删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选

本站小编 Free考研考试/2021-12-26

王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元,, 崔翠,西南大学农学与生物科技学院,重庆 400716

QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress

WANG LiuYan, WANG RuiLi, YE Sang, GAO HuanHuan, LEI Wei, CHEN LiuYi, WU JiaYi, MENG LiJiao, YUAN Fang, TANG ZhangLin, LI JiaNa, ZHOU QingYuan,, CUI Cui,College of Agronomy and Biotechnology, Southwest University, Chongqing 400716

通讯作者: 周清元,E-mail: zhouqy2005@163.com 崔翠,E-mail: cuigreeny@163.com

责任编辑: 李莉
收稿日期:2019-08-9接受日期:2019-11-14网络出版日期:2020-04-16
基金资助:国家重点研发计划.2018YFD0100500
国家农业部现代农业产业技术体系.CARS-12
重庆市技术创新与应用发展.cstc2019jscx- msxmX0383


Received:2019-08-9Accepted:2019-11-14Online:2020-04-16
作者简介 About authors
王刘艳,E-mail: 810980572@qq.com。















摘要
【目的】寻找苯磺隆胁迫下油菜种子萌发性状相关的QTL及其耐性基因,为筛选与培育耐苯磺隆油菜种质以及探究油菜种子萌发过程中苯磺隆耐性分子机理奠定基础。【方法】用0.15 mg·kg -1苯磺隆溶液处理由人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种ZS11构建的包含175个株系的高世代重组自交系(RIL)群体,进行种子发芽试验,以蒸馏水为对照,分别测定其相对发芽势、相对发芽率、相对根长和相对干重。然后,利用油菜6K SNP芯片对该RIL群体进行基因分型,通过JoinMap4.0软件构建高密度遗传连锁图谱。基于该遗传图谱,利用MapQTL软件多QTL作图法对4个性状的相对值进行QTL定位,根据各QTL置信区间查找甘蓝型油菜的基因序列,并依次与拟南芥基因组序列进行BLAST,筛选可能与耐苯磺隆胁迫相关的候选基因。【结果】频数分布表明4个相对性状的变异范围较大,且呈连续性分布,符合数量性状表现特征,适宜进行QTL遗传分析。相关分析表明,相对发芽率和相对发芽势呈极显著正相关,相关系数为0.587。构建的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,标记之间的平均图距为1.69 cM。利用此图谱共检测到22个相关QTL,表型贡献率变幅为6.4%—12.6%。其中,与相对发芽势、相对发芽率相关的QTL分别有6个和3个,与相对根长和相对干重有关的QTL分别为8个和5个。在A01染色体64.857 cM、55.935 cM和56.645 cM处检测到的相对发芽势与相对发芽率QTL的置信区间完全或者部分重叠。通过分析QTL置信区间上甘蓝型油菜对应的区间序列,筛选到30个可能与油菜耐苯磺隆有关的候选基因,其中包括18个细胞色素P450家族成员、5个糖基转移酶家族基因、1个GSTF相关基因、1个ABC转运蛋白相关基因和1个ALS基因,这些基因均与除草剂抗性机制有关,尤其ALS为磺酰脲类除草剂靶位点酶;另外筛选到1个BHLH和1个JAZ6基因,BHLH与JAZ蛋白可通过相互作用来防御胁迫;检测到1个LSU2蛋白相关基因和1个MATE家族成员,前者参与细胞氧化剂解毒及植物防御反应,后者参与类黄酮、生物碱、金属离子、其他多种代谢物的转运及有毒物质引起的植物胁迫响应。【结论】检测到与相关QTL共22个,筛选出可能与苯磺隆耐性有关的候选基因30个。这些基因通过加速毒性分子的转运与代谢从而响应有毒物质引起的胁迫反应,可能参与植物对苯磺隆的抗性调节与反应机制。
关键词: 苯磺隆;甘蓝型油菜;萌发期;QTL;候选基因

Abstract
【Objective】The QTLs and tolerance genes related to the germination characters of rape seeds under the stress of tribenuron-methyl were studied, which laid the foundation for screening and cultivating the germplasm of tribenuron-methyl resistant rape and exploring the molecular mechanism of tribenuron-methyl tolerance during the germination of rape seeds.【Method】A high generation RIL population consisted of 175 lines, which were constructed from the synthetic Brassica napus 10D130 and the conventional variety Brassica napus ZS11, was treated with 0.15 mg·kg -1 tribenuron-methyl solution for seed germination test and the control was under the distilled water. The phenotypic data that including relative germination vigor (RGV), relative germination rate (RGR), relative root length (RRL) and relative dry weight (RDW) were analyzed by Excel software. Then, the RIL population was genotyped with 6K SNP chip, and the high-density genetic linkage map was constructed by JoinMap4.0 software. Based on the genetic map, the relative values of four characters were mapped by using Multiple QTL mapping method of MapQTL software. And the genes sequence of Brassica napus were searched according to the confidence interval of each QTL, next, blast with Arabidopsis genome sequence in turn and select the candidate genes that may be related to the tolerance to tribenuron-methyl stress.【Result】The frequency distribution of each traits for RIL population's was continuous with the large variation range, which were consistent with the characteristics of quantitative characters, so it were suitable for the detection of QTL. Correlation analysis showed that there was a significant positive correlation between RGR and RGV, and the correlation coefficient was 0.587. In addition, the constructed genetic map contained 1 897 polymorphic SNP markers covering 3 214.19 cM of the genome of Brassica napus with an average map distance of 1.69 cM. By this map, 22 QTLs related to 4 phenotypic traits were detected and the phenotypic contribution rate was between 6.4% and 12.6%. Among them, there were 6 and 3 QTLs related to RGV and RGR, 8 and 5 QTLs related to RRL and RDW, respectively. Also, the confidence intervals of QTLs for RGV and RGR were found to overlap completely or partially at 64.857 cM, 55.935 cM and 56.645 cM of chromosome A01. Through sequence alignment, 30 candidate genes were screened, including 18 cytochrome P450 family members, 5 glycosyltransferase family genes, 1 GSTF related gene, 1 ABC transporter related gene and 1 ALS gene, all of which were detoxified by accelerating metabolism, and related to the mechanism of herbicide resistance, especially ALS is the target enzyme of sulfonylurea herbicide. Furthermore, others genes were screened, including 1 BHLH gene and 1 JAZ6 gene which could interact to protect against stress; and 1 LSU2 protein gene which was involved in the detoxification of cell oxidants and plant defense response; and 1 MATE family member which was involved in the transport of flavonoids, alkaloids, metal ions, other metabolites and plant stress response caused by toxic substances.【Conclusion】22 QTLs that significantly associated with tribenuron-methyl tolerance related traits and 30 candidate genes for the tolerance to tribenuron-methyl were found. These genes are involved in the stress response caused by toxic substances by accelerating the transport and metabolism of toxic molecules, which may be related to the resistance regulation and response mechanism of plants to tribenuron-methyl.
Keywords:tribenuron-methyl;Brassica napus L.;germination;QTL;candidate genes


PDF (2660KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元, 崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选[J]. 中国农业科学, 2020, 53(8): 1510-1523 doi:10.3864/j.issn.0578-1752.2020.08.002
WANG LiuYan, WANG RuiLi, YE Sang, GAO HuanHuan, LEI Wei, CHEN LiuYi, WU JiaYi, MENG LiJiao, YUAN Fang, TANG ZhangLin, LI JiaNa, ZHOU QingYuan, CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress[J]. Scientia Acricultura Sinica, 2020, 53(8): 1510-1523 doi:10.3864/j.issn.0578-1752.2020.08.002


