删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

On the exponent of NmK2($\mathbb{F}$[Cpn])

本站小编 Free考研考试/2021-12-25

张浩, 唐国平
中国科学院大学数学科学学院, 北京 100049
摘要: 令Cpn是阶为pn的循环p群,$\mathbb{F}$是特征为p的有限域。对于任何整数1≤ln,得到NmK2$\mathbb{F}$[Cpn])中无限多个非平凡的pl阶元素。事实上,这些元素组成NmK2$\mathbb{F}$[Cpn])的一个生成元集,并且NmK2$\mathbb{F}$[Cpn])的指数为pn
关键词: K理论Bass Nil群截断多项式
Let R be a ring with unit. The Bass Nil groups NmKi(R) are introduced by Bass[1] in order to investigate the relation between Ki(R[x1, …, xm]) and Ki(R). For any i$\mathbb{Z}$, NKi(R) is defined to be the kernel of surjective map Ki(R[x1])→Ki(R) induced by x1 |→0. And NmKi(R) is defined by iteration, i.e., the kernel of the surjection Nm-1Ki(R[xm])→Nm-1Ki(R) induced by xm |→0. When i=0, 1, 2, Ki(R) are the classical algebraic K-groups defined by Grothendieck[2], Bass[1] and Milnor[3], respectively. When i < 0, the negative K-theory is defined by Bass[1]. When i>2, Ki(R)=πi(K(R)) is defined to be the i-th homotopy group of the K-theory space K(R) which was first invented by Quillen[4] via plus-construction or Q-construction. As for the Bass Nil groups, the most known property is the following phenomenon.
Theorem A (See Refs. [5-9]). Let R be a ring. For any i, m$\mathbb{Z}$ and m≥1, if NmKi(R)≠0, then it is not finitely generated as an abelian group.
Let p be a prime number. In some cases, NKi(R) are abelian p-groups[8]. However, the exponents of these abelian p-groups are not completely determined. For example, the exponents of NK0($\mathbb{Z}$[C4]) and NK1($\mathbb{Z}$[C4]) are both 2, but the exponent of NK2($\mathbb{Z}$[C4]) is still unknown[10].
Let $\mathbb{F}$ be a finite field of characteristic p and Cpn the cyclic p-group of order pn. Since K2($\mathbb{F}$[Cpn])=K2($\mathbb{F}$)=0 (see Ref. [11]), we have
$\begin{array}{*{20}{c}} {{K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ {{x_1}, \cdots ,{x_m}} \right]} \right) \cong {{\left( {1 + N} \right)}^m}{K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]} \right) = } \\ {\mathop \oplus \limits_{i = 1}^m \left( {\begin{array}{*{20}{c}} m \\ i \end{array}} \right){N^i}{K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]} \right).} \end{array}$
In Ref. [12], Juan-Pineda showed the non-finiteness of NK2($\mathbb{F}$p[Cpn]) by giving one non-trivial element of order p and concluded that NK2($\mathbb{Z}$[C])≠0 for any non-trivial cyclic group C. In this paper, we could give infinitely many non-trivial elements of order pl for any 1≤ln in NmK2($\mathbb{F}$[Cpn]). In fact, we give a presentation of NmK2($\mathbb{F}$[Cpn]) in terms of Dennis-Stein symbols and show that the exponent of NmK2($\mathbb{F}$[Cpn]) is pn.
1 Main resultLet $\mathbb{F}$ be a finite field with pf elements and B={1, b, b2, …, bf-1} a basis of $\mathbb{F}$ as a vector space over the finite field $\mathbb{F}$p of p elements. Let Cpn be the cyclic group of order pn (n≥1) generated by σ. Let J=J($\mathbb{F}$[Cpn]) be the Jacobson radical of the group algebra $\mathbb{F}$[Cpn]. The notation $\oplus $ denotes a countably infinite direct sum, i.e., $\oplus $=$\oplus $sS for some countably infinite set S.
Lemma 1.1 NK2($\mathbb{F}$[Cpn])$\cong $K2($\mathbb{F}$[Cpn][x], J[x]).
