删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Constructing integrating factor to distinguish between the center and the focus

本站小编 Free考研考试/2021-12-25

郅俊海, 陈玉福
中国科学院大学 数学科学学院, 北京 100049
摘要: 研究具有一对纯虚特征值的实系统的实不变代数曲线在原点空心邻域非零的性质,使用不变代数曲线和指数因子构造局部首次积分或积分因子,提出进行平衡点类型判别的方法。
关键词: 不变代数曲线首次积分积分因子平衡点
Let k denote an effective field of characteristic zero. We consider planar vector fields and their associated differential equations that have the form
$\frac{{{\text{d}}x}}{{{\text{d}}t}} = P\left( {x, y} \right), \frac{{{\text{d}}y}}{{{\text{d}}t}} = Q\left( {x, y} \right), $ (1)
where P and Q are polynomials with the coefficients in the real field. If the linearization of system (1) has purely imaginary eigenvalues, then, by a linear transformation, the system can be converted to the form
$\begin{gathered} \frac{{{\text{d}}x}}{{{\text{d}}t}} = y + {P_2} + \cdots + {P_m}, \hfill \\ \frac{{{\text{d}}y}}{{{\text{d}}t}} =-x + {Q_2} + \cdots + {Q_m}. \hfill \\ \end{gathered} $ (2)
Distinguishing between a center and a focus is one challenge of nonlinear differential equations with long history.
In this paper we present a method to improve the methods of distinguishing between a center and a focus.
1 Study on the problem of center and focusThe theorem of Poincare-Liapunov says that the origin of polynomial system (2) is a center if and only if the system has a non-constant analytic first integral in a neighborhood. In searching for sufficient conditions for a center, both Poincare and Liapunov's works involve the idea of trying to find an analytic function F(x, y) in a neighborhood of O(0, 0), where $F\left( {x, y} \right) = \sum\limits_{i = 2}^\infty {{F_i}\left( {x, y} \right)} $ with F2=x2+y2. Based on Poincare's method, Wang[1] described a mechanical procedure for constructing the Liapunov constants and Liapunov functions of autonomous differential system with the center and focus type. Zhi and Chen[2] gave a method to identify the type of critical point by constructing Dulac-Cherkas function.
Darboux[3] showed how to construct the first integrals of planar polynomial vector fields possessing sufficient invariant algebraic curves. In particular, he proved that the planar vector field of degree m with at least $\frac{{m\left( {m + 1} \right)}}{2}$ invariant algebraic curves has a first integral. The ideas pioneered by Darboux have been developed significantly in recent years by Prelle and Singer.
It is known that the origin is a center if system (2) has an analytic integrating factor of the form $\mu \left( {x, y} \right) = 1 + \sum\limits_{k = 1}^\infty {{\mu _k}\left( {x, y} \right)} $. Prelle and Singer[4] demonstrated in 1983 that if a polynomial system has an elementary first integral, then the system admits an integrating factor R such that Rn is in $\mathbb{C}\left( {x, y} \right)$. Singer[5]and Christopher[6] showed that if a polynomial system has a Liouvillian first integral, then the system has an integrating factor of the form ${\text{R}} = \exp \left( {g/h} \right)\prod {f_i^{{\lambda _i}}} $. Christopher[7], Pearson et al.[8] and Pereira[9] used invariant curves that do not vanish at the origin in seeking local integrals or integrating factors. They demonstrated how computer algebra can be effectively employed in the search for necessary and sufficient conditions for critical points of such systems to be centers. The systematic method is used in cubic systems which was previously intractable.
2 Invariant algebraic curveLet $D = P\frac{\partial }{{\partial x}} + Q\frac{\partial }{{\partial y}}$ be the vector field associated with the planar polynomial differential system (1) and denote m=max{deg(P), deg(Q)} the degree of the vector field. An algebraic curve f=0, with fk[x, y], is an invariant algebraic curve for the vector field D, if there is a polynomial Lf with the degree of at most (m-1) such that
$D\left( f \right) = P\frac{{\partial f}}{{\partial x}} + Q\frac{{\partial f}}{{\partial y}} = f{L_f}.$ (3)
The polynomial Lf is called the cofactor of f. Considering differential systems (2), we can obtain the special proposition of real invariant algebraic curve.