0 引言

【研究意义】草害是影响作物产量的一个重要因素[1],苯磺隆(tribenuron-methyl,TBM)作为一种磺酰脲类乙酰乳酸合成酶(acetolactate synthase,ALS)抑制类阔叶类杂草除草剂[2],通过抑制ALS活性从而影响异亮氨酸、亮氨酸和缬氨酸生物合成[3]。甘蓝型油菜(Brassica napus L.)是阔叶类作物,对苯磺隆较敏感。一定浓度苯磺隆可诱导油菜雄性不育[4],甚至会造成油菜发育迟缓、叶片和花瓣褪色、开花时间缩短[5],因此,目前在油菜生产上较少直接使用苯磺隆化学除草[6]。虽然苯磺隆多用于麦田阔叶类杂草防除[7],但是轮作、间作或套作等种植方式导致苯磺隆土壤残留或者农药飘移[8],对油菜种子萌发及油菜生产造成重要影响。萌发期作为油菜生长发育的起始阶段,也是作物生长的关键阶段,对外界胁迫较敏感[9]。已有研究表明,在萌发期进行磺酰脲类除草剂胁迫处理可以成功筛选出耐性种质[10,11],减少苯磺隆对油菜生产的影响。因此,对苯磺隆胁迫下油菜萌发期相关性状进行QTL定位,并挖掘相关基因,有助于了解油菜对苯磺隆胁迫的响应机制,对筛选和培育耐苯磺隆油菜品种具有重要的理论与现实意义。【前人研究进展】分子标记方法广泛应用于数量性状基因相关研究,将单个QTL定位到染色体上,并估计出单个数量性状基因的遗传效应[12]。近年来,针对逆境胁迫下油菜耐性的QTL定位取得了重要进展,为研究不同逆境胁迫下油菜响应的分子机制奠定基础。LI等[13]利用SSR和AFLP标记绘制遗传图谱,采用复合区间作图法对涝、旱环境下油菜幼苗的5个性状进行QTL分析,检测到与水涝胁迫有关的26个QTL,31个与干旱胁迫有关的QTL。BASNET等[14]使用包括435个SSR、AFLP等标记的遗传图谱,对盐胁迫下油菜种子萌发相关性状进行QTL分析,在10个连锁群中共鉴定到26个QTL。LANG等[15]根据173个SSR标记和30个AFLP标记绘制了一张覆盖甘蓝型油菜19个连锁群的遗传图谱,并对盐胁迫下甘蓝型油菜幼苗期的10个指标进行分析,共检测到45个QTL,并初步鉴定到耐盐相关基因Bra003640。SNP具有标记多、构建的连锁图谱密度大等优势[16],现已逐渐取代SSR及AFLP等传统标记技术,在农作物中发挥着越来越重要的作用[17]。LIU等[18]利用90K SNP绘制的遗传图谱,对热、旱胁迫下小麦的株高、抽穗期和千粒重等7个表型进行QTL分析,共检测到71个相关QTL。荐红举等[16]利用包含2 795个SNP的遗传图谱[19],采用复合区间作图法,分析盐、干旱2种胁迫条件下甘蓝型油菜种子发芽率的QTL,结果共检测到11个与盐胁迫相关的QTL,8个与干旱胁迫相关的QTL。侯林涛等[20]根据高密度SNP遗传连锁图谱,对盐胁迫下RIL群体的根、叶、干重及鲜重进行QTL定位,共检测到19个QTL,其中6个与盐胁迫相关,并找到8个与盐胁迫相关的候选基因。关于苯磺隆对作物的影响方面,LIU等[21]对苯磺隆处理过的鹅肠菜(Myosoton aquaticum L.)进行转录组分析,发现CYP734A1CYP76C1CYP86B1ABCC10在苯磺隆的代谢抗性中发挥重要作用。周清元等[6]运用全基因组关联分析对苯磺隆胁迫下的241份甘蓝型油菜萌发期相关性状的遗传机制进行探究,筛选出25个可能与油菜耐苯磺隆有关的候选基因。吴学莉等[22]将一个从抗苯磺隆播娘蒿的天然突变体中克隆到的ALS基因转入甘蓝型油菜,结果显示转基因油菜对苯磺隆的抗性提高至野生型致死浓度的3倍。胡茂龙等[23]研究发现,一种抗苯磺隆油菜突变体M9的抗性是由BnALS1的单碱基突变所致。孙妍妍等[7]用苯磺隆处理经EMS诱变的甘蓝型油菜,成功筛选到3株抗苯磺隆突变体,并克隆到相应的突变基因。【本研究切入点】尽管前人利用全基因组关联分析[6]、转基因[22,23]、化学诱变[7]等方法找到苯磺隆抗性基因,但是利用SNP构建连锁遗传图谱来定位苯磺隆胁迫下萌发期相关性状QTL,迄今未见报道。【拟解决的关键问题】本研究对重组自交系群体中175个株系进行萌发期耐苯磺隆特性鉴定,并借助由6K SNP芯片构建的连锁遗传图谱分别对相对发芽势、相对发芽率、相对根长和相对干重进行QTL定位,根据位点置信区间内序列预测可能与苯磺隆耐性相关的基因,以期为筛选培育苯磺隆耐性种质以及进一步探究油菜耐苯磺隆的机理研究提供参考。

1 材料与方法

1.1 试验材料

供试材料为175个株系组成的重组自交系群体,该群体来自于10D130×中双11(记作:ZS11)杂交组合,通过单粒法自交7代获得F2:7群体。其中,ZS11是中国农业科学院油料所选育的常规优质油菜品种;10D130是从芥菜型油菜和羽衣甘蓝种间杂种后代中选育的高世代自交系[24]。2017—2018年在重庆市北碚区歇马镇油菜试验基地种植亲本10D130、ZS11及重组自交系群体,初花期分别套袋自交,待种子成熟时进行收获,自然风干后保存备用。苯磺隆为沈阳市和田化工有限公司生产的“麦发”苯磺隆。10D130、ZS11和重组自交系群体均由西南大学油菜工程技术研究中心提供。

1.2 苯磺隆胁迫浓度筛选

从10D130和ZS11中选择饱满的种子,分别摆放在铺有2张滤纸的培养皿上,每皿20粒,添加3 mL不同浓度(0(CK)、0.075、0.15、0.25和0.50 mg·kg-1)的苯磺隆溶液,每个处理设3次重复(3皿)。将培养皿放在25℃、相对湿度为85%、光照和黑暗时间为16 h/8 h的恒温光照培养箱中。参考郜欢欢等[25]的方法,在胁迫处理7 d后,每皿随机挑选10株长势基本一致的幼苗,用于测量根长,根据根长平均值筛选出适宜的处理浓度。

1.3 种子萌发试验与性状调查

以筛选出的适宜浓度的苯磺隆溶液处理重组自交系群体种子(蒸馏水作对照),处理与对照均设置3次重复;在第5天移除培养皿盖子,每天根据培养皿的干湿情况补充相同体积的各浓度溶液。处理后第3天统计发芽势,第7天统计发芽率;处理7 d后,每皿随机挑选10株长势基本一致的幼苗用于测量根长,然后将这10株幼苗于105℃杀青10 min,75℃烘干24 h后测量干重。种子选择标准和恒温培养箱环境设置均同1.2。参考王倩等[11]方法,计算相对发芽势(relative germination vigor,RGV)、相对发芽率(relative germination rate,RGR)、相对根长(relative root length,RRL)和相对干重(relative dry weight,RDW)值。