Proof Observe that $\mathbb{F}$[Cpn][x]/J[x]$\cong $$\mathbb{F}$[x] and $\mathbb{F}$[x]→$\mathbb{F}$[Cpn][x] is a split inclusion. Since $\mathbb{F}$ is a finite field, K2($\mathbb{F}$[Cpn])=K2($\mathbb{F}$)=0. And K2($\mathbb{F}$[x])=K2($\mathbb{F}$)$\oplus $NK2($\mathbb{F}$)=0 because $\mathbb{F}$ is regular. Hence the result follows from the two exact sequences of K-groups:
$\begin{array}{*{20}{c}} {0 \to {K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ x \right],J\left[ x \right]} \right) \to {K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ x \right]} \right)} \\ { \to {K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ x \right]/J\left[ x \right]} \right) = 0 \to 0,} \end{array}$
$\begin{array}{*{20}{c}} {0 \to N{K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]} \right) \to {K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ x \right]} \right) \to } \\ {{K_2}\left( {\mathbb{F}\left[ {{C_{{p^n}}}} \right]} \right) = 0 \to 0.} \end{array}$
Let I=(t1pn) be a proper ideal in the polynomial ring $\mathbb{F}$[t1, t2, …, tm+1]. Then
$\mathbb{F}\left[ {{C_{{p^n}}}} \right] \cong \mathbb{F}\left[ {{t_1}} \right]/\left( {t_1^{{p^n}}} \right),$
$\mathbb{F}\left[ {{C_{{p^n}}}} \right]\left[ {{x_1}, \cdots ,{x_m}} \right] \cong \mathbb{F}\left[ {{t_1}, \cdots ,{t_{m + 1}}} \right]/I,$
via σ-1 |→t1 and xi |→ti+1. Let A=$\mathbb{F}$[t1, …, tm+1]/I and M=($\overline {{t_1}} $) be its nilradical where $\overline {{t_1}} $=t1+I. Then $\mathbb{F}$[x1, …, xm]$\cong $A/M and K2(A)$\cong $K2(A, M). So the above lemma becomes NK2($\mathbb{F}$[Cpn])$\cong $K2($\mathbb{F}$[t1, t2]/I, M) (m=1).
Lemma 1.2 Let 1≤tn-1 and 1≤h < p be integers. If pn-t-1 < kpn-t, $\left\lceil {{\rm{lo}}{{\rm{g}}_p}\frac{{{p^n} + 1}}{{pk}}} \right\rceil = \left\lceil {{\rm{lo}}{{\rm{g}}_p}\frac{{{p_n}}}{{pk-h}}} \right\rceil = t$, and if k=1, $\left\lceil {{\rm{lo}}{{\rm{g}}_p}\frac{{{p^n} + 1}}{{pk}}} \right\rceil = \left\lceil {{\rm{lo}}{{\rm{g}}_p}\frac{{{p_n}}}{{pk-h}}} \right\rceil = n$, where $\left\lceil a \right\rceil $=min{s$\mathbb{Z}$|sa} denotes the smallest integer no less than a.
Proof If k=1, the computation is easy. Suppose pn-t-1+1≤kpn-t, the result follows from the inequalities
${p^{t - 1}} < \frac{{{p^n}}}{{{p^{n - t + 1}} - h}} \le \frac{{{p^n}}}{{pk - h}} \le \frac{{{p^n}}}{{{p^{n - t}} + p - h}} < {p^t},$
${p^{t - 1}} = \frac{{{p^n}}}{{{p^{n - t + 1}}}} < \frac{{{p^n} + 1}}{{pk}} \le \frac{{{p^n} + 1}}{{{p^{n - t}} + p}} < {p^t}.$
Theorem 1.1?Let Cpn be the cyclic group of order pn (n≥1) generated by σ. For any integer m≥1, NmK2($\mathbb{F}$[Cpn])$\cong $$\oplus $($\mathop \oplus \limits_{i = 1}^n $$\mathbb{Z}$/pi$\mathbb{Z}$) can be generated by these elements:
the generators of order pl (1≤ln-1) are 〈b(σ-1)pk-1$\prod\limits_{j = 1}^m {} $xjβj, (σ-1)〉, where pn-l-1 < kpn-l and gcd(p, β1, …, βm)=1, 〈b(σ-1)pk($\prod\limits_{j = 1}^m {} $xjβj)/xi, xi〉, where 1≤im, pn-l-1k < pn-l, gcd(p, β1, …, βm)=1 and i≠min{j|βj0 mod p}, 〈b(σ-1)pk-h($\prod\limits_{j = 1}^m {} $xjβj)/xi, xi〉, where 1≤im, pn-l-1 < kpn-l, 1≤h < p; and generators of order pn are 〈b(σ-1)p-1$\prod\limits_{j = 1}^m {} $xjβj, (σ-1)〉, where gcd(p, β1, …, βm)=1, 〈b(σ-1)h($\prod\limits_{j = 1}^m {} $xjβj)/xi, xi〉, where 1≤im and 1≤h < p.