Theorem 2.1 ?Suppose real coefficient polynomial $f = \sum\limits_{k = s}^r {{f_k}} = 0$, where fs≠0, is an invariant algebraic curve of (2) and Lf is the cofactor of f, then Lf(0, 0)=0 and fs=(x2+y2)p with s=2p≥0.
Proof ?Let ${f_s} = \sum\limits_{i = 0}^s {{c_{i, s-i}}{x^i}{y^{s-i}}} $ and Lf(0, 0)=-λ. The lowest order terms in equation (3) give
$y\frac{{\partial {f_s}}}{{\partial x}}-x\frac{{\partial {f_s}}}{{\partial y}} =-\lambda {f_s}, $ (4)
so that
$\left( {\begin{array}{*{20}{l}} \lambda &1&0&0&0 \\ {-s}&\lambda &2&0&0 \\ 0&{-s + 1}&\lambda&\ddots &0 \\ 0&0& \ddots&\ddots &s \\ 0&0&0&{-1}&\lambda \end{array}} \right)\left( {\begin{array}{*{20}{l}} {{c_{0, s}}} \\ {{c_{1, s - 1}}} \\ \vdots \\ {{c_{s - 1, 1}}} \\ {{c_{s, 0}}} \end{array}} \right) = 0.$ (5)
No matter λ>0 or λ < 0, the coefficient matrix of equation (5) is through the primary transformation into an upper triangular matrix or a lower triangular matrix, whose diagonal elements are non zero. Then equation (5) has the unique zero solution, which leads to a contradiction. Hence Lf(0, 0)=λ=0. For equation (5), if i and j are odd numbers, ci, s-i=cs-j, j=0. From fs≠0, s is an even number. Let ${D_1} = y\frac{\partial }{{\partial x}}-x\frac{\partial }{{\partial y}}$. Since D1((x2+y2)h(x, y))=(x2+y2)D1(h(x, y)) and the rank of coefficient matrix Rs, then fs=(x2+y2)p with s=2p≥0.
An algebraic curve f=0 is said to be irreducible if it has only one component, and reduced if all components appear with multiplicity one. A reducible polynomial is split into its irreducible factors which also define invariant curves of system. Proposition 2.1 can be found in Ref.[10].
Proposition 2.1 ?fk[x, y] and n=deg(f). Let f=f1n1f2n2frnr be its factorization in irreducible factors. Then, for a vector field D, f=0 is an invariant algebraic curve with the cofactor Lf if and only if fi=0 is an invariant algebraic curve for each i=1, 2, …, r with the cofactor Lfi and Lf=n1Lf1+n2Lf2+…+nrLfr.
In order to obtain more invariant algebraic curves, we can compute complex algebraic curves. Let $f\left( {x, y} \right) \in \mathbb{C}\left[{x, y} \right]$ and f(x, y)=0 is an invariant algebraic curve with cofactor Lf(x, y). Since system (2) has the real coefficients, then theconjugate f(x, y) is also an invariant algebraic curve with cofactor $\overline {{L_f}} \left( {x, y} \right)$. Let Ref(x, y) be the real part of the polynomial f(x, y) and Imf(x, y) be its imaginary part. The result on complex algebraic curve is given as follows.
Theorem 2.2 ?Suppose $f\left( {x, y} \right) \in \mathbb{C}\left[{x, y} \right]$ is an invariant algebraic curve of system (2) with cofactor Lf(x, y), then ReLf(x, y) vanish at the origin. If Lf(0, 0)=0, the lowest order terms of $\operatorname{Re} f\left( {x, y} \right) = \sum\limits_{j = s}^{{r_1}} {\operatorname{Re} {f_j}\left( {x, y} \right)} $ and Im $f\left( {x, y} \right) = \sum\limits_{j = t}^{{r_2}} {\operatorname{Im} {f_j}\left( {x, y} \right)} $ have the forms of Refs(x, y)=(x2+y2)p1 and Imft(x, y)=(x2+y2)p2 with s=2p1≥0 and t=2p2≥0, respectively.