1.4 数据处理

采用Excel 2010对数据进行整理,并绘制萌发期4个相对性状的分布直方图;利用DPS 9.0对浓度筛选试验数据进行显著性分析;通过SPSS 22统计软件对数据进行描述性统计及相关性分析。

1.5 遗传连锁图谱构建及QTL分析

参考刘列钊等[19]方法,分别从每个株系的5个幼嫩植株叶片取混合样0.15 g,采用DNA提取试剂盒DP321-03(天根,中国北京)提取DNA并稀释至50 ng·μL-1用于SNP标记分析。严格按照Infinium HD Assay Ultra操作说明书(Illumina Inc公司)进行DNA样品的预处理(等位扩增、片段化及富集)、与芯片杂交、洗涤、安装流动室、单碱基延伸、染色及包埋。芯片准备好后运用Illumina HiScan扫描仪的iScan Control Software软件扫描,然后利用GenomeStudio genotyping software v2011软件分析扫描结果,获取各样本的SNP基因型数据,并为获得的SNP标记命名,命名方法以AX-95505568为例,95505568代表GenomeStudio genotyping software生成的相应SNP位点索引号。

连锁图谱的构建采用JoinMap4.0软件,选用Kosambi[26]函数将重组值转换为图距单位(centiMorgan,cM),取最小阀值LOD2.0对所有标记进行分组,每个染色体上标记顺序通过两两标记之间最小重组频率计算,构建用于QTL定位的遗传连锁图谱。

利用MapQTL软件对相对发芽势、相对发芽率、相对根长和相对干重4个性状进行QTL检测,检测方法选择MQM Mapping(多QTL作图法)。当LOD≥2.5时,即认为该区间可能存在一个QTL。位点命名方式为:q加相对性状的英文缩写,再加染色体编号及QTL序号(如位于A01染色体上检测到的第一个相对根长QTL位点,记作qRRLA01-1。采用MapChart 2.5绘制QTL定位遗传连锁图。

1.6 候选基因的筛选

根据QTL的置信区间查询甘蓝型油菜基因组(http://www.genoscope.cns.fr/brassicanapus/cgi-bin/gbrowse/colza/)对应的序列,然后与TAIR网站上(https://www.arabidopsis.org/Blast/index.jsp)的拟南芥基因组序列进行BLAST,从E≥1×10-25的结果中筛选出可能与耐苯磺隆胁迫相关的基因[27]

2 结果

2.1 苯磺隆胁迫浓度筛选

在低浓度下(0.075 mg·kg-1),虽然ZS11根长较对照下降10.15%,10D130根长较对照下降15.78%,但是2份材料的处理组与对照组均无显著性差异(P>0.05)(表1);高浓度(≥0.25 mg·kg-1)下,2个品种根长较对照下降均超过45%,处理组与对照组之间差异均呈显著性(P<0.05);在0.15 mg·kg-1浓度下,ZS11根长较对照下降12.31%,与对照组之间差异不显著(P>0.05),而10D130的根长较对照下降38.64%,与对照组差异显著(P<0.05),2个品种表现出明显差异。过低和过高的苯磺隆胁迫浓度,尽管对2个品种均具有一定程度抑制作用,但是对2个品种间的区分度不明显,而苯磺隆浓度为0.15 mg·kg-1时能区分出两亲本对苯磺隆的耐性差异,因此,选择0.15 mg·kg-1作为重组自交系群体苯磺隆处理的适宜浓度。

Table 1
表1
表1两亲本各浓度下根长显著性分析
Table 1Significant analysis of root length at each concentration of the two parents
浓度Concentration
(mg·kg-1)
ZS1110D130
均值
Mean (cm)
显著性检验
Significant (P<0.05)
降幅
Percentage reduction (%)
均值
Mean (cm)
显著性检验
Significant (P<0.05)
降幅
Percentage reduction (%)
CK7.88a6.78a
0.0757.08a-10.155.71a-15.78
0.156.91a-12.314.16b-38.64
0.254.25b-46.072.12c-68.73
0.502.77c-64.850.86c-87.32
同一列不同字母表示处理间差异显著(P<0.05)
Different letters in the same column meant significant difference among treatments at 0.05 level

新窗口打开|下载CSV

2.2 亲本及F2:7群体表型性状分析

在胁迫处理下,ZS11的相对发芽势、相对发芽率、相对根长和相对干重4个性状的均值高于10D130(表2),表明ZS11较10D130表现出更强的耐性。用0.15 mg·kg-1苯磺隆溶液处理重组自交系群体(F2:7群体),结果(表2)表明,4个相对性状变异系数为13.5%—36.0%,说明群体内各株系间呈广泛的遗传变异。对175份材料重复间及株系间进行单因素方差分析(表3),发现重复间无显著性差异(P>0.05),而株系间差异显著(P<0.05)。对4个相对性状进行频次分布作图(图1),结果显示,4个相对性状在重组自交系群体中呈连续性分布,且双向超亲分离,符合数量性状表现特征,适宜进行QTL遗传分析。4个相对性状的相关性分析如表4,其中,相对发芽率和相对发芽势相关系数为0.587,呈极显著正相关(P<0.01),其余性状两两之间相关系数介于-0.122—0.072,均未达到显著水平(P>0.05)。

Table 2
表2
表2亲本及F2:7群体4个相对性状的表型分析
Table 2Phenotype variation of 4 related traits in parents and F2:7 population
性状
Trait
亲本 ParentF2:7群体 F2:7 populations
ZS1110D130平均数±标准差Mean±SD极差Range变异系数CV (%)
相对发芽势RGV1.000.970.98±0.181.3318.7
相对发芽率RGR1.000.971.00±0.141.0413.5
相对根长RRL0.880.610.53±0.190.9236.0
相对干重RDW0.990.870.98±0.151.8915.1
RGV:相对发芽势;RGR:相对发芽势;RRL:相对发芽势;RDW:相对发芽势。下同
RGV: Relative germination vigor; RGR: Relative germination rate; RRL: Relative root length; RDW: Relative dry weight. The same as below

新窗口打开|下载CSV

Table 3
表3
表3F2:7群体的重复间及株系间差异性分析
Table 3Analysis of the differences of the F2:7 population
性状
Trait
重复间差异性 Inter repetition difference株系间差异性 Difference among strains
自由度dfF显著性Significant自由度dfF显著性Significant
相对发芽势RGV20.5970.5511743.3563.8E-22
相对发芽率RGR21.1360.3221743.7071.2E-25
相对根长RRL20.0090.99117436.9202.5E-157
相对干重RDW20.7660.4661743.1752.5E-20

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1F2:7群体的4个相对性状的频数分布图

RGV:相对发芽势;RGR:相对发芽势;RRL:相对发芽势;RDW:相对发芽势。下同
Fig. 1Phenotype frequency distribution of 4 related traits in F2:7 population

RGV: Relative germination vigor; RGR: Relative germination rate; RRL: Relative root length; RDW: Relative dry weight. The same as below


Table 4
表4
表4F2:7群体4个性状的相关性分析
Table 4Correlation analysis of 4 related traits in F2:7 population
性状 Trait相对发芽势 RGV相对发芽率 RGR相对根长 RRL相对干重 RDW
相对发芽势RGV1
相对发芽率RGR0.587**1
相对根长RRL-0.049-0.1101
相对干重RDW-0.1220.072-0.1071
**和*分别表示在0.01和0.05水平下显著相关
** and * Stand for significant correlations at 0.01 and 0.05 probability levels, respectively