For all the above symbols, bB and β=(β1, …, βm)∈$\mathbb{N}$+m, where $\mathbb{N}$+ is the set of positive integers.
Proof Suppose we get a generating set of K2($\mathbb{F}$[Cpn][x1, …, xm])$\cong $K2(A, M) in terms of Dennis-Stein symbols. Fix j different indeterminates in {x1, …, xm}, say {xi1, …, xij}. The elements of the direct summand NjK2($\mathbb{F}$[Cpn])K2($\mathbb{F}$[Cpn][xi1, …, xij])K2($\mathbb{F}$[Cpn][x1, …, xm]) can be represented by using those Dennis-Stein symbols containing these j different indeterminates. Hence K2($\mathbb{F}$[Cpn][x1, …, xm]) contains mj pieces of NjK2($\mathbb{F}$[Cpn]). So the elements of NmK2($\mathbb{F}$[Cpn]) can be represented by using those Dennis-Stein symbols in K2($\mathbb{F}$[Cpn][x1, …, xm]) containing all the m indeterminates.
We follow the notations in Ref. [13]. Let $\mathbb{N}$={0, 1, 2…} be the set of non-negative integers and $\mathbb{N}$+={1, 2, 3, …} the set of positive integers. Let εi=(0, …, 0, 1, 0, …, 0)∈$\mathbb{N}$m+1 be the i-th basis vector. For α$\mathbb{N}$m+1, write tα=t1α1tαm+1m+1 where t1=σ-1 and ti+1=xi for 1≤im. Define
$\Delta ' = \left\{ {\alpha = \left( {{\alpha _1}, \cdots ,{\alpha _{m + 1}}} \right) \in \mathbb{N}_ + ^{m + 1}\left| {{\alpha _1} \geqslant {p^n}} \right.} \right\},$
$\Lambda ' = \left\{ {\left( {\alpha ,i} \right) \in \mathbb{N}_ + ^{m + 1} \times \left\{ {1,2, \cdots ,m + 1} \right\}} \right\}.$
For (α, i)∈Λ′, let [α, i]=min{k$\mathbb{Z}$|-εi∈Δ′} and w(α, i)=min{w$\mathbb{N}$|pw≥[α, i]}. Then [α, 1]=$\left\lceil {\frac{{{p^n} + 1}}{{{\alpha _1}}}} \right\rceil $, [α, j]=$\left\lceil {\frac{{{p^n}}}{{{\alpha _1}}}} \right\rceil $ for any j≠1. If gcd(p, α1, …, αm+1)=1, put [α]=max{[α, i]|αi0 mod p}. Set Λ′0={(α, i)∈Λ′| gcd(p, α1, …, αm+1)=1, i≠min{j|αj0 mod p, [α, j]=[α]}}, and let Λ′>10={(α, i)∈Λ′0|[α, i]>1}.
Then by Corollary 2.7 in Ref. [13] and the above discussion, NmK2($\mathbb{F}$[Cpn]) has a presentation with
generators: 〈btα-εi, ti〉, where bB, (α, i)∈Λ′>10;
relations: pw(α, i)btα-εi, ti〉=0, where w(α, i)=「logp[α, i].
It is sufficient to determine the set Λ′>10.
If α1=pn and at least one of αj with pαj, then only (α, 1)∈Λ′>10 and [α, 1]=2.