Proof ?Since the conjugate f(x, y) is also an invariant algebraic curve with cofactor $\overline {{L_f}} \left( {x, y} \right)$, then D((Ref)2+(Imf)2)=2((Ref)2+(Imf)2)ReLf. So (Ref)2+(Imf)2 is an real invariant algebraic curve of system (2). From Theorem 2.1, ReLf(0, 0)=0. From equation (3), we have
$\left\{ \begin{gathered} D\left( {\operatorname{Re} f} \right) = \operatorname{Re} f\operatorname{Re} {L_f}-\operatorname{Im} f\operatorname{Im} {L_f} \hfill \\ D\left( {\operatorname{Im} f} \right) = \operatorname{Re} f\operatorname{Im} {L_f} + \operatorname{Im} f\operatorname{Re} {L_f}. \hfill \\ \end{gathered} \right.$ (6)
If Lf(0, 0)=0, then $y = \frac{{\partial \operatorname{Re} {f_s}}}{{\partial x}}-x\frac{{\partial \operatorname{Re} {f_s}}}{{\partial y}} = 0$ or $y\frac{{\partial \operatorname{Im} {f_t}}}{{\partial x}}-x\frac{{\partial \operatorname{Im} {f_t}}}{{\partial y}} = 0$. Hence this result is proved. This proof is analogous to the proof of Theorem 2.1.
Remark 2.1?Let ${\text{i}} = \sqrt {-1} $. If $f\left( {x, y} \right) \in \mathbb{C}\left[{x, y} \right]$ is an invariant algebraic curve of system (2) with cofactor Lf(x, y), then if(x, y) is also an invariant curve with cofactor Lf(x, y) and the real part is interchanged with the imaginary part.
Garcia and Grau[11] stated that, if an invariant algebraic curve f(x, y), whose imaginary part is not null, appears in the expression of a first integral or integrating factors with exponent λ, then the conjugate f(x, y) appears in the same expression with exponent λ. Then,
$\begin{gathered} {f^\lambda }{{\bar f}^{\bar \lambda }} = {\left( {{{\left( {\operatorname{Re} f} \right)}^2} + {{\left( {\operatorname{Im} f} \right)}^2}} \right)^{\operatorname{Re} \lambda }}\exp \\ \;\;\;\;\;\;\;\;\left\{ {-2\operatorname{Im} \lambda \arctan \left( {\frac{{\operatorname{Im} f}}{{\operatorname{Re} f}}} \right)} \right\}. \\ \end{gathered} $ (7)
If cofactor Lf(0, 0)=0 and the lowest order terms Refs(x, y)≠(x2+y2)p1, based on Theorem 2.2 and remark 2.1 the lowest order terms of Imf has the form of (x2+y2)p2, that is to say, Ref or Imf are not equal to zero in some deleted neighborhood U°(O) of the origin. Since ${f^\lambda }{\bar f^{\bar \lambda }} = \exp \left( {\pi \operatorname{Im} \lambda } \right){\left( {{\text{i}}f} \right)^\lambda }{\overline {\left( {{\text{i}}f} \right)} ^{\overline \lambda }}$, the real function fλfλ is not identically zero and differentiable in some deleted neighborhood U°(O).
3 Exponential factorGiven two coprime polynomials f, gk[x, y], the function e=exp(g/f) is called an exponential factor of the vector field $D = P\frac{\partial }{{\partial x}} + Q\frac{\partial }{{\partial y}}$ with the degree m=max(deg(P), deg(Q)), if X(e)=eLe, where Le is a polynomial of degree at most (m-1). The polynomial Le is called the cofactor of the exponential factor. Proposition 3.1 on exponential factor is given by Pereira[9].
Proposition 3.1 ?If e=exp(g/f) is an exponential factor with cofactor Le for the vector field D, then f=0 is an invariant algebraic curve and g satisfies the equation
$D\left( g \right) = g{L_f} + f{L_e}, $ (8)
where Lf is the cofactor of f.
