删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同灌溉条件下冬小麦冠层含水量的光谱响应

本站小编 Free考研考试/2021-12-26

孙乾1,2,3, 顾晓鹤,1,2, 孙林3, 王淼4, 周龙飞1,2,3, 杨贵军1,2, 李卫国5, 束美艳1,2,31国家农业信息化工程技术研究中心,北京 100097
2农业部农业遥感机理与定量遥感重点实验室/北京农业信息技术研究中心,北京 100097
3山东科技大学测绘科学与工程学院,青岛 266590
4河北省农业技术推广总站,石家庄 050011
5江苏省农业科学院农业信息研究所,南京 210014

Spectral Response Analysis of Canopy Water Content of Winter Wheat Under Different Irrigation Conditions

SUN Qian1,2,3, GU XiaoHe,1,2, SUN Lin3, WANG Miao4, ZHOU LongFei1,2,3, YANG GuiJun1,2, LI WeiGuo5, SHU MeiYan1,2,3 1National Engineering Research Center for Information Technology in Agriculture, Beijing 100097
2Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture/Beijing Research Center for Information Technology in Agriculture, Beijing 100097
3College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong
4Hebei Agricultural Technology Extension General Station, Shijiazhuang 050011
5Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014

通讯作者: 顾晓鹤,E-mail: guxh@nercita.org.cn

责任编辑: 杨鑫浩
收稿日期:2019-03-5接受日期:2019-03-29网络出版日期:2019-07-16
基金资助:国家重点研发计划.2016YFD0300609
北京市农林科学院创新能力建设专项.KJCX20170705
江苏省重点计划项目.BE2016730


Received:2019-03-5Accepted:2019-03-29Online:2019-07-16
作者简介 About authors
孙乾,E-mail: sunq817@163.com。










摘要
【目的】寻找快速、无损地诊断冠层含水量的方法,对冬小麦长势监测、旱情评估及变量灌溉提供技术支持。【方法】基于田间变量灌溉试验,分析生育期、灌溉量对冬小麦冠层含水量的影响,解析冠层光谱对不同灌溉处理下冠层含水量的响应规律,以冠层等效水厚度(EWTc)为表征指标,基于连续小波变换(CWT)技术,构建冬小麦冠层等效水厚度光谱诊断模型,利用独立样本验证模型精度。【结果】冬小麦冠层等效水厚度在生育后期均随着灌溉量的增多而增加,并随着生育进程的推进而减少;冬小麦冠层光谱反射率随着生育进程的推进而降低,在近红外和中红外波段冠层光谱反射率均表现为1水>0.5水>0水;与原始冠层光谱反射率相比,经连续小波变换后的小波系数与冠层等效水厚度相关性在第1、2、3、5、6、7分解尺度均有不同程度的提高,提高幅度在8.40%—26.20%;以第6尺度2 400 nm、第2尺度1 596 nm和第7尺度2 397 nm构建的冠层等效水厚度光谱诊断模型稳定性和精度较好,验证样本决定系数R2为0.5411,RMSE为0.0127 cm。【结论】冬小麦冠层含水量随着灌溉时间与灌溉量发生规律性变化,在水分敏感波段范围内呈现明显的光谱响应特征,连续小波变换技术可以有效提高冠层光谱特征参量与冠层等效水厚度的相关性,实现冬小麦冠层含水量光谱诊断,可以为冬小麦田间变量灌溉决策提供技术支持。
关键词: 冬小麦;冠层等效水厚度;叶面积指数;灌溉;连续小波变换;冠层光谱

Abstract
【Objective】 Rapid and non-destructive diagnosis of canopy water content is of great significance for monitoring winter wheat growth, drought assessment and variable irrigation. The response of canopy spectrum to canopy water content under different irrigation treatments was analyzed in this study.【Method】Based on field variable irrigation experiments, the influence of growth stage and irrigation water on canopy water content of winter wheat were analyzed. The response rule of canopy spectrum to canopy water content under different irrigation treatments was explained. The canopy equivalent water thickness (EWTc) was used as the characterization index. Based on continuous wavelet transform (CWT), a spectral diagnostic model of EWTc of winter wheat was constructed. The accuracy of the model was verified by independent samples. 【Result】 The results showed that the EWTc of winter wheat increased with the increase of irrigation water in the later growth stage, and decreased with the advance of growth process. The canopy spectral reflectance of winter wheat decreased with the progress of the growth process. The canopy spectral reflectance of winter wheat at different irrigation treatments in near infrared and mid-infrared bands were as follows: 1 water > 0.5 water > 0 water. Compared with the original canopy spectral reflectance, the correlation between wavelet coefficients after continuous wavelet transform and EWTc was improved in different degrees at the decomposition scales of 1, 2, 3, 5, 6 and 7. In addition, the increase ranged from 8.40% to 26.20%. The spectral diagnostic model of canopy equivalent water thickness constructed at 2 400 nm in scale 6, 1 596 nm in scale 2, and 2 397 nm in scale 7 was better in stability and accuracy. The verification sample determined the coefficient R2=0.5411, and RMSE=0.0127 cm.【Conclusion】The canopy water content of winter wheat changed regularly with irrigation time and irrigation amount, and showed obvious spectral response characteristics in the water sensitive band. Continuous wavelet transform technology could effectively improve the correlation between canopy spectral parameters and canopy equivalent water thickness. The spectral diagnosis of canopy water content of winter wheat was realized. It could provide technical support for variable irrigation decision-making in winter wheat field.
Keywords:winter wheat;EWTc;LAI;irrigation;CWT;canopy spectrum


