is equal to 0.16. This result shows that the fitting effect of penalized B-spline with nonnegative restriction techniques is better than that of the local polynomial. Such effect will be very obvious when the higher-order approximation is used. In this study, we choose =[0.003 0, 0.164 5], J2=35, and λ2=1×10-5.
Fig. 7
Download: JPG
larger image


Fig. 7 Estimated squared volatility with 95% bootstrap confidence bond

5 ConclusionThe B-spline method gives a good performance for the drift and volatility estimation. When a higher-order approximation is adopted, the B-spline method is a better choice because it not only has lower MADE and IMADE but also guarantees the nonnegativity of the volatility, while the local polynomial method does not. Our techniques will be extended to time-inhomogeneous diffusion models in the future.
References
[1] Hansen L P, Scheinkman J A. Back to the future:generating moment implications for continuous-time Markov processes[J].Econometrica, 1995, 63(4):767–804.DOI:10.2307/2171800
[2] Pedersen A R. Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes[J].Bernoulli, 1995, 1(3):257–279.DOI:10.3150/bj/1193667818
[3] A?t-Sahalia Yacine. Maximum likelihood estimation of discretely sampled diffusions:a closed-form approximation approach[J].Econometrica, 2002, 70(1):223–262.DOI:10.1111/ecta.2002.70.issue-1
[4] Florens-Zmirou D. On estimating the diffusion coefficient from discrete observations[J].Journal of Applied Probability, 1993, 30(4):790–804.DOI:10.1017/S0021900200044570
[5] Jiang G J, Knight J L. A nonparametric approach to the estimation of diffusion processes:with an application to a short-term interest rate model[J].Econometric Theory, 1997, 13(5):615–645.DOI:10.1017/S0266466600006101
[6] Stanton R. A nonparametric model of term structure dynamics and the market price of interest rate risk[J].The Journal of Finance, 1997, 52(5):1973–2002.DOI:10.1111/j.1540-6261.1997.tb02748.x
[7] Fan J, Zhang C. A reexamination of diffusion estimators with applications to financial model validation[J].Journal of the American Statistical Association, 2003, 98(461):118–134.DOI:10.1198/016214503388619157
[8] Ziegelmann F A. Nonparametric estimation of volatility functions:the local exponential estimator[J].Econometric Theory, 2002, 18(4):985–991.
[9] Yu K, Jones M C. Likelihood-based local linear estimation of the conditional variance function[J].Journal of the American Statistical Association, 2004, 99(465):139–144.DOI:10.1198/016214504000000133
[10] Xu K L. Reweighted functional estimation of diffusion models[J].Econometric Theory, 2010, 26(2):541–563.DOI:10.1017/S0266466609100087
[11] Yu Y, Yu K, Wang H, et al. Semiparametric estimation for a class of time-inhomogeneous diffusion processes[J].Statistica Sinica, 2009, 19(2):843–867.
[12] Ramsay J O, Silverman B W. Functional data analysis[M].New York: Springer, 2005.
[13] Ruppert D. Selecting the number of knots for penalized splines[J].Journal of computational and graphical statistics, 2002, 11(4):735–757.DOI:10.1198/106186002853
[14] Yoshimoto F, Harada T, Yoshimoto Y. Data fitting with a spline using a real-coded genetic algorithm[J].Computer-Aided Design, 2003, 35(8):751–760.DOI:10.1016/S0010-4485(03)00006-X
[15] Fan J, Fan Y, Jiang J. Dynamic integration of time-and state-domain methods for volatility estimation[J].Journal of the American Statistical Association, 2007, 102(478):618–631.DOI:10.1198/016214507000000176
[16] Kloeden P E. On effects of discretization on estimators of drift parameters for diffusion processes[J].Journal of Applied Probability, 1996, 33(4):606–610.
[17] Franke J, Kreiss J P, Mammen E. Bootstrap of kernel smoothing in nonlinear time series[C]//Bernoulli. Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, 1997: 1-37.http://www.jstor.org/stable/3318641