Remark 3.1 ?Let f(x, y), $g\left( {x, y} \right) \in \mathbb{C}\left[{x, y} \right]$ and exp(g/f) be an exponential factor of the real system (2) with cofactor Le. Since $D\left( {\exp \left( {g/f} \right)} \right) = D\left( {\exp \left\{ {\frac{{\operatorname{Re} g\operatorname{Re} f + \operatorname{Im} g\operatorname{Im} f}}{{{{\left( {\operatorname{Re} f} \right)}^2} + {{\left( {\operatorname{Im} f} \right)}^2}}} + {\text{i}}\frac{{\operatorname{Im} g\operatorname{Re} f-\operatorname{Re} g\operatorname{Im} f}}{{{{\left( {\operatorname{Re} f} \right)}^2} + {{\left( {\operatorname{Im} f} \right)}^2}}}} \right\}} \right)$$= \exp \left( {g/f} \right)\left( {\operatorname{Re} {L_e} + {\text{i}}\operatorname{Im} {L_e}} \right)$, then $\exp \left\{ {\frac{{\operatorname{Re} g\operatorname{Re} f + \operatorname{Im} g\operatorname{Im} f}}{{{{\left( {\operatorname{Re} f} \right)}^2} + {{\left( {\operatorname{Im} f} \right)}^2}}}} \right\}$ and $\exp \left\{ {\frac{{\operatorname{Im} g\operatorname{Re} f-\operatorname{Re} g\operatorname{Im} f}}{{{{\left( {\operatorname{Re} f} \right)}^2} + {{\left( {\operatorname{Im} f} \right)}^2}}}} \right\}$ are also exponential factors of the real system (2) with cofactors ReLe and ImLe.
Example 3.1 ?(see Ref.[7]) Consider the system
$\begin{gathered} \frac{{{\text{d}}x}}{{{\text{d}}t}} = y + a{x^3} + b{x^2}y + c{y^3}, \hfill \\ \frac{{{\text{d}}y}}{{{\text{d}}t}} =-x-c{x^3} + a{x^2}y + \left( {b-2c} \right)x{y^2}. \hfill \\ \end{gathered} $ (9)
System (9) has an invariant line given by f(x, y)=x+iy=0 with cofactors Lf(x, y)=-i+ax2+bxy-c(ix2+xy+iy2). Since D(1+(b-c)x2-axy)=2(1+(b-c)x2-axy)(ax2+bxy-cxy)+(x2+y2)(-a+acx2+2c(b-c)xy-acy2), the function $e = \exp \left\{ {\frac{{1 + \left( {b-c} \right){x^2}-axy}}{{{x^2} + {y^2}}}} \right\}$ is an exponential factor with cofactor Le=-a+acx2+2c(b-c)xy-acy2.
If we have
${\lambda _1}\operatorname{Re} \left( {{L_f}} \right) + {\lambda _2}\operatorname{Im} \left( {{L_f}} \right) + \rho {L_e} = 0, $
that is to say,
$\left\{ \begin{gathered} a{\lambda _1} + 2c{\lambda _2} = 0 \hfill \\ \left( {b-c} \right){\lambda _1} + 2c\left( {b-c} \right)\rho = 0 \hfill \\ {\lambda _2} = a\rho . \hfill \\ \end{gathered} \right.$
Then the function $F\left( {x, y} \right) = {\left( {{f^\lambda }{{\bar f}^{\bar \lambda }}} \right)^{\frac{1}{2}}}{e^\rho }-{\bf{C}}$, where λ=λ1+iλ2, is the first integral of system (8).
4 Determining the types of equilibrium pointsIn order to construct the explicit first integral or integrating factors which can be used to distinguish the types of singularitie, we need to obtain more invariant curves. Christopher[8] used invariant curves, which did not vanish at the origin, in seeking local integrals or integrating factors. In this work, more invariant algebraic curves which may vanish at equilibrium point are considered. Sometime, the constructed function may be undefined at the singular point. Considering system (2), we know that the invariant algebraic curves of system (2) have the proposition in Theorems 2.1 and 2.2. We improve the methods of distinguishing between a center and a focus by using more invariant algebraic curves. Hence, we have the theorem given below.