新窗口打开|下载CSV

2.3 遗传连锁图谱

利用包含5 058个标记的6K SNP芯片对186个RIL材料进行基因型鉴定,从中筛选出1 897个高质量多态性的SNP标记,约占37.5%,基于这些标记构建遗传连锁图谱。获得用于QTL定位的图谱覆盖甘蓝型油菜基因组3 214.19 cM,平均图距为1.69 cM。每条染色体长度范围为86.51—298.72 cM,平均长度为169.17 cM。染色体标记数目在24—153,平均数目为99.84个。但是从标记分布来看,各染色体分布不均,其中,染色体A03、C03和C04上标记分布较多,分别为139、147和153个;而染色体C05、C08和C09上的标记数目较少,分别只有48、26和24个。此外各染色体标记密度也有较大差异,C04密度最大,平均间距仅1.10 cM,而密度最小的C08平均间距达6.13 cM。

2.4 F2:7群体4个相对性状的QTL定位分析

2.4.1 相对发芽势与相对发芽率QTL 相对发芽势共定位到6个QTL,分别位于A01、A06、C02、C03和C07染色体上(表5图2),可解释的表型变异为6.6%—7.7%。其中,qRGVC02-1可解释的表型最高,为7.7%,位于C02染色体上;表型贡献率次之的是位于C03染色体上的qRGVC03-1,为7.3%。检测到3个相对发芽率QTLs,可解释的表型变异为7.2%—10.7%。其中,qRGRA01-1位于A01染色体上,可解释表型变异为10.7%,为控制相对发芽率的主效QTL;qRGRA01-2qRGRA03-1分别位于A01和A03染色体上,可解释变异分别为7.5%和7.2%。此外,在A01染色体上位于64.857 cM的位置上同时检测出相对发芽势、相对发芽率相关的QTL位点。在A01染色体位于55.935 cM位置上存在相对发芽势QTL,在该染色体56.645 cM位置上存在相对发芽率QTL,且两者的置信区间几乎重叠。

Table 5
表5
表5F2:7群体4个相对性状的QTL定位
Table 5QTLs for 4 related traits from F2:7 population of oilseed
性状
Trait
位点
Loci
左标记
Left marker
右标记
Right marker
染色体
Chr.
位置
Position (cM)
阈值
LOD
贡献率
Expl. (%)
置信区间
Confidence interval (cM)
相对发芽势
RGV
qRGVC02-1/AX-86224097C020.0003.047.70.000—0.468
qRGVC03-1AX-95665263AX-177835191C0368.7242.887.367.838—69.724
qRGVC07-1AX-177830550AX-95503939C0779.9032.827.172.776—80.784
qRGVA01-1AX-95656842AX-182125504A0155.9352.616.654.426—56.645
qRGVA01-2AX-182153395AX-182155384A0164.8572.656.762.861—67.428
qRGVA06-1AX-95501842AX-177829720A06106.2052.626.7105.840—108.202
相对发芽率
RGR
qRGRA01-1AX-95509232AX-177830916A0156.6454.3110.755.935—57.420
qRGRA01-2AX-182153395AX-182155384A0164.8572.957.562.861—67.428
qRGRA03-1AX-95508795AX-95509572A03127.6162.827.2125.682—129.203
相对根长
RRL
qRRLA04-1AX-182176371AX-95505772A0494.6984.5111.288.608—97.938
qRRLA04-2AX-95507645AX-177833715A04113.3085.1212.6108.264—114.008
qRRLA04-3AX-177827854AX-95503983A04132.2852.897.3130.443—134.464
qRRLA06-1AX-95664740AX-95506250A0698.6673.468.797.389—101.050
qRRLA06-2AX-105306485AX-95664864A06113.1343.358.4112.441—113.682
qRRLA06-3AX-95656835AX-105307005A06124.0734.0110.0123.077—130.636
qRRLA09-1AX-105307894AX-177910950A09284.5163.067.7283.174—285.872
qRRLC01-1AX-105335237AX-105335655C0145.7152.516.442.779—47.043
相对干重
RDW
qRDWA03-1AX-95663919AX-95638137A0398.0522.987.597.681—99.234
qRDWA04-1AX-95662645AX-182137198A0417.1053.28.112.178—19.860
qRDWA04-2AX-179307304AX-95664963A0439.2992.937.438.667—41.328
qRDWA02-1AX-179307763AX-177832049A02125.1162.656.7121.653—129.830
qRDWC03-1AX-105338724AX-105308542C03187.6492.526.4185.306—188.940

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2甘蓝型油菜4个相对性状QTL在连锁群上分布图

Fig. 2Putative QTLs of 4 related traits in the genetic linkage map



2.4.2 相对根长与相对干重QTL 检测到8个相对根长QTL,多数分布于A04和A06染色体上,少数位于A09和C01染色体上,表型贡献率范围为6.4%—12.6%。其中,在A04染色体上检测到3个QTL,其中qRRLA04-1qRRLA04-2为调控相对根长的主效QTL,表型贡献率分别为12.6%和11.2%;在A06染色体上检测到3个相对根长QTL,对应的置信区间在98.667—124.073 cM,可解释表型率均较高;在A09和C01染色体上各检测到1个与相对根长QTL,可解释表型变异率为7.7%和6.4%。此外,检测到5个与相对干重有关的QTL,表型贡献率变幅为6.4%—8.1%。在A04染色体上检测到2个QTL,其余3个QTL分别位于A02、A03和C03染色体上。其中qRDWA04-1具有最高表型贡献率,为8.1%。

2.5 候选基因预测

根据已经公布的甘蓝型油菜基因组测序结果,将22个QTL置信区间内的甘蓝型油菜序列和拟南芥的序列进行比对,筛选到30个可能与苯磺隆耐性有关的候选基因(表6)。其中,共有18个细胞色素P450基因家族成员和5个糖基转移酶相关基因(glycosyl transferase,GT)、1个谷胱甘肽转移酶(glutathione- s-transferase,GST)相关基因、1个ALS相关基因、1个为ABC(ATP-binding cassette)家族蛋白基因、1个螺旋-环-螺旋(basic helix-loop-helix,BHLH)转录因子、1个茉莉酸酯结构域蛋白6(jasmonate-zim- domain protein 6,JAZ6)、1个LSU2(response to low sulfur 2)和1个MATE efflux家族成员。