If α1=pk for some 1≤k < pn-1 and j is the smallest number such that pαj, i.e., p|α1, …, p|αj-1 and pαj, then all (α, i) except (α, j) are in Λ′>10.
If pα1, i.e., α1=pk-h for some 1≤kpn-1 and 1≤h < p, then for each j≥2, (α, j)∈Λ′>10.
So one gets
$\begin{array}{*{20}{c}}{\Lambda {'}_{ > 1}^0 = \left\{ {\left( {\alpha ,1} \right)\left| {{\alpha _1} = {p^n},\gcd } \right.\left( {p,{\alpha _2}, \cdots ,{\alpha _{m + 1}}} \right) = 1} \right\}}\\{ \cup \left\{ {\left( {\alpha ,i} \right)\left| {\begin{array}{*{20}{c}}{{\alpha _1} = pk,1 \le k < {p^{n - 1}},}\\{\gcd \left( {p,{\alpha _2}, \cdots ,{\alpha _{m + 1}}} \right) = 1,}\\{i \ne \min \left\{ {j\left| {{\alpha _j} ? 0\bmod p} \right.} \right\}}\end{array}} \right.} \right\}}\\{ \cup \left( {\mathop \cup \limits_{j = 2}^{m + 1} \left\{ {\left( {\alpha ,j} \right)\left| {\begin{array}{*{20}{c}}{{\alpha _1} = pk - h,}\\{1 \le k \le {p^{n - 1}},}\\{1 \le h < \rho }\end{array}} \right.} \right\}} \right).}\end{array}$
Let bB. For any β$\mathbb{N}$+m, write xβ=x1β1x2β2xmβm. We can get a presentation of NmK2($\mathbb{F}$[Cpn]) in terms of the following Dennis-Stein symbols with generators
·〈b(σ-1)pk-1xβ, (σ-1)〉 where 1≤kpn-1 and gcd (p, β1, …, βm)=1;
·〈b(σ-1)pkxβ-εi, xi〉 where 1≤k < pn-1, gcd (p, β1, …, βm)=1 and i≠min{j|βj0 mod p};
·〈b(σ-1)pk-hxβ-εi, xi〉 where 1≤kpn-1, 1≤h < p, 1≤im.
The relations are
$ \cdot \;\;{p^{\left\lceil {{{\log }_p}\frac{{{p^n} + 1}}{{pk}}} \right\rceil }}\left\langle {b{{\left( {\sigma - 1} \right)}^{pk - 1}}{x^\beta },\left( {\sigma - 1} \right)} \right\rangle = 0,$
$ \cdot \;\;{p^{\left\lceil {{{\log }_p}\frac{{{p^n}}}{{pk}}} \right\rceil }}\left\langle {b{{\left( {\sigma - 1} \right)}^{pk}}{x^{\beta - {\varepsilon ^i}}},{x_i}} \right\rangle = 0,$
$ \cdot \;\;{p^{\left\lceil {{{\log }_p}\frac{{{p^n}}}{{pk - h}}} \right\rceil }}\left\langle {b{{\left( {\sigma - 1} \right)}^{pk - h}}{x^{\beta - {\varepsilon ^i}}},{x_i}} \right\rangle = 0.$
Then by Lemma 1.2, the result follows.