PDF (1406KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
孙乾, 顾晓鹤, 孙林, 王淼, 周龙飞, 杨贵军, 李卫国, 束美艳. 不同灌溉条件下冬小麦冠层含水量的光谱响应[J]. 中国农业科学, 2019, 52(14): 2425-2435 doi:10.3864/j.issn.0578-1752.2019.14.004
SUN Qian, GU XiaoHe, SUN Lin, WANG Miao, ZHOU LongFei, YANG GuiJun, LI WeiGuo, SHU MeiYan. Spectral Response Analysis of Canopy Water Content of Winter Wheat Under Different Irrigation Conditions[J]. Scientia Acricultura Sinica, 2019, 52(14): 2425-2435 doi:10.3864/j.issn.0578-1752.2019.14.004


0 引言

【研究意义】我国北方地区水资源普遍短缺,且水资源的区域性和季节性分布存在严重不均现象,水资源短缺成为限制我国小麦生产的重要因素[1,2,3]。水分是小麦生长过程中不可或缺的重要条件,水分缺乏对小麦生理特性、群体结构乃至光合作用均会产生不利的影响,如叶片光合速率大幅减慢,小麦植株发育不良,麦穗稀少瘦小,产量及品质降低等[4,5]。植株水分是衡量作物苗情和旱情的重要指标,作物缺水会引起叶片颜色、厚度、色素组成及形态结构等发生一系列变化,进而引起冠层光谱反射特征的变化[6,7]。【前人研究进展】利用光谱诊断作物水分含量具有快速、实时、无损等优点,国内外许多****进行了大量研究并取得了一定成果。YU等[8]利用特征波长522—2 450 nm反射率及其与波长1 430 nm、1 650 nm、1 850 nm、1 920 nm、1 950 nm处的光谱反射率(R1430、R1650、R1850、R1920、R1950)的比值,最终提出了估算叶片含水量(LWC)、相对叶片含水量(RWC)、相对鲜重叶片含水率(RMP)的建模方法,并在大豆受到水分和营养胁迫方面得到了较好的验证;王纪华等[9]建立了小麦叶片含水量与光谱反射率在波长1.45 μm处的吸收深度与吸收面积间的线性回归方程;YI等[10]通过对棉花叶片光谱反射率(350—2 500 nm)和一阶导数反射率进行比值植被指数(RVI)和归一化差异植被指数(NDVI)两种波段组合,发现由一阶导数反射率(DR1647、DR1133、DR1653、DR1687)比值组合的新指标DR1647/DR1133和DR1653/DR1687分别是等效水厚度(EWT)和可燃物含水率(FMC)估算的最佳指标。GLADIMIR等[11]利用单面叶的预测光传输模型(ABM-U模型),发现在555 nm处测定的次表层透光率比和总透光率比可作为C4植物(玉米)体内中度水分胁迫的指标;NING等[12]分析了不同叶位光谱特征与马铃薯植株含水量分布的关系,选择866.4 nm和1 406.8 nm波段建立了马铃薯叶片含水量的多元线性回归模型。【本研究切入点】前人研究大多侧重对作物叶片尺度含水量进行分析,对作物冠层尺度的含水量及冠层光谱变化特征的研究相对较少。由于作物叶片存在较大的个体差异,且叶片尺度的光谱观测较为困难,冠层含水量能够反映作物群体的水分状态,近年来光谱速测仪器的快速发展也为冠层光谱的实时获取提供了较为便利的技术支撑,因此,开展作物冠层尺度的水分光谱响应规律分析对于苗情监测、旱情评估和变量灌溉具有重要的应用价值。【拟解决的关键问题】本研究旨在分析不同生育期、不同灌溉条件下的冬小麦冠层等效水厚度(canopy equivalent water thickness,EWTc)的变化特征及冠层光谱响应规律。在灌溉控制试验的支持下,获取不同生育期、不同灌溉量的冬小麦农学参数、冠层光谱反射率等实测数据,基于连续小波变换技术(continuous wavelet transform,CWT)对冠层光谱数据进行数学变换,采用相关性分析法筛选冠层等效水厚度的敏感小波系数特征参量,利用偏最小二乘法构建冬小麦冠层等效水厚度光谱诊断模型,以期揭示不同灌溉条件下冬小麦冠层水分变化及冠层光谱响应规律。

1 材料与方法

1.1 试验设计

冬小麦水分灌溉试验于2017—2018年冬小麦生长季,在河北省晋州市开展,晋州市位于河北省中南部,地处114°58'20''E—115°12'30''E、37°47'30''N—38°09'30''N,属暖温带大陆性季风气候,境内四季分明,春季干燥多风,夏季炎热多雨,秋季冷热适宜,冬季寒冷少雪。降水多集中于6—9月,3—5月雨少干燥,是河北省降水量最少的县市之一。土壤类型多为潮土、褐潮土,作物种植为一年两熟耕作制,属于典型的冀中平原麦玉轮作区。