Table 6
表6
表6苯磺隆耐性相关性状的候选基因
Table 6A summary of candidate genes associated with tribenuron-methyl related traits
性状
Trait
位点
Loci
染色体
Chr.
物理区间
Physical interval
(bp)
候选基因
Candidate gene
拟南芥基因
Arabidopsis gene
基因
Gene
描述
Description
相对发
芽势
RGV
qRGVC07-1C0733957781—34814007BnaC07g29830DAT5G24660LSU2细胞氧化剂解毒;对防御反应调控
Cellular oxidant detoxification; Regulation of defense response
qRGVA01-1A016196365—6753945BnaA01g12870DAT4G23030/MATE家族蛋白 MATE efflux family protein
相对发
芽率
RGR
qRGRA01-1A016196365—6753945BnaA01g12870DAT4G23030/MATE家族蛋白 MATE efflux family protein
qRGRA03-1A0314987907—15498700BnaA03g31340DAT3G10670ABCI6参与生物发生或修复氧化破坏的Fe-S簇
Involved in the biogenesis or repair of oxidatively damaged Fe-S clusters.
相对
根长
RRL
qRRLA04-1A0414446411—15117001BnaA04g19030DAT2G32740GT13半乳糖基转移酶13 Galactosyltransferase 13
BnaA04g17910DAT2G30860GSTF9编码GST phi类谷胱甘肽转移酶
Encodes glutathione transferase belonging to the phi class of GSTs
BnaA04g18440DAT2G31790UGTUDP-糖基转移酶超家族蛋白
UDP-Glycosyltransferase superfamily protein
qRRLA04-2A0415913314—16484458BnaA04g21090DAT2G36760UGT73C2UDP-葡萄糖基转移酶73C2
UDP-glucosyl transferase 73C2
qRRLA04-3A0417814614—17923085BnaA04g24370DAT2G42250CYP712A1CYP712A的成员 Member of CYP712A
qRRLA06-1A0621396095—21528844BnaA06g31960DAT4G39510CYP96A12CYP96A的成员 Member of CYP96A
BnaA06g32050DAT4G27710CYP709B3CYP709B的成员 Member of CYP709B
qRRLA06-2A0621528844—22092492BnaA06g32370DAT3G25180CYP82G1编码细胞色素P450单加氧酶
Encodes a cytochrome P450 monooxygenase
BnaA06g32970DAT3G26290CYP71B26细胞色素P450成员 Putative cytochrome P450
BnaA06g32980DAT2G02580CYP71B9CYP71B的成员 Member of CYP71B
BnaA06g32990DAT3G26300CYP71B34细胞色P450 Putative cytochrome P450
BnaA06g33000DAT3G48560ALS催化乙酰乳酸的形成;被磺酰脲类除草剂抑制等
Catalyzing the formation of acetolactate; Inhibited by the sulphonylurea herbicide. etc
BnaA06g33010DAT3G26220CYP71B3细胞色素P450单加氧酶
Cytochrome P450 monooxygenase
BnaA06g33020DAT3G26210CYP71B23细胞色素P450成员 Putative cytochrome P450
BnaA06g33030DAT3G26200CYP71B22细胞色素P450成员 Putative cytochrome P450
BnaA06g33040DAT3G26190CYP71B21细胞色素P450成员 Putative cytochrome P450
BnaA06g33060DAT3G26170CYP71B19细胞色素P450成员 Putative cytochrome P450
BnaA06g33050DAT3G26180CYP71B20细胞色素P450成员 Putative cytochrome P450
BnaA06g33070DAT3G26165CYP71B18细胞色素P450成员 Putative cytochrome P450.
qRRLC01-1C013631449—3936101BnaC01g06930DAT1G13080CYP71B2细胞色素P450单加氧酶
Cytochrome P450 monooxygenase
相对
干重
RDW
qRDWA02-1A028524524—9460659BnaA02g15990DAT1G72450JAZ6调节防御反应及茉莉酸介导的信号传导途径Regulation of defense response and jasmonic acid mediated signaling pathway
BnaA03g22720DAT1G72210BHLH96BHLH DNA结合超家族蛋白
BHLH DNA-binding superfamily protein
BnaA02g15580DAT2G46960CYP709B1CYP709B的成员 Member of CYP709B
qRDWA03-2A0310805287—12106754BnaA03g22720DAT2G26480UGT76D1UDP-葡萄糖基转移酶76D1
UDP-glucosyl transferase 76D1
BnaA03g25050DAT4G12320CYP706A6CYP706A的成员 Member of CYP706A
qRDWA04-1A041637957—2461363BnaA04g03050DAT3G57220GT糖基转移酶家族蛋白
Glycosyl transferase family 4 protein
qRDWC03-1C0347920601—48510329BnaC03g59160DAT2G25160CYP82F1细胞色素P450成员
Cytochrome P450, family 82, subfamily F,

新窗口打开|下载CSV

在A01染色体上检测到的相对发芽势与相对发芽率共同QTL(qRGVA01-1/qRGRA01-2)置信区间内筛选到1个未命名的候选基因,为MATE efflux家族成员,参与对有毒物质的响应。在qRGVC07-1的置信区间内筛选到一个LSU2蛋白,该蛋白参与细胞氧化解毒反应,对防御反应进行调节;在相对发芽率置信区间上找到1个ABC家族基因成员ABCI6,参与非生物胁迫响应。

将相对根长QTL置信区间上的序列与拟南芥序列对比后,共筛选到20个与苯磺隆抗性相关的候选基因。在A04染色体上共找到5个候选基因,其中,有3个属于GT成员(UGT73C2、GT13UGT),GSTF9属于GST家族蛋白,CYP712A1是细胞色素P450基因家族成员。在A06染色体上共找到14个候选基因,其中有13个细胞色素P450基因家族成员,1个ALS基因。在C01染色体上找到的CYP71B2,为细胞色素P450基因。

在相对干重QTL置信区间找到9个可能与耐性机制相关的候选基因。在A02、A03、C03染色体上各找到1个细胞色素P450基因家族成员,同时在A03、A04染色体上分别存在糖基转移酶家族基因。另外,在A02染色体上检测到的基因BnaA02g15990D编码JAZ6蛋白,BnaA03g22720D编码BHLH转录因子,均参与胁迫响应。

3 讨论

3.1 表型统计分析及QTL定位结果

对萌发期作物进行初步耐性鉴定,具有可操作性强、周期短、效率高等特点[28]。苯磺隆是一种阔叶类除草剂,一方面可以根据其化学杀雄作用[4]用于优势杂种的配制;另一方面可以在播种或者移栽前与单子叶除草剂联用,为油菜田日渐突出的阔叶类杂草防除问题[29]提供一种新思路。前人研究表明,0.075—0.1 mg·kg-1苯磺隆的化学杀雄效果最佳[30],但是大于等于0.1 mg·kg-1后,植株停止生长,趋于死亡[22]。也有研究表明0.2 mg·kg-1苯磺隆将显著降低油菜的ALS活性[31],2.0 μg·mL-1苯磺隆适宜油菜筛选[32]。本研究用不同浓度苯磺隆对两亲本种子进行处理,发现0.15 mg·kg-1苯磺隆浓度下可以显著区分出2份亲本材料的耐性差异,过高或者过低浓度都不利于2个亲本耐性差异的选择,因此,最终选择0.15 mg·kg-1的苯磺隆浓度作为重组自交系群体的胁迫浓度。该浓度虽然与前人研究结果略有不同,但是差异不大,并且不同的试验材料对苯磺隆的耐药性也不尽相同。以该浓度处理F2:7群体175份种子,4个相对性状均表现出广泛的表型变异,变异系数范围为13.5%—36%,说明在0.15 mg·kg-1的苯磺隆浓度胁迫下,研究群体内株系间苯磺隆耐性遗传差异明显;4个相对性状均呈连续性分布,符合数量性状特征,为进行QTL遗传分析奠定了基础。