Theorem 4.1 ?Suppose system (2) admits p distinct invariant algebraic curves fi=0 with cofactor Lfi which vanishes at equilibrium point for each i=1, …, p, and q independent exponential factors ej for j=1, …, q. If there exist λi, ρjk not all zero such that $\sum\limits_{i = 1}^p {{\lambda _i}{L_{{f_i}}}} + \sum\limits_{j = 1}^q {{\rho _j}{L_{{e_j}}}} + {\text{div}}\left( {P, Q} \right) = 0$, then the equilibrium point O(0, 0) is a center if and only if first form curve integrals $\oint\limits_{{x^2} + {y^2} = {r^2}} {{{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)}^{\frac{1}{2}}}\left( {xP + yQ} \right){\text{d}}s} = 0$, where r>0 is sufficiently small and B(x, y)=f1λ1fpλpe1ρ1eqρq, is defined in a deleted neighborhood of the origin.
Proof ?Since $\sum\limits_{i = 1}^p {{\lambda _i}{L_{{f_i}}}} + \sum\limits_{j = 1}^q {{\rho _j}{L_{{e_j}}}} + {\text{div}}\left( {P, Q} \right) = 0$, then $\sum\limits_{i = 1}^p {\overline {{\lambda _i}} \overline {{L_{{f_i}}}} } + \sum\limits_{j = 1}^q {\overline {{\rho _j}} \overline {{L_{{e_j}}}} } + {\text{div}}\left( {P, Q} \right) = 0$, that is to say, $\overline {B\left( {x, y} \right)} $ is also an integrating factor of the real system (2). The complex invariant algebraic curves appear in the expression of a first integral or integrating factors with the conjugate curves appearing in the expression. The real function $f_i^{{\lambda _i}}\;\;\;\bar f_i^{\overline {{\lambda _i}} }$ is not identically zero and differentiable in some neighborhood U°(O). Based on Remark 3.1, exponential factor $e_j^{{\lambda _j}}\;\;\;\bar e_j^{\overline {{\lambda _j}} }$ has constant sign and is not identically zero in some deleted neighborhood U°(O) of the origin. So the real function ${\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)^{\frac{1}{2}}}$ is not identically zero and differentiable in U°(O). Suppose that the origin is a focus. Take x1>0 sufficiently small such that the arc of the positive semi-orbit from (x1, 0) to its next crossing of the positive x-axis (x2, 0) remains in U°(O). Applying Green's Theorem to the region bounded by this arc and the line segment from (x1, 0) to (x2, 0), the curve C1:x2+y2=r2, and taking r>0 sufficiently small immediately leads to a contradiction.
Remark 4.1 ?Since $\left| {\oint\limits_{{x^2} + {y^2} = {r^2}} {{{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)}^{\frac{1}{2}}}\left( {P\frac{x}{r} + Q\frac{y}{r}} \right){\text{d}}s} } \right| \leqslant $$\mathop {\max }\limits_{{x^2} + {y^2} = {r^2}} \left\{ {2\pi {{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)}^{\frac{1}{2}}}\left| {\left( {xP + yQ} \right)} \right|} \right\}$, then the origin is a center if ${\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)^{\frac{1}{2}}}\left( {xP + yQ} \right) = o\left( 1 \right)$ with $r = \sqrt {{x^2} + {y^2}} $ sufficiently small. It is known that the degree of the lowest order terms in xP+yQ is at least 3. So the result can be extended to the case that the function ${\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)^{\frac{1}{2}}}$ has the proposition $\mathop {\lim }\limits_{\left( {x, y} \right) \to \left( {0, 0} \right)} {\left( {{x^2} + {y^2}} \right)^\gamma }{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)^{\frac{1}{2}}} = 0$ where $\gamma < \frac{3}{2}$.