冬小麦供试品种为济麦22号和鲁原502号,为黄淮海地区种植范围较广的中筋品种。试验田占地共0.2 hm2,每个试验小区南北长9.5 m,东西宽7 m,面积66.5 m2,共计24个小区(图1)。灌溉水量设置3个梯度,即0倍水(不灌溉,雨养)、0.5倍水(用水量375 m3·hm-2)、1倍水(正常灌溉量,用水量750 m3·hm-2),以下简称0水、0.5水、1水,每种水分处理设4组重复。分别在孕穗期和扬花期对各个试验小区同时进行灌溉,并于灌溉一周后采集植株样本、测定农学参数及冠层光谱反射率数据(表1)。试验样本除灌溉处理外,其他田间管理措施均与常规田种植方式相同。

图1

新窗口打开|下载原图ZIP|生成PPT
图1试验小区示意图

1水 1 water =750 m3 hm-2;0.5水 0.5 water =375 m3 hm-2
Fig. 1Schematic diagram of experimental plot



Table 1
表1
表1灌溉时间及数据采集日期
Table 1The date of irrigation and data collection (M-D)
生育期
Growth stage
灌溉日期
Irrigation date
田间取样时间
Field sampling time
光谱和LAI测定时间
Spectral and LAI measurement time
孕穗期 Booting stage04-1704-2404-24
扬花期 Flowering stage04-2705-0405-04

新窗口打开|下载CSV

1.2 数据采集

1.2.1 冠层光谱 采用美国Analytical Spectral Device(ASD)公司生产的背挂式野外高光谱辐射仪(Field Spec Pro FR2500)测量冬小麦冠层光谱反射率数据,仪器波谱范围为350—2 500 nm,光谱分辨率为1 nm。分别在冬小麦孕穗期、扬花期,选择晴朗无风天气,在10:00—14:00测量冬小麦冠层光谱反射率数据。视场范围内阳光直接照射,光谱仪探头垂直向下观测,距离冠层顶80 cm,各试验小区重复测定10次,取均值作为该样本小区的冬小麦冠层光谱反射率,并剔除1 351—1 409 nm,1 811—1 939 nm,2 431—2 500 nm 3个水汽吸收带噪声。每次测量前均使用标准白板进行校正。

1.2.2 叶面积指数 冬小麦叶面积指数(leaf area index,LAI)的测量方法为比叶重法,即在一定取样面积内(50 cm×40 cm)随机选取10株具有代表性的冬小麦植株,装入取样袋密封,带回实验室内测定,测量前记录取样面积内总株数。从取样植株中摘下所有展开绿色叶片,在叶片中部宽窄一致的地方剪下3 cm宽的小段作为标叶,并测定其总长度,计算标叶面积,分别将标叶和余叶装入小纸袋中,在105℃的烘箱中杀青0.5 h后,85℃的恒温烘干,待叶片样品烘干后称其干重,并计算叶面积指数,LAI的计算公式如下:

$\text{LAI=}\frac{{{\text{W}}_{\text{1}}}\text{+W}{}_{\text{2}}}{{{\text{W}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ A }\!\!\times\!\!\text{ 10000}}\times \text{S}\times \text{p}$
式中,W1表示取样植株的标叶干重(g);W2表示取样植株的余叶干重(g);S表示标叶面积(cm2);A表示取样面积(m2);p表示取样面积内总株数。

1.2.3 冠层等效水厚度 叶片等效水厚度(equivalent water thickness,EWT)的测定方法为田间随机取样,选择10株具有代表性的冬小麦样本植株,摘取样本植株上部3—5片展开叶,用塑封袋装好且密封,带回实验室内迅速称其鲜重,测量叶片长和宽并计算面积,干重测定方法同LAI,EWT计算公式如下:

$\text{EWT(cm)=}\frac{\text{LFW-LDW}}{\text{LA }\!\!\times\!\!\text{ dw}}$
式中,LFW表示样本叶片鲜重(g);LDW表示样本叶片干重(g);LA表示叶片面积(cm2);dw表示水比重(1 g·cm-3)。

由于采集的光谱反射率数据为冠层尺度数据,冬小麦冠层光谱是其各种理化性质共同作用的结果,而叶片等效水厚度数据反映的是叶片尺度的水分信息,有必要将叶片尺度等效水厚度转换为冠层尺度等效水厚度,进而与冠层光谱建模分析。冠层等效水厚度可通过叶片等效水厚度与叶面积指数的乘积来表示[13,14],其计算公式为:

$\text{EWTc(cm)=LAI }\!\!\times\!\!\text{ EWT}$

1.3 连续小波变换

小波变换是一种强有力的信号处理与分析工具,可对信号进行多尺度的细化,能使信号所包含的重要信息显现出来,又分为离散小波变换(discrete wavelet transform,DWT)和连续小波变换(continuous wavelet transform,CWT)。由于DWT在分析高光谱数据时对输出参数的解析存在困难,而CWT在高光谱数据分析处理中能获取更多光谱吸收特征的位置和形状等有效信息[15,16],因此本研究选用CWT分析方法对冬小麦冠层高光谱反射率进行变换处理。CWT是一种积分变换方法,其数学含义为通过平移和缩放的小波基函数与光谱反射率数据进行卷积运算,将光谱反射率数据转换为不同分解尺度下的小波能量系数,其表达式为:

${{\text{W}}_{\text{f}}}\text{(a,b)=f,}{{\text{ }\!\!\psi\!\!\text{ }}_{\text{a,b}}}>=\int_{}^{+}{\text{f}(\text{ }\!\!\lambda\!\!\text{ }){{\text{ }\!\!\psi\!\!\text{ }}_{\text{a,b}}}(\text{ }\!\!\lambda\!\!\text{ )d }\!\!\lambda\!\!\text{ }}$
式中,Wf(a,b)为小波能量系数,是由分解尺度和波长组成的二维矩阵,f(λ)为冬小麦冠层光谱反射率数据,ψa,b(λ)为平移和缩放后的小波基函数,其函数表达式为:

${{\text{ }\!\!\psi\!\!\text{ }}_{\text{a,b}}}\text{( }\!\!\lambda\!\!\text{ })\text{=}\frac{\text{1}}{\sqrt{\text{a}}}\text{ }\!\!\psi\!\!\text{ (}\frac{\text{ }\!\!\lambda\!\!\text{ -b}}{\text{a}})$
式中,λ为光谱反射率的波段数,a为伸缩因子或尺度因子,b为平移因子。

有研究表明,植被光谱反射率曲线吸收特征的形状类似于Gaussian二阶导函数的形状[17],因此本研究采用Gaussian二阶导函数(即Mexican Hat)作为CWT的小波基函数,有助于提取反射率光谱吸收特征中隐藏的信息。本研究将冠层高光谱数据变换为小波能量系数,再与冠层等效水厚度进行相关性分析,筛选敏感光谱特征参量,建立冠层等效水厚度光谱反演模型。

1.4 模型建立与验证

绿色植被的反射光谱随着叶片色素、细胞结构、水分含量及其他生物化学成分的不同而发生改变,在不同波段呈现不同的形态与特征。可见光400—700 nm是植被叶片的强吸收波段,植被反射率主要与叶片中的各种色素相关;700—780 nm是植被叶绿素在红光波段的强吸收以及在近红外波段的多次散射形成的高反射平台的过渡波段;近红外780—1 350 nm,植被反射率较高且相对平稳,主要与叶片内部细胞结构有关;中红外1 350—2 500 nm,光谱反射率特征与叶片含水量密切相关[18]。本研究主要是为了探究在不同灌溉条件下冬小麦冠层含水量光谱变化及响应规律,因此在1 350—2 500 nm筛选敏感波段,建立冠层等效水厚度光谱反演模型。

偏最小二乘回归法(partial least squares regression,PLSR)是一种多元回归分析方法,集多元线性回归、主成分分析和最小二乘回归的优点于一体,可以在自变量多重自相关、样本数目远小于自变量个数的条件下有效构造回归模型。因此,本研究采用PLSR构建冬小麦冠层等效水厚度反演模型。

模型的估测精度采用稳定性和预测能力2个评价指标来解释,稳定性用决定系数R2检验,R2越接近1,模型稳定性越好;预测能力用实测值与预测值的总均方根误差RMSE检验,RMSE越小,模型预测能力越好,精度越高。

2 结果

2.1 不同灌溉处理冬小麦EWTc变化

相同灌溉量、不同生育期条件下,济麦22与鲁原502冠层等效水厚度均在孕穗期较高,扬花期稍低于孕穗期,LAI在孕穗期达到最大,而扬花期冬小麦LAI较孕穗期有所降低;扬花期叶片等效水厚度较孕穗期稍低,例如0.5水条件下的济麦22叶片等效水厚度在孕穗期为0.0169 cm,在扬花期为0.0167 cm。相同生育期、不同灌溉量条件下,济麦22与鲁原502的冠层等效水厚度都随着灌溉量的增多而增加,即0水<0.5水<1水(图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2冬小麦冠层等效水厚度变化

Fig. 2Changes of EWTc in winter wheat



2.2 不同灌溉处理冬小麦冠层光谱特征

以济麦22为例,相同灌溉量条件下,冬小麦冠层光谱反射率在孕穗期略高于扬花期,即随着生育进程的推进而降低。同一生育期、不同灌溉量条件下,冬小麦冠层光谱反射率在350—680 nm波段范围内无明显变化;在680—780 nm波段范围内,由于红光波段的强吸收和近红外波段的强反射,冠层光谱反射率急剧升高;在780—2 500 nm波段范围内光谱反射率大小均为1水>0.5水>0水,即光谱反射率随着灌溉量的增加而增加,其中在780—1 350 nm近红外波段范围内,光谱反射率变化最为显著(图 3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3冬小麦冠层光谱变化

Fig. 3Changes of spectra in winter wheat canopy



在测定冬小麦冠层光谱时,容易受到土壤背景的影响,而不同含水量条件下的土壤反射率也是不同的,土壤反射率总体趋势随着土壤中含水量的升高而下降[19,20]图4)。本研究中冠层光谱随灌溉水量的增多而升高,说明冬小麦冠层光谱的变化主要受到冠层含水量的影响。这是由于本研究所使用的小麦冠层光谱数据获取于孕穗期和扬花期,此时小麦冠层已封垄,探测视场内的光谱信息完全是由冬小麦冠层信息所决定,因此土壤背景对冬小麦冠层光谱不存在干扰。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同含水量土壤光谱变化