相关话题/图片 过程 基础 资产 中国科学院大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 南京市基础教育设施空间结构及其演化
    涂唐奇1,2,3,陈江龙1,2,魏也华4,梁其椿1,2,3,张英浩1,2,31.中国科学院流域地理学重点实验室,南京210008;2.中国科学院南京地理与湖泊研究所,南京210008;3.中国科学院大学,北京100049;4.犹他大学地理系,美国盐湖城84112-91552016年12月05日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 基于葵花8号卫星数据的气溶胶反演算法及其在雾霾过程监测中的应用
    牛晓君1,唐家奎1,张自力2,崔林丽3,幸炜鹏1,宋艺11.中国科学院大学资源与环境学院,北京100049;2.浙江省环境监测中心,杭州310015;3.上海市气象科学研究所,上海2000302018年3月22日收稿;2018年5月22日收修改稿基金项目:中国科学院战略性先导科技专项资助(XDA20 ...
    本站小编 Free考研考试 2021-12-25
  • 小麦炭化过程中质量和颜色变化的实验模拟
    苏鑫,李玉梅,谷永建中国科学院大学地球与行星科学学院,北京100049;中国科学院计算地球动力学重点实验室,北京100049;中国科学院地质与地球物理研究所,北京100029;中国科学院大学测试中心分子化石实验室,北京1000492018年2月9日收稿;2018年4月18日收修改稿基金项目:国家自然 ...
    本站小编 Free考研考试 2021-12-25
  • 柔性夹爪收缩与扩张过程的能耗研究*
    随着全球工业的发展,工厂生产的产品急剧增加,然而对于易损物品的抓取方式及效率要求越来越高,在传统工厂的抓取作业中,目前普遍采用机械夹爪、真空吸盘等传统夹具对物品进行抓取,经常会受到产品不同形状、材质、位置的影响,导致无法顺利抓取[1]。而近年兴起的基于柔性机器人技术的柔性夹爪,可以完美攻克这一工业难 ...
    本站小编 Free考研考试 2021-12-25
  • 2024铝合金浸镍层的制备及生长过程*
    铝合金材料有着质量轻、强度高、切削性能良好等优点而被广泛应用在汽车、航空、航天、机械等领域。但是,铝合金的一些不良特性如显微硬度低、耐磨性差、耐腐蚀性差等限制了其应用,因此,表面改性对铝合金部件的制造过程至关重要。在各种表面处理工艺中,电镀与化学镀由于其独特的优势吸引了很多关注,通过在铝合金表面制备 ...
    本站小编 Free考研考试 2021-12-25
  • 过站航班地面保障过程动态预测*
    随着近年来航空运输量持续平稳增长,航班高密度运行已成为常态。地面保障过程作为过站航班运行的核心部分,传统面向时间窗的固定运行模式已无法适应未来智慧机场发展趋势,因此其过程的动态精确预测成为实现航班精细化管理的关键问题[1]。地面保障指过站航班从上轮挡到撤轮挡2个保障节点之间以旅客、货邮、航空器为核心 ...
    本站小编 Free考研考试 2021-12-25
  • 飞机波浪水面迫降过程中极限冲击载荷数值研究*
    随着跨水域飞行航线日益增多,飞机在空中遭遇事故需要执行水上紧急降落任务的可能性也随之提高。有计划的水上紧急着陆被称作水上迫降,执行预定的水上迫降程序,飞机受到的纵向和横向载荷将会落在设计范围内[1-2],同时乘客将有几分钟的准备时间以承受迫降冲击。目前,飞机水上迫降的研究主要集中在平静水面迫降,形成 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进GERT的任务过程时间特性建模分析方法*
    伴随着日渐密集的任务需求,任务间隔紧密程度越来越高,系统中各项活动间的交互耦合关系愈加突出,使得用户对系统的时间特性提出了更为严苛的要求[1]。包括飞机在内的复杂工业系统在执行任务过程中,各项活动的衔接耦合密切,执行时间紧凑,顺序要求严格,某一活动的参数发生波动,会引起与其共享同一资源的其他活动的执 ...
    本站小编 Free考研考试 2021-12-25
  • 模拟月壤铺粉过程DEM数值仿真*
    21世纪伊始,人类迎来了新一轮的探月高潮。美国国家航空航天局(NASA)提出了“重返月球,建立月球永久性基地”计划;欧洲航天局(ESA)制定了“极光”计划,其主要任务是载人登月、建立月球基地,并以月球为跳板实施载人火星探测任务。如何实现高效率、低成本的“空间制造”已经成为解决长期月面居留物资和生命保 ...
    本站小编 Free考研考试 2021-12-25
  • 翼伞充气过程的流固耦合方法数值仿真*
    冲压式翼伞相比于传统降落伞,升阻比高、滑翔稳定性能和操作性良好,广泛应用于航空航天等领域[1-3],近年来成为各国研究重点。翼伞充气成功与否决定着翼伞系统工作的成败。翼伞和常规降落伞一样,在充气展开过程中,由于本身的柔性特性,在气流作用下柔性伞衣极易变形,工作特性发生改变,涉及到的流固耦合问题具有高 ...
    本站小编 Free考研考试 2021-12-25