作物对逆境胁迫的响应是一个复杂的过程,近年来利用分子标记技术对胁迫下油菜耐性QTL进行研究已经较为普遍[13-16,18,20]。关于苯磺隆方面,尽管前人对作物响应苯磺隆胁迫的分子机理已经有了部分研究[6-7,21-23],但是利用SNP分子标记定位苯磺隆胁迫下油菜萌发期关联性状QTL鲜见报道。周清元等[6]通过全基因组关联分析,找到6个与相对根长显著关联SNP标记和4个与相对发芽率显著关联标记,主要分布于A03、A04、A05、A07、C02、C03、C06和C09染色体上。本文对重组自交系F2:7群体萌发期的相对发芽势、相对发芽率、相对根长和相对干重进行QTL分析,共检测到22个QTL,单个QTL可解释的表型变异为6.4%—12.6%,大部分表型贡献率在10%以下,表明苯磺隆胁迫下,种子萌发过程中各性状多受微效基因调控;检测到的8个相对根长QTL和3个相对发芽率QTL,与周清元等[6]研究结果差异较大,究其原因,主要在于二者研究群体和处理浓度不同所致。从4个相对性状QTL结果看,相对根长与相对发芽势、相对发芽率、相对干重以及相对干重与相对发芽势、相对发芽率间均不存在相同位点,该结果与性状之间的相关性吻合,但是不能简单认为这些性状间没有受到同一基因作用,因为QTL检测结果与效应值大小有关,而一个基因在不同环境条件下对多个性状效应值大小影响不同。另外,本文在A01染色体64.857、55.935和56.645 cM处检测到的相对发芽势与相对发芽率QTL置信区间完全或者部分重叠,表明这些重叠位点存在着“一因多效”作用,即这些重叠位点同时调控种子萌发初期的多个性状的表达,该结果与相对发芽势和相对发芽率之间存在的极显著正相关性结果一致。

3.2 候选基因筛选

植物受到逆境胁迫时会激活一系列分子途径并调控相关基因表达和生理反应来适应逆境[33]。如NIU等[34]研究发现属于BHLH亚组的MYC3和MYC4是调控茉莉酸(JA)反应的转录激活因子,其活性在逆境条件下受JA信号中JAZ蛋白的控制,BHLH转录因子的过表达则导致JA介导的防御反应增强,证实了BHLH转录因子与JAZ蛋白相互作用从而响应防御胁迫。本研究在A02染色体上筛选到的基因BnaA02g15990D编码JAZ6蛋白,BnaA02g15870D编码BHLH DNA结合超家族蛋白,均参与防御反应调节。本文还找到了1个未知命名的基因,这个基因属于MATE家族蛋白基因。MATE基因是生物中第五类输出转运蛋白,在拟南芥中大概有56个成员[35],虽然未找到关于MATE家族蛋白与抗除草剂直接关联的报道,但是多数研究表明MATE基因与类黄酮[36]、生物碱[37]、金属离子[38]、其他植物代谢物的转运[39]以及逆境胁迫[40]有关,故推测此基因可能在耐除草剂机制中起作用。另外,本研究筛选到的C07染色体上的基因BnaC07g29830D为LSU2蛋白相关基因,在细胞氧化剂解毒及多种植物防御反应中起作用[41]

ALS是一种磺酰脲类除草剂靶位点(target-site,TSR)酶,主要负责支链氨基酸的生物合成。该酶的抗性突变不仅限制了除草剂的结合,还可能通过改变蛋白质的活性、调控动力学过程而损害正常植物的功能或代谢[42]。前人研究表明抗苯磺隆植株突变体的抗性多是由于ALS突变所致[23,43-44],并且转入ALS突变基因的烟草[45]、油菜[22]、大豆[46]等作物均表现出更强的抗除草剂能力。本研究在A06染色体上找到的BnaA06g33000D与拟南芥AT3G48560同源,催化ALS合成,其活性可被磺酰脲类除草剂抑制。

作物抗除草剂机制除了与靶位点突变有关,还与非靶位点(nontarget-site,NTSR)相关酶的代谢能力相关[47]。其中,常见的NTSR相关酶有细胞色素P450单加氧酶、ABC转运蛋白、GSTs、GTs和过氧化物酶(peroxidase,POD)[48]。前人研究表明磺酰脲类除草剂可诱导CYP81A12CYP81A21在抗除草剂作物中过表达[49],百草枯可诱导CYP79B2CYP83B1的表达[50],这些CYP450基因最终通过促进除草剂分子代谢解除毒害[51]。本研究在A02、A03、A04、A06、C01和C03染色体上共筛选到18个细胞色素P450基因家族成员,占总数的60%。其中,在A06染色体21 396 095—22 092 492 bp连续找到13个细胞色素P450家族成员。BAEK等[52]对除草剂处理过的高粱幼苗进行转录组分析发现,多数上调的转录物编码P450、GST和UGT解毒酶。GAINES等[53]在黑麦草的近缘耐药个体中发现4种过表达基因,其中包括2种细胞色素P450和1种GT基因。CUMMINS等[54]发现转入黑麦草AmGSTF1的拟南芥植株由于类黄酮和GST的积累对多种除草剂产生抗性。这些研究表明GTs和GSTs在除草剂的解毒方面发挥着重要作用。本研究在A03、A04和C03染色体上筛选到的5个基因均为GT基因家族成员,其中,3个基因属于UDP-糖基转移酶家族蛋白;在A04染色体上找到的BnaA04g17910D与拟南芥AT2G30860同源,编码属于phi类的谷胱甘肽转移酶——GSTF9。ABC转运蛋白是位于细胞膜上的外排泵,因底物范围广泛而具有多药耐药性,是抵御外界胁迫的重要屏障[55],参与多种生物和非生物胁迫反应[56]。MOREIRA等[57]研究发现杂草经草甘膦、百草枯处理后,ABC转运蛋白基因的转录水平显著提高,表明了ABC转运蛋白在除草剂抗性中的重要作用。本研究在A03染色体上筛选到1个ABCI6,该基因只在胚胎和分生组织中表达,参与由氧化损伤的Fe-S簇的生物发生、修复。周清元等[6]根据6个与相对根长显著相关的SNP位点和4个与相对发芽势显著相关的SNP位点筛选到2个GTs、2个GSTs和6个细胞色素P450s相关基因,但是未找到除草剂靶标ALS基因和ABC转运蛋白。后续研究将对这些基因进行更深入的验证以及功能分析,以期为甘蓝型油菜耐苯磺隆种质筛选及抗除草剂机理等研究提供参考。

4 结论

苯磺隆胁迫下共检测到22个油菜种子萌发相关性状的QTL,可解释表型变异率为6.4%—12.6%。共筛选到30个与苯磺隆耐性相关候选基因,这些基因可能通过调控乙酰乳酸合成酶、P450酶、糖基转移酶或者谷胱甘肽转移酶及其他逆境胁迫相关酶非正常表达,从而影响油菜种子萌发表型差异。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

GREEN J M . Current state of herbicides in herbicide-resistant crops
Pest Management Science, 2014,70(9):1351-1357.

[本文引用: 1]

DONG B, QIAN W, HU J . Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem
Chemosphere, 2015,120:486-491.

[本文引用: 1]

MAZUR B J, FALCO S C . The development of herbicide resistant crops
Annual Review of Plant Biology, 1989,40(1):441-470.

[本文引用: 1]

YU C Y, DONG J G, HU S W, XU AI X . Exposure to trace amounts of sulfonylurea herbicide tribenuron-methyl causes male sterility in 17 species or subspecies of cruciferous plants
BMC Plant Biology, 2017,17(1):95-11.

[本文引用: 2]

YU C, HU S, HE P, SUN G, ZHANG C, YU Y . Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide, tribenuron-methyl
Plant Breeding, 2006,125(1):61-64.

[本文引用: 1]

周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠 . 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析
中国农业科学, 2019,52(3):399-413.

[本文引用: 7]

ZHOU Q Y, WANG Q, YE S, CUI M S, LEI W, GAO H H, ZHAO Y F, XU X F, TANG Z L, LI J N, CUI C . Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination
Scientia Agricultura Sinica, 2019,52(3):399-413. (in Chinese)

[本文引用: 7]

孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记
中国油料作物学报, 2015,37(5):589-595.