If $\sum\limits_{i = 1}^p {{\lambda _i}{L_{{f_i}}}} + \sum\limits_{j = 1}^q {{\rho _j}{L_{{e_j}}}} + {\text{div}}\left( {P, Q} \right)$ has constant sign and is not identically zero on any open subset of a neighborhood of the origin, the next theorem is obtained by playing the Bendixson-Dulac criterion[12].
Theorem 4.2 ?Suppose system (2) admits p distinct invariant algebraic curves fi=0 with cofactor Lfi which vanishes at equilibrium point for each i=1, …, p, and q independent exponential factor ej with cofactor Lej for j=1, …, q. If there exist λi, ρjk not all zero such that $\sum\limits_{i = 1}^p {{\lambda _i}{L_{{f_i}}}} + \sum\limits_{j = 1}^q {{\rho _j}{L_{{e_j}}}} + {\text{div}}\left( {P, Q} \right)$ has constant sign and is not identically zero on any open subset of a neighborhood of the origin, then the equilibrium point is a focus.
Example 4.1 ?Consider the systems
$\frac{{{\text{d}}x}}{{{\text{d}}t}} = y + axy, \frac{{{\text{d}}y}}{{{\text{d}}t}} =-x + \frac{{a-3}}{2}{x^2} + \frac{{3a}}{2}{y^2}.$ (10)
The invariant algebraic curve x2+y2+x3 vanishes at equilibrium point and the function $B\left( {x, y} \right) = {\left( {{x^2} + {y^2} + {x^3}} \right)^{-\frac{4}{3}}}$ is undefined at the origin O and an integrating factor of systems (10) in the deleted neighborhood U°(O).Based on Ramark 4.1, we have that the origin is a center. Then,
$\begin{gathered} \oint\limits_{{x^2} + {y^2} = {r^2}} {{{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)}^{\frac{1}{2}}}\left( {xP + yQ} \right){\text{d}}s} = \hfill \\ \;\;\;\;\;\;\;\oint\limits_{{x^2} + {y^2} = {r^2}} {\frac{3}{2}\frac{{\left( {a-1} \right){x^2}y + a{y^3}}}{{{{\left( {{x^2} + {y^2} + {x^3}} \right)}^{\frac{4}{3}}}}}{\text{d}}s = 0.} \hfill \\ \end{gathered} $
Example 4.2 ?Consider the systems
$\begin{gathered} \frac{{{\text{d}}x}}{{{\text{d}}t}} = y + {x^2}y-x{y^2} + {y^3}, \hfill \\ \frac{{{\text{d}}y}}{{{\text{d}}t}} =-x-{x^3} - x{y^2} - {y^3}. \hfill \\ \end{gathered} $ (11)
Since X(F)=-(x2+y2)2+o(r4) where $r = \sqrt {{x^2} + {y^2}} $, then F(x, y)=x2+y2+x3y+xy3 is a Liapunov function of the system.So the origin is a focus. Based on Theorem 4.1, we can reach the same conclusion. Because the function B(x, y)=(x2+y2)-2 is the integrating factor of systems in the deleted neighborhood U°(O), $\oint\limits_{{x^2} + {y^2} = {r^2}} {{{\left( {B\left( {x, y} \right)\overline {B\left( {x, y} \right)} } \right)}^{\frac{1}{2}}}\left( {xP + yQ} \right){\text{d}}s} = \oint\limits_{{x^2} + {y^2} = {r^2}} {\frac{{-{y^2}}}{{{x^2} + {y^2}}}{\text{d}}s} \ne 0$.
References
[1] Wang D. Mechanical manipulation for a class of differential systems[J]. Journal of Symbolic Computation, 1991, 12(2): 233-254. DOI:10.1016/S0747-7171(08)80127-7
[2] Zhi J, Chen Y. A Method to distinguishing between the center and the focus[J]. Journal of Systems Science and Mathematical Sciences, 2017, 37(3): 863-869.
[3] Darboux. Memoire sur les equations differentielles algebriques du premier ordre et du premier degre (Melanges)[J]. Bull Sci Math, 1878, 2(2): 151-200.