Fig. 4Changes of soil spectra with different water contents



2.3 原始光谱反射率与EWTc相关性

各生育期不同灌溉量处理的冠层等效水厚度变化特征和冠层光谱反射率变化规律在不同冬小麦品种之间具有较高的一致性,因此将2个品种合并对原始冠层光谱反射率数据与冠层等效水厚度进行相关性分析(图5)。可以看出,原始冠层光谱反射率数据与冠层等效水厚度之间相关系数较低,相关性不显著,在526—572、699—759、769—775、808—1 350、1 421—1 810、2 083—2 348、2 355—2 357、2 359—2 362 nm、2 382 nm波段原始光谱反射率与冠层等效水厚度呈正相关关系,且1 343 nm处相关系数为0.2763,达到最大;350—525、573—698、760—768、776—807、1 410—1 420、1 940—2 082、2 349—2 354、2 358、2 363—2 381、2 383—2 430 nm波段原始光谱反射率与冠层等效水厚度呈负相关关系,负相关系数在1 946 nm处为-0.5167,达到最大。相关系数绝对值大于0.5的波段位于中红外1 945—1 947 nm,且相关性在中红外波段普遍高于近红外和可见光波段。

图5

新窗口打开|下载原图ZIP|生成PPT
图5原始光谱反射率与冠层等效水厚度的相关系数

Fig. 5Correlation coefficient between original spectral reflectance and EWTc



2.4 冬小麦冠层光谱的CWT分解

本研究中冬小麦冠层高光谱数据共1 893个有效波段,分解尺度越接近波段数越好,为避免数据量过多且能较好提取有效光谱信息,最终设定分解尺度为21,22,…,210,分别对应第1尺度,第2尺度,…,第10尺度[15,21]。对原始冠层光谱反射率数据进行CWT分解和变换,每条光谱曲线在对应的分解尺度下都会生成相应的小波能量系数,将各分解尺度下的小波能量系数与冠层等效水厚度进行相关性分析,最终得到各波段小波能量系数与冠层等效水厚度的相关系数R以及小波能量系数矩阵。

由各分解尺度下小波能量系数与冠层等效水厚度之间的相关系数矩阵图谱(图6)可知,经CWT变换后,小波能量系数与冠层等效水厚度之间的相关性在第8、9、10分解尺度较低,在第1—7分解尺度不同波段范围较高,说明在中低分解尺度连续小波变换可充分挖掘冬小麦冠层光谱内隐含的信息。小波能量系数与冠层等效水厚度的最大相关性由0.5167提高到0.6521,比原始光谱提高26.20%。

图6

新窗口打开|下载原图ZIP|生成PPT
图6各分解尺度小波能量系数与冠层等效水厚度的相关系数

Fig. 6Correlation coefficient between wavelet energy coefficient and EWTc at different decomposition scales



为了更明确表示各分解尺度下小波能量系数与冠层等效水厚度之间的相关性大小,特绘制了相关系数绝对值图谱(图7)。相关性较高(|R|>0.6)的波段主要集中在1 222、1 594—1 598、2 384—2 414、2 397 nm,分别对应第1、2、6、7尺度,由此可知,与冠层等效水厚度相关性较高的光谱主要位于中红外波段,说明中红外波段光谱反射特征与水分密切相关。对原始光谱和小波系数与冠层等效水厚度的相关系数绝对值最大值进行了对比分析(表2),除第4、8、9和10分解尺度有所降低外,其余各分解尺度提高幅度在8.40%—26.20%,提高幅度最大的波段位于第1分解尺度1 222 nm。

图7

新窗口打开|下载原图ZIP|生成PPT
图7小波能量系数与冠层等效水厚度的相关系数绝对值

Fig. 7Absolute value of correlation coefficient between wavelet energy coefficient and EWTc



Table 2
表2
表2原始光谱以及小波系数与冠层等效水厚度相关系数绝对值最大值
Table 2Maximum absolute value of correlation coefficients of original spectra and wavelet coefficients with EWTc
分解尺度
Decomposition scale
∣R∣最大值
Maximum absolute value of R
波长
Wavelength (nm)
提高幅度
Increase range (%)
原始光谱
Original spectra
0.51671946
10.6521122226.2048
20.6353159622.9534
30.560115958.3995
40.5064734-1.9934
50.5727241810.8380
60.6355240022.9921
70.6004239716.1990
80.46641316-9.7349
90.4508474-12.7540
100.27362345-47.0486

新窗口打开|下载CSV

2.5 建模与验证

由于1 350—2 500 nm是植被叶片水分吸收占主导的波段,且直接受叶片含水量的影响[18,22-23],因此本研究在去除水汽吸收带后的1 410—1 810 nm和1 940—2 430 nm中红外波段内筛选敏感波段。从10个分解尺度中依据小波能量系数与冠层等效水厚度相关性高低,最终筛选出∣R∣>0.6的敏感波段为第6尺度2 400 nm、第2尺度1 596 nm、第7尺度2 397 nm,利用PLSR法构建EWTc光谱诊断模型。本研究中总样本量为46个,随机选取其中30个样本用来建模,其余16个样本用来验证模型的精度。模型如下:

Y=0.0027X1+0.2932X2-0.0059X3+0.0505

式中,Y代表EWTc,X1、X2、X3分别代表第6尺度2 400 nm、第2尺度1 596 nm和第7尺度2 397 nm对应的小波能量系数。

为验证模型精度,将建模样本和验证样本的EWTc预测值与实测值进行对比分析(图8)。该模型的建模样本和验证样本的预测值与实测值基本聚集于直线y=x附近,建模样本决定系数R2=0.5342,RMSE=0.0122 cm,验证样本决定系数R2=0.5411,RMSE=0.0127 cm,说明此模型的稳定性和预测能力均较好,精度较高。

图8

新窗口打开|下载原图ZIP|生成PPT
图8冠层等效水厚度建模与验证样本的实测值和预测值散点图

Fig. 8Scatter plot of predicted and measured values of EWTc



3 讨论

作物水分状况是指示群体长势好坏的重要指标,利用光谱技术无损、快速诊断作物水分胁迫状况,对于长势监测、作物估产和变量灌溉决策具有重要的指导意义[24,25]。冬小麦在孕穗期和扬花期处于营养生长向生殖生长过渡的阶段,水分需求十分敏感,充足的植株水分能有效促进幼穗分化进程,对于产量三要素中的亩穗数和千粒重具有较大影响。由于冬小麦冠层光谱在中红外波段范围主要受叶片含水量的影响,因此可以利用冠层光谱估算单位叶面积的作物含水量[24]。本文以冠层等效水厚度表征作物冠层水分状况,分析不同灌溉条件下冬小麦冠层含水量和冠层光谱变化特征,利用连续小波变换方法对冠层光谱反射率进行分解和变换,通过相关性分析筛选敏感光谱特征参量,实现冬小麦冠层含水量光谱诊断。利用敏感光谱特征参量构建的冬小麦冠层等效水厚度光谱诊断模型具有较好的建模和验证精度,说明利用连续小波变换技术反演作物冠层等效水厚度是可行的。

3.1 灌溉处理对冬小麦冠层等效水厚度的影响

不同生育期、灌溉量一致条件下,冠层等效水厚度在孕穗期高于扬花期,原因一是在孕穗期冬小麦单叶叶片面积较大,旗叶开始抽出叶鞘,植被覆盖度高,LAI此时达到最大,扬花期由于植株下部叶片枯黄甚至脱落,导致LAI降低[26];二是随着生育时期的推进,扬花期叶片等效水厚度普遍低于孕穗期。同一生育期,冠层等效水厚度随着灌溉量的增多而增加,主要是因为孕穗期和扬花期这2个生育期都是冬小麦需水的关键时期,灌溉量不足时植株生长受到抑制,光合作用减弱,样本生育进程明显加快,0水和0.5水处理的冬小麦叶片叶绿素含量、LAI和等效水厚度均低于1水处理。

3.2 灌溉处理对冬小麦冠层光谱反射率的影响

冬小麦冠层光谱反射率随着生育进程的推进而降低,主要是因为孕穗期是冬小麦旗叶长出的时期,对水肥较为敏感,此生育期小麦生长迅速,小麦冠层群体达到最大,冠层叶片呈多层分布状态,冠层光谱反射率达到最大,扬花期冬小麦叶片和茎秆为穗部提供养分和水分,同时麦穗对冠层光谱反射率贡献比例增大,冠层光谱反射率较孕穗期有所降低[27,28,29]。冬小麦冠层光谱反射率在780—1 350 nm近红外波段变化显著的原因在于1水的灌溉量为冬小麦生长提供充足的水分,小麦群体长势较好,近红外光谱反射率也高;而0水和0.5水对冬小麦生长造成水分胁迫,叶片内自由水含量降低、束缚水含量增加,叶面积缩小、叶绿素含量低、净光合速率变慢[31,32],同时根系活力下降、叶片内部结构及生理功能紊乱、细胞膜受损,生长受到抑制[33,34],进而导致近红外波段的光谱反射率相对于1水明显变低。

关于不同灌溉条件下冬小麦冠层含水量的研究,仅仅局限于冬小麦生育后期(孕穗期、扬花期),由于不同生育时期的冬小麦在生长状态、群体生理指标以及环境参数都存在一定的差异,并不能完全推广至整个生育期的遥感监测研究。在今后的工作中,将考虑加入冬小麦生育前期的田间试验和分析,探索冬小麦生长全程的冠层水分光谱诊断技术,为冬小麦分蘖、拔节、孕穗等关键需水生育期的变量灌溉决策提供技术支持。

4 结论

在控制灌溉小区试验的支持下,本文旨在探索不同灌溉条件下的冠层尺度冬小麦水分变化规律及其冠层光谱响应特征。灌溉量不足时冬小麦植株生长受到抑制,部分小麦生育进程提前,缺水胁迫下冬小麦叶片光合作用受到抑制、群体长势受损,冠层等效水厚度和冠层光谱反射率低于正常灌溉量处理。将冠层光谱反射率经CWT分解后,小波能量系数与冠层等效水厚度相关性有了较大提升,筛选敏感光谱参量并构建冬小麦冠层等效水厚度光谱诊断模型,光谱诊断模型的稳定性和预测能力均较好。上述结论可以为后续的冬小麦变量灌溉决策技术研究提供借鉴,对利用光学遥感技术监测冬小麦冠层含水量具有重要参考价值。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

郭进考, 史占良, 何明琦, 张相岐, 张爱民, 贾旭 . 发展节水小麦缓解北方水资源短缺——以河北省冬小麦为例
中国生态农业学报, 2010,18(4):876-879.