[本文引用: 4]

SUN Y Y, QU G P, HUANG Q X, Lü J Y, GUO Y, HU S W . SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L
Chinese Journal of Oil Crop Sciences, 2015,37(5):589-595. (in Chinese)

[本文引用: 4]

杜慧平, 杜慧玲 . 苯磺隆在土壤中的消解动态和残留测定
山西农业科学, 2015(1):50-53.

[本文引用: 1]

DU H P, DU H L . Tribenuron-methly degradation dynamics and residual in soil
Journal of Shanxi Agricultural Sciences, 2015(1):50-53. (in Chinese)

[本文引用: 1]

NGUYEN T C, ABRAMS S R, FRIEDT W, SNOWDON R J . Quantitative trait locus analysis of seed germination, seedling vigour and seedling-regulated hormones in Brassica napus
Plant Breeding, 2018,137(3):388-401.

[本文引用: 1]

YU X, YANG A, JAMES A T . Selecting soybeans for sulfonylurea herbicide tolerance: A comparative proteomic study of seed germinations
Crop and Pasture Science, 2017,68(1):27-32.

[本文引用: 1]

王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 . 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价
作物学报, 2018,44(8):1169-1184.

[本文引用: 2]

WANG Q, CUI C, YE S, CUI M S, ZHAO Y F, LIN N, TANG Z L, LI J N, ZHOU Q Y . Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed ( Brassica napus L.)
Acta Agronomica Sinica, 2018,44(8):1169-1184. (in Chinese)

[本文引用: 2]

李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答
作物学报, 2010,36(6):918-931.

[本文引用: 1]

LI H H, ZHANG L Y, WANG J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping
Acta Agronomica Sinica, 2010,36(6):918-931. (in Chinese)

[本文引用: 1]

LI Z, MEI S, MEI Z, LIU X, FU T, ZHOU G, TU J . Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape ( Brassica napus)
Euphytica, 2014,197(3):341-353.

[本文引用: 2]

BASNET R K, DUWAL A, TIWARI D N, XIAO D, MONAKHOS S, BUCHER J, MALIEPAARD C . Quantitative trait locus analysis of seed germination and seedling vigor in Brassica rapa reveals QTL hotspots and epistatic interactions
Frontiers in Plant Science, 2015,6:1032.

[本文引用: 1]

LANG L, XU A, DING J, ZHANG Y, ZHAO N, TIAN Z, LIU Y, WANG Y, LIU X, LIANG F H, ZHANG B B, QIN M F, DALELHAN J, HUANG Z . Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L
Frontiers in Plant Science, 2017,8:1000.

[本文引用: 1]

荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊 . 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL
作物学报, 2014,40(4):629-635.

[本文引用: 3]

JIAN H J, XIAO Y, LI J N, MA Z Z, WEI L J, LIU L Z . QTL Mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map
Acta Agronomica Sinica, 2014,40(4):629-635. (in Chinese)

[本文引用: 3]

GUAN Q, ZHANG Y X, XU X L, SUN D Q, LI S Y, LIN H, PAN L Y, MA Y H . Development of DNA molecular marker and several new types of molecular markers
Heilongjiang Agricultural Sciences, 2008,1:102-104.

[本文引用: 1]

LIU C, SUKUMARAN S, CLAVERIE E, SANSALONI C, DREISIGACKER S, REYNOLDS M . Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat
Molecular Breeding, 2019,39(3):34.

[本文引用: 2]

刘列钊, 李加纳 . 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点
中国农业科学, 2014,47(1):24-32.

[本文引用: 2]

LIU L Z, LI J N . QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map
Scientia Agricultura Sinica, 2014,47(1):24-32. (in Chinese)

[本文引用: 2]

侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊 . 甘蓝型油菜盐胁迫下幼苗鲜重和干重 QTL 定位及候选基因分析
作物学报, 2017,43(2):179-189.

[本文引用: 2]

HOU L T, WANG T Y, JIAN H J, WANG J, LI J N, LIU L Z . QTL Mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L
Acta Agronomica Sinica, 2017,43(2):179-189. (in Chinese)

[本文引用: 2]

LIU W, BAI S, ZHAO N, JIA S, LI W, ZHANG L, WANG J . Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum(L.)
BMC Plant Biology, 2018,18(1):225.

[本文引用: 2]

吴学莉, 易丽聪, 侯凡, 吴江生, 姚璇, 刘克德 . 表达播娘蒿突变基因DsALS-108的抗苯磺隆甘蓝型油菜植株构建
农业生物技术学报, 2016,24(4):469-477.

[本文引用: 4]

WU X L, YI L C, HOU F, WU J S, YAO X, LIU K D . Generation of tribenuron-methyl herbicide resistant rapeseed( Brasscia napus) plants expressing mutated gene Ds ALS-108 of flixweed (Descurainia sophia)
Journal of Agricultural Biotechnology, 2016,24(4):469-477. (in Chinese)

[本文引用: 4]

胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松 . 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆
中国农业科学, 2012,45(20):4326-4334.

[本文引用: 4]

HU M L, PU H M, GAO J Q, LONG W H, QI C K, ZHANG J F, CHEN S . Inheritance and gene cloning of an ALS inhabiting herbicide resistant mutant line M9 in Brassica napus
Scientia Agricultura Sinica, 2012,45(20):4326-4334. (in Chinese)

[本文引用: 4]

周清元 . 甘蓝型油菜新种质资源创建及其株型性状遗传分析
[D]. 重庆: 西南大学, 2013.

[本文引用: 1]

ZHOU Q Y . Study on germplasm creation of Brassica napus and genetic analysis of plant-type characters
[D]. Chongqing: Southwest University, 2013. (in Chinese)

[本文引用: 1]

郜欢欢, 叶桑, 王倩, 王刘艳, 王瑞莉, 陈柳依, 唐章林, 李加纳, 周清元, 崔翠 . 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选
作物学报, 2019,45(9):1416-1430.

[本文引用: 1]

GAO H H, YE S, WANG Q, WANG L Y, WANG R L, CHEN L Y, TANG Z L, LI J N, ZHOU Q Y, CUI C . Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus
Acta Agronomica Sinica, 2019,45(9):1416-1430. (in Chinese)

[本文引用: 1]

KOSAMBI D D . The estimation of map distances from recombination values
Annals of Eugenics, 1944,12:172-175.

[本文引用: 1]

任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元 . 油菜主花序角果密度及其相关性状的全基因组关联分析
中国农业科学, 2018,51(6):1020-1033.

[本文引用: 1]

REN Y Y, CUI C, WANG Q, TANG Z L, XU X F, LIN N, YIN J M, LI J N, ZHOU Q Y . Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L
Scientia Agricultura Sinica, 2018,51(6):1020-1033. (in Chinese)

[本文引用: 1]

阎志红, 刘文革, 赵胜杰, 何楠, 王俊良 . NaCl 胁迫对不同西瓜种质资源发芽的影响
植物遗传资源学报, 2006(2):220-225.

[本文引用: 1]

YAN Z H, LIU W G, ZHAO S J, HE N, WANG J L . Effect of NaCl stress on germination of different watermelon varieties
Journal of Plant Genetic Resources, 2006(2):220-225. (in Chinese)

[本文引用: 1]

唐建明, 王勇, 方雅琴 . 油菜田常用除草剂药害及规避措施
杂草科学, 2010(1):64-66.