2 ExamplesExample 2.1 Let C4 be the cyclic group of order 4 generated by σ. Then NK2($\mathbb{F}$2[C4])$\cong $$\oplus $($\mathbb{Z}$/2$\mathbb{Z}$$\oplus $$\mathbb{Z}$/4$\mathbb{Z}$) can be generated by these elements: the generators of order 4 are
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^{i - 1}},x} \right\rangle \left| {i \ge 1} \right.} \right\},$
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^{2i - 1}},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.} \right\},$
and the generators of order 2 are
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^{i - 1}},x} \right\rangle \left| {i \ge 1} \right.} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^{2i - 1}},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.} \right\}.$
${N^2}{K_2}\left( {{\mathbb{F}_2}\left[ {{C_4}} \right]} \right) \cong { \oplus _\infty }\left( {\mathbb{Z}/2\mathbb{Z}\; \oplus \;\mathbb{Z}/4\mathbb{Z}} \right)$
N2K2($\mathbb{F}$2[C4])$\cong $$\oplus $($\mathbb{Z}$/2$\mathbb{Z}$$\oplus $$\mathbb{Z}$/4$\mathbb{Z}$) can be generated by these elements: the generators of order 4 are
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^{i - 1}}{y^j},x} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^i}{y^{j - 1}},y} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^{2i - 1}}{y^j},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {\left( {\sigma - 1} \right){x^{2i}}{y^{2j - 1}},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
and the generators of order 2 are
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^{i - 1}}{y^j},x} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^i}{y^{j - 1}},y} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^2}{x^{2i - 1}}{y^{2j - 1}},x} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^2}{x^{2i - 1}}{y^{j - 1}},y} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^{2i - 1}}{y^j},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
$\left\{ {\left\langle {{{\left( {\sigma - 1} \right)}^3}{x^{2i}}{y^{2j - 1}},\left( {\sigma - 1} \right)} \right\rangle \left| {i \ge 1} \right.,j \ge 1} \right\},$
where x, y are indeterminates.
Corollary 2.1 NK1($\mathbb{Z}$[Cp2])$\cong $$\oplus $$\mathbb{Z}$/p$\mathbb{Z}$.
Proof Assume Cp2 is generated by σ. There is a Milnor square,
where ζp2 is a primitive p2-th root of unity and $\mathbb{Z}$[ζp2] is the ring of integers in Q(ζp2). By the Mayer-Vietoris sequence for NK-functors, we get an exact sequence
$\begin{array}{*{20}{c}} {N{K_2}\left( {\mathbb{Z}\left[ {{C_{{p^2}}}} \right]} \right) \to N{K_2}\left( {\mathbb{Z}\left[ {{\zeta _{{p^2}}}} \right]} \right) \oplus } \\ {N{K_2}\left( {\mathbb{Z}\left[ {{C_p}} \right]} \right) \to N{K_2}\left( {{\mathbb{F}_p}\left[ {{C_p}} \right]} \right) \to } \\ {N{K_1}\left( {\mathbb{Z}\left[ {{C_{{p^2}}}} \right]} \right) \to N{K_1}\left( {\mathbb{Z}\left[ {{\zeta _{{p^2}}}} \right]} \right) \oplus N{K_1}\left( {\mathbb{Z}\left[ {{C_p}} \right]} \right).} \end{array}$
Since $\mathbb{Z}$[ζp2] is regular, NKn($\mathbb{Z}$p2])=0 for all n. The order of Cp is square-free. Hence NK1($\mathbb{Z}$[Cp])=0 (see Ref. [14]). And NK2($\mathbb{Z}$[Cp])$\cong $$\oplus $$\mathbb{Z}$/p$\mathbb{Z}$ (see Ref. [15]). So the above exact sequence becomes
$\begin{array}{*{20}{c}} {N{K_2}\left( {\mathbb{Z}\left[ {{C_p}} \right]} \right) \to N{K_2}\left( {{\mathbb{F}_p}\left[ {{C_p}} \right]} \right) \to } \\ {N{K_1}\left( {\mathbb{Z}\left[ {{C_{{p^2}}}} \right]} \right) \to 0.} \end{array}$
Moreover, we have NK2($\mathbb{F}$p[Cp])$\cong $$\oplus $$\mathbb{Z}$/p$\mathbb{Z}$ and NK1($\mathbb{Z}$[Cp2])≠0 (see Ref. [14]). Hence NK1($\mathbb{Z}$[Cp2]) is not finitely generated, therefore NK1($\mathbb{Z}$[Cp2])$\cong $$\oplus $$\mathbb{Z}$/p$\mathbb{Z}$.
References
[1] Bass H. Algebraic K-theory[M]. New York: Benjamin Inc, 1968.
[2] Grothendieck A. Esquisse d'un programme pour une theorie des intersections sur les schemas generaux[C]//Berthelot P. Théorie des Intersections et Théoréme de Riemann-Roch, Berlin: Springer-Verlag, 1971: 1-77.
[3] Milnor J. Introduction to algebraic K-theory[M]. New Jersey: Princeton University Press, 1971.