URLMagsci [本文引用: 1]
分析了我国北方水资源短缺的现状, 以河北省为例, 阐述了目前我国北方节水的关键。认为节水的关键在农业, 而农业节水的重点在小麦。提出在发展工程节水的同时, 注重发展生物节水和农艺节水, 以水分利用效率高的小麦品种为先导, 与配套的节水栽培技术相结合, 实现小麦生产的节水, 这对缓解北方水资源短缺现状具有重要意义。以河北省石家庄市农业科学院育成的“石麦15”和“石家庄8号”节水栽培实践论述了培育节水品种的可行性以及推广节水品种在农业节水中的巨大潜力。
GUO J K, SHI Z L, HE M Q, ZHANG X Q, ZHANG A M, JIA X . Development of water-saving wheat cultivars to limit water shortage in North China—a case study of Hebei Province
Chinese Journal of Eco-Agriculture, 2010,18(4):876-879. (in Chinese)

URLMagsci [本文引用: 1]
分析了我国北方水资源短缺的现状, 以河北省为例, 阐述了目前我国北方节水的关键。认为节水的关键在农业, 而农业节水的重点在小麦。提出在发展工程节水的同时, 注重发展生物节水和农艺节水, 以水分利用效率高的小麦品种为先导, 与配套的节水栽培技术相结合, 实现小麦生产的节水, 这对缓解北方水资源短缺现状具有重要意义。以河北省石家庄市农业科学院育成的“石麦15”和“石家庄8号”节水栽培实践论述了培育节水品种的可行性以及推广节水品种在农业节水中的巨大潜力。

刘佳俊, 董锁成, 李泽红 . 中国水资源承载力综合评价研究
自然资源学报, 2011,26(2):258-269.

DOI:10.11849/zrzyxb.2011.02.009URLMagsci [本文引用: 1]
中国水资源短缺,加之水资源时空分布不均、水土资源分布不匹配,水资源已成为制约中国社会经济可持续发展的重要因素。文章从系统论的角度出发,研究中国经济、社会发展、生态环境与水资源的协调发展关系,运用水资源承载力综合评价模型,通过选取特定年份相关数据计算其水资源承载力综合评价指数,描述中国各省区水资源承载力状况,以此综合分析评价中国水资源的承载能力。结果表明:中国水资源分布不均,与人口分布和经济布局不相匹配;西南省区水资源承载潜力相对较大;长江、珠江流域及东部沿海地区,已无水资源承载力优势;华北平原、西北地区如新疆、宁夏、甘肃等地区水资源严重短缺,水资源超载严重,水资源承载力渐趋枯竭。
LIU J J, DONG S C, LI Z H . Comprehensive evaluation of China's water resources carrying capacity
Journal of Natural Resources, 2011,26(2):258-269. (in Chinese)

DOI:10.11849/zrzyxb.2011.02.009URLMagsci [本文引用: 1]
中国水资源短缺,加之水资源时空分布不均、水土资源分布不匹配,水资源已成为制约中国社会经济可持续发展的重要因素。文章从系统论的角度出发,研究中国经济、社会发展、生态环境与水资源的协调发展关系,运用水资源承载力综合评价模型,通过选取特定年份相关数据计算其水资源承载力综合评价指数,描述中国各省区水资源承载力状况,以此综合分析评价中国水资源的承载能力。结果表明:中国水资源分布不均,与人口分布和经济布局不相匹配;西南省区水资源承载潜力相对较大;长江、珠江流域及东部沿海地区,已无水资源承载力优势;华北平原、西北地区如新疆、宁夏、甘肃等地区水资源严重短缺,水资源超载严重,水资源承载力渐趋枯竭。

张建云, 贺瑞敏, 齐晶, 刘翠善, 王国庆, 金君良 . 关于中国北方水资源问题的再认识
水科学进展, 2013,24(3):303-310.