[本文引用: 1]

TANG J M, WANG Y, FANG Y Q . Herbicide phytotoxicity and evasion measures in rape fields
Journal of Weeds, 2010(1):64-66. (in Chinese)

[本文引用: 1]

张宝娟, 赵惠贤, 胡胜武 . 苯磺隆对甘蓝型油菜中双 9 号的杀雄效果
中国油料作物学报, 2010,32(4):467-471.

[本文引用: 1]

ZHANG B J, ZHAO H X, HU S W . Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9
Chinese Journal of Oil Crop Sciences, 2010,32(4):467-471. (in Chinese)

[本文引用: 1]

付三雄, 周晓婴, 戚存扣 . 苯磺隆对甘蓝型油菜的杀雄效果及对其靶标 ALS 活性的影响
江西农业学报, 2019,31(2):8-12.

[本文引用: 1]

FU S X, ZHOU X Y, QI C K . Male-sterile-inducing efficiency of tribenuron-methyl and its effect on activity of acetolactate synthase in Brassica napus
Acta Agriculturae Jiangxi, 2019,31(2):8-12. (in Chinese)

[本文引用: 1]

信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定
西北农业学报, 2014,23(7):68-74.

[本文引用: 1]

XIN X Y, QU G P, ZHANG R, PANG H X, WU Q, WANG F L, HU S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes
Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(7):68-74. (in Chinese)

[本文引用: 1]

缪颖, 伍炳华 . 植物抗逆性的获得与信息传导
植物生理学通讯, 2001(1):71-76.

[本文引用: 1]

MIAO Y, WU B H . The acquirement of stress response characteristics and signal transduction in plants
Plant Physiology Communications, 2001(1):71-76. (in Chinese)

[本文引用: 1]

NIU Y, FIGUEROA P, BROWSE J . Characterization of JAZ- interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis
Journal of Experimental Botany, 2011,62(6):2143-2154.

[本文引用: 1]

吴平治, 李东屏 . 拟南芥中MATE基因家族的研究进展
遗传, 2006,28(7):906-910.

[本文引用: 1]

WU P Z, LI D P . Advances in the study of MATE gene family in Arabidopsis
Genetic, 2006,28(7):906-910. (in Chinese)

[本文引用: 1]

CHEN L, LIU Y, LIU H, KANG L, GENG J, GAI Y, LI Y . Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants
PLoS ONE, 2015,10(3):e0118578.

[本文引用: 1]

SHITAN N, MINAMI S, MORITA M, HAYASHIDA M, ITO S, TAKANASHI K, OMOTE H, MORIYAMA Y, SUGIYAMA A, GOOSSENS A, MORIYASU M, YAZAKI K . Involvement of the Leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum
PLoS ONE, 2014,9(9):e108789.

[本文引用: 1]

HE X . Think positively: The structural basis of cation-binding and coupling of the multidrug and toxic-compound extrusion (MATE) transporter family
University of California, San Diego, 2010.

[本文引用: 1]

SHOJI T . ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: A common theme among diverse detoxification mechanisms
International Review of Cell & Molecular Biology, 2014,309:303.

[本文引用: 1]

LU P, MAGWANGA R O, GUO X, KIRUNGU J N, LU H, CAI X, PENG R . Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress
Genes, Genomes, Genetics, 2018,8(7):2483-2500.

[本文引用: 1]

WANG H, SEO J K, GAO S, CUI X, JIN H . Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1
New Phytologist, 2017,215(3):1144-1155.

[本文引用: 1]

LI M, YU Q, HAN H, VILA-AIUB M, POWLES S B . ALS herbicide resistance mutations in Raphanus raphanistrum: Evaluation of pleiotropic effects on vegetative growth and ALS activity
Pest Management Science, 2013,69(6):689-695.

[本文引用: 1]

XU X, LIU G, CHEN S, LI B, LIU X, WANG X, FAN C Q, WANG G Q, NI H . Mutation at residue 376 of ALS confers tribenuron-methyl resistance in flixweed ( Descurainia sophia) populations from Hebei province, China
Pesticide Biochemistry and Physiology, 2015,125:62-68.

[本文引用: 1]

HAN H, YU Q, PURBA E, LI M, WALSH M, FRIESEN S, POWLES S B . A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides
Pest Management Science, 2012,68(8):1164-1170.

[本文引用: 1]

SHIMIZU M, GOTO M, HANAI M, SHIMIZU T, IZAWA N, KANAMOTO H, TOMIZAWA K, YOKOTA A, KOBAYASHI H . Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco
Plant Physiology, 2008,147(4):1976-1983.

[本文引用: 1]

SIMINSZKY B, CORBIN F T, WARD E R, FLEISCHMANN T J, DEWEY R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides
Proceedings of the National Academy of Sciences of the USA, 1999,96(4):1750-1755.

[本文引用: 1]

BAI S, LIU W, WANG H, ZHAO N, JIA S, ZOU N, GUO W, WANG J . Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L
Journal of Agricultural and Food Chemistry, 2018,66(37):9850-9857.

[本文引用: 1]

YU Q, POWLES S . Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production
Plant Physiology, 2014,166(3):1106-1118.

[本文引用: 1]

IWAKAMI S, KAMIDATE Y, YAMAGUCHI T, ISHIZAKA M, ENDO M, SUDA H, NAGAI K, SUNOHARA Y, TOKI S, UCHINO A, TOMINAGA T . CYP 81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon
New Phytologist, 2019,221(4):2112-2122.

[本文引用: 1]

NARUSAKA M, SEKI M, UMEZAWA T, ISHIDA J, NAKAJIMA M, ENJU A, SHINOZAKI K . Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray
Plant Molecular Biology, 2004,55(3):327-342.

[本文引用: 1]

ZIMMERLIN A, DURST F . Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P450 monooxygenase: substrate specificity and physiological activity
Plant Physiology, 1992,100(2):874-881.

[本文引用: 1]

BAEK Y S, GOODRICH L V, BROWN P J, JAMES B T, MOOSE S P, LAMBERT K N, RIECHERS D E . Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum
Frontiers in Plant Science, 2019,10:192.

[本文引用: 1]

GAINES T A, LORENTZ L, FIGGE A, HERRMANN J, MAIWALD F, OTT M C, HAN H, BUSI R, YU Q, POWLES S B, BEFFA R . RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum
The Plant Journal, 2014,78(5):865-876.

[本文引用: 1]

CUMMINS I, WORTLEY D J, SABBADIN F, HE Z, COXON C R, STRAKER H E, SELLARS J D, KNIGHT K, EDWARDS L, HUGHES D, KAUNDUN S S, HUTCHINGS S J, STEEL P G, EDWARDS R . Key role for a glutathione transferase in multiple- herbicide resistance in grass weeds
Proceedings of the National Academy of Sciences of the USA, 2013,110(15):5812-5817.

[本文引用: 1]

OOSTERHUIS B, VUKMAN K, VáGI E, GLAVINAS H, JABLONKAI I, KRAJCSI P . Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins
Toxicology, 2008,248(1):45-51.

[本文引用: 1]

MENG J J, QIN Z W, ZHOU X Y, XIN M . An ATP-binding cassette transporter gene from Cucumis Sativus L., Csabc19, is involved in propamocarb stress in Arabidopsis thaliana
Plant molecular Biology Reporter, 2016,34(5):947-960.

[本文引用: 1]

MOREIRA L F, ZOMER S J, MARQUES S M . Modulation of the multixenobiotic resistance mechanism in Daniorerio hepatocyte culture (ZF-L) after exposure to glyphosate and Roundup?
Chemosphere, 2019,228:159-165.

[本文引用: 1]

相关话题/基因 遗传 细胞 种子 作物