[4] Quillen D. Higher algebraic K-theory I[C]//Bass H. Higher K-theories. Berlin: Springer-Verlag, 1973: 85-147.
[5] Farrell F T. The nonfiniteness of Nil[J]. Proceedings of the American Mathematical Society, 1977, 65(2): 215-216. DOI:10.1090/S0002-9939-1977-0450328-1
[6] Prasolov A V. Infiniteness of the group Nil[J]. Matematicheskie Zametki, 1982, 32(1): 9-12.
[7] Vorst T. A survey on the K-theory of polynomial extensions[C]//Bak A. Algebraic K-theory, number theory, geometry and analysis. Berlin: Springer-Verlag, 1984: 422-441.
[8] Weibel C A. Mayer-Vietoris sequences and module structures on NK*[C]//Friedlander E M, Stein M R. Algebraic K-theory Evanston 1980. Berlin: Springer-Verlag, 1981: 466-493.
[9] Connolly F X, Silva M. The groups NrK0($mathbb{Z}$π) are finitely generated $mathbb{Z}$[$mathbb{N}$r]-modules if π is a finite group[J]. K-Theory, 1995, 9(1): 1-11.
[10] Weibel C A. NK0 and NK1 of the groups C4 and D4[J]. Commentarii Mathematici Helvetici, 2009, 84(2): 339-349.
[11] Morris R A. Derivations of Witt vectors with application to K2 of truncated polynomial rings and Laurent series[J]. Journal of Pure and Applied Algebra, 1980, 18(1): 91-96. DOI:10.1016/0022-4049(80)90120-6
[12] Juan-Pineda D. On higher nil groups of group rings[J]. Homology, Homotopy and Applications, 2007, 9(2): 95-100. DOI:10.4310/HHA.2007.v9.n2.a3
[13] Van der Kallen W, Stienstra J. The relative K2 of truncated polynomial rings[J]. Journal of Pure and Applied Algebra, 1984, 34(2-3): 277-289. DOI:10.1016/0022-4049(84)90041-0
[14] Harmon D R. NK1 of finite groups[J]. Proceedings of the American Mathematical Society, 1987, 100(2): 229-232.
[15] Guin-Waléry D, Loday J-L. Obstruction a l'excision en K-theorie algebrique[C]//Friedlander E M, Stein M R. Algebraic K-theory Evanston 1980. Berlin: Springer-Verlag, 1981: 179-216.


相关话题/北京 科学学院 数学 中国科学院大学 原文

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25
  • 新型三轴离心机系统构型及数学建模
    现代军事、国防领域对某些无人高速飞行器的机动性能要求很高,即要求其具有很强的承受机动过载的能力[1,2].国内外的实践证明,如果某些产品只做地面普通试验,不测试其承受高过载下的性能,可能会导致产品在机动飞行中失效[3],为了在地面上验证无人高速飞行器的整体强度,就需要有一套可以模拟其在运动中承受载荷 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 中国数学学科成果评价方式研究
    doi:10.12202/j.0476-0301.2020048赵静1,刘姝2,,1.北京大学数学科学学院,100871,北京2.北京大学图书馆,100871,北京基金项目:北京大学科研管理项目“促进数学学科深远发展的科研机制研究”的资助项目(2016005)详细信息通讯作者:刘姝(1979-),女 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25
  • 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价
    doi:10.12202/j.0476-0301.2020058霍丽涛1,,王博欣1,,,潘增辉1,吴劲2,3,杨朝阳41.河北省水利科学研究院,050051,河北石家庄2.城市水循环与海绵城市技术北京市重点实验室,100875,北京3.北京工业大学,100124,北京4.石家庄污水处理有限公司,0 ...
    本站小编 Free考研考试 2021-12-25
  • 北京理工大学学报2020年总目次(第40卷)
    .北京理工大学学报2020年总目次(第40卷)[J].北京理工大学学报(自然科学版),2020,40(12):1369~1386..[J].TransactionsofBeijingInstituteofTechnology,2020,40(12):1369-1386.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21
  • 北京理工大学学报2019年总目次(第39卷)
    .北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21