[4] Prelle M J, Singer M F. Elementary first integrals of differential equations[J]. Transactions of the American Mathematical Society, 1983, 279(1): 215-229. DOI:10.1090/S0002-9947-1983-0704611-X
[5] Singer M F. Liouvillian first integrals of differential equations[J]. Trans Amer Math Soc, 1992, 333: 673-688. DOI:10.1090/tran/1992-333-02
[6] Christopher C. Liouvillian first integrals of second order polynomials differential equations[J]. Electronic Journal of Differential Equations, 1999, 1999(19): 1-7.
[7] Christopher C. Invariant algebraic curves and conditions for centre[J]. Proceedings of the Royal Society of Edinburgh, 1994, 124(6): 1209-1229. DOI:10.1017/S0308210500030213
[8] Pearson J M, Lloyd N G, Christopher C J. Algorithmic derivation of centre conditions[J]. Siam Review, 1996, 38(4): 619-636. DOI:10.1137/S0036144595283575
[9] Pereira J V. Vector fields, invariant varieties and linear systems[J]. Annales de LInstitut Fourier, 2001, 51(5): 1385-1405. DOI:10.5802/aif.1858
[10] Christopher C, Llibre J, Pereira J V. Multiplicity of invariant algebraic curves in polynomial vector fields[J]. Pacific Journal of Mathematics, 2007, 229(229): 63-117.
[11] Garcia I A, Grau M. A Survey on the inverse integrating factor[J]. Qualitative Theory of Dynamical Systems, 2010, 9(1): 115-166.
[12] Gine J. Dulac functions of planar vector fields[J]. Qualitative Theory of Dynamical Systems, 2014, 13(1): 121-128. DOI:10.1007/s12346-014-0108-x


相关话题/代数 中国科学院大学 数学 科学学院 北京

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 基于共形几何代数的空间并联机构位置正解*
    与传统的串联机构相比,空间并联机构具有更高的刚度、精度和较强的承载能力等优点,广泛应用于虚拟轴机床、微动机器人等现代尖端技术的许多领域。并联机构位置正解就是根据并联机构驱动杆长来推算动平台相对静平台的位置和姿态,该问题是该机构速度、加速度、误差分析、工作空间分析、奇异位置分析、动力学分析等问题的理论 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25
  • 新型三轴离心机系统构型及数学建模
    现代军事、国防领域对某些无人高速飞行器的机动性能要求很高,即要求其具有很强的承受机动过载的能力[1,2].国内外的实践证明,如果某些产品只做地面普通试验,不测试其承受高过载下的性能,可能会导致产品在机动飞行中失效[3],为了在地面上验证无人高速飞行器的整体强度,就需要有一套可以模拟其在运动中承受载荷 ...
    本站小编 Free考研考试 2021-12-25
  • 平面五杆机构计时轨迹综合的代数求解
    平面五杆机构计时轨迹综合的代数求解李学刚1,2,魏世民1,廖启征1,张英11.北京邮电大学自动化学院,北京100876;2.华北理工大学研究生学院,河北唐山063009收稿日期:2016-06-15出版日期:2017-02-28发布日期:2017-03-14作者简介:李学刚(1979-),男,博士生 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 中国数学学科成果评价方式研究
    doi:10.12202/j.0476-0301.2020048赵静1,刘姝2,,1.北京大学数学科学学院,100871,北京2.北京大学图书馆,100871,北京基金项目:北京大学科研管理项目“促进数学学科深远发展的科研机制研究”的资助项目(2016005)详细信息通讯作者:刘姝(1979-),女 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25
  • 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价
    doi:10.12202/j.0476-0301.2020058霍丽涛1,,王博欣1,,,潘增辉1,吴劲2,3,杨朝阳41.河北省水利科学研究院,050051,河北石家庄2.城市水循环与海绵城市技术北京市重点实验室,100875,北京3.北京工业大学,100124,北京4.石家庄污水处理有限公司,0 ...
    本站小编 Free考研考试 2021-12-25