URLMagsci [本文引用: 1]
特殊的地理地形和气候条件决定了中国洪涝干旱灾害频发。由于客观的禀赋条件,中国北方降水量小,水资源供需矛盾突出。在变化环境条件下,中国北方河川径流量呈现减少趋势,且随着经济社会的快速发展,区域需水较大幅度的增加,进一步加剧了北方水资源的供需矛盾;径流变化归因分析表明,人类活动导致的流域下垫面变化、工农业的快速发展及其他经济社会活动是北方河川径流减少的主要原因。实行最严格的水资源管理,加强节水型社会建设是解决北方水资源问题的根本出路。
ZHANG J Y, HE R M, QI J, LIU C S, WANG G Q, JIN J L . A new perspective on water issues in North China
Advances in Water Science, 2013,24(3):303-310. (in Chinese)

URLMagsci [本文引用: 1]
特殊的地理地形和气候条件决定了中国洪涝干旱灾害频发。由于客观的禀赋条件,中国北方降水量小,水资源供需矛盾突出。在变化环境条件下,中国北方河川径流量呈现减少趋势,且随着经济社会的快速发展,区域需水较大幅度的增加,进一步加剧了北方水资源的供需矛盾;径流变化归因分析表明,人类活动导致的流域下垫面变化、工农业的快速发展及其他经济社会活动是北方河川径流减少的主要原因。实行最严格的水资源管理,加强节水型社会建设是解决北方水资源问题的根本出路。

苏其红, 刘媛, 栗孟飞, 杨德龙, 陈菁菁, 程宏波, 常磊, 柴守玺 . 干旱调控小麦旗叶持绿性与产量变异的遗传与相关性分析
分子植物育种, 2018,16(19):6353-6364.

[本文引用: 1]

SU Q H, LIU Y, LI M F, YANG D L, CHEN J J, CHENG H B, CHANG L, CHAI S X . Hereditary and correlation analysis of yield variability and stay-green of flag leaf regulated by drought in wheat
Molecular Plant Breeding, 2018,16(19):6353-6364. (in Chinese)

[本文引用: 1]

郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪 . 拔节孕穗期小麦干旱胁迫下生长代谢变化规律
植物生态学报, 2016,40(12):1319-1327.

DOI:10.17521/cjpe.2016.0107URLMagsci [本文引用: 1]
<p>采用盆栽试验模拟干旱胁迫(土壤相对含水量40%&ndash;45%)在小麦(<em>Triticum aestivum</em>)拔节孕穗期胁迫12天, 测定其生长速率、光合特征及关键代谢产物含量, 以探讨干旱胁迫对拔节孕穗期小麦叶片初生及次生代谢产物的影响及其涉及的代谢途径, 讨论小麦生长代谢变化规律及应答机制。研究表明: 干旱胁迫使小麦叶片气孔受限制导致光合速率下降; 使叶绿素含量下降直接影响光系统II活性, 最终导致生长率降低。检测出的初级代谢产物组包括有机酸、氨基酸、碳水化合物、嘧啶和嘌呤等64个代谢产物, 其中29个代谢产物在干旱胁迫下发生明显的变化。主成分分析(PCA)结果显示全部样本均分布在95%的置信区间内, 两个主成分得分为64%。单因素方差分析结果表明, 干旱胁迫导致苹果酸、柠檬酸、乌头酸等参与三羧酸(TCA)循环的代谢产物消耗明显, 且引起大部分氨基酸(如脯氨酸、丝氨酸、缬氨酸)和碳水化合物(肌醇、果糖、葡萄糖)大量积累的同时转氨基代谢(天冬酰胺、谷氨酰胺和&gamma;氨基丁酸)产物消耗, 研究证明干旱胁迫明显地促进小麦叶片的糖酵解和氨基酸合成途径, 但抑制了TCA循环和转氨基反应, 加速氨基酸代谢网络向脯氨酸合成转变过程。这些结果表明干旱胁迫引起了转氨基反应、TCA循环、糖酵解/糖异生、谷氨酸介导的脯氨酸合成, 以及嘧啶和嘌呤等代谢网络系统广泛的变化, 说明小麦在合成大量的氨基酸和碳水化合物类物质的同时也消耗了大量的能量, 暗示了糖异生到脯氨酸合成的转变。</p>
GUO R, ZHOU J, YANG F, LI F, LI H R, XIA X, LIU Q . Growth metabolism of wheat under drought stress at the jointing-booting stage
Chinese Journal of Plant Ecology, 2016,40(12):1319-1327. (in Chinese)

DOI:10.17521/cjpe.2016.0107URLMagsci [本文引用: 1]
<p>采用盆栽试验模拟干旱胁迫(土壤相对含水量40%&ndash;45%)在小麦(<em>Triticum aestivum</em>)拔节孕穗期胁迫12天, 测定其生长速率、光合特征及关键代谢产物含量, 以探讨干旱胁迫对拔节孕穗期小麦叶片初生及次生代谢产物的影响及其涉及的代谢途径, 讨论小麦生长代谢变化规律及应答机制。研究表明: 干旱胁迫使小麦叶片气孔受限制导致光合速率下降; 使叶绿素含量下降直接影响光系统II活性, 最终导致生长率降低。检测出的初级代谢产物组包括有机酸、氨基酸、碳水化合物、嘧啶和嘌呤等64个代谢产物, 其中29个代谢产物在干旱胁迫下发生明显的变化。主成分分析(PCA)结果显示全部样本均分布在95%的置信区间内, 两个主成分得分为64%。单因素方差分析结果表明, 干旱胁迫导致苹果酸、柠檬酸、乌头酸等参与三羧酸(TCA)循环的代谢产物消耗明显, 且引起大部分氨基酸(如脯氨酸、丝氨酸、缬氨酸)和碳水化合物(肌醇、果糖、葡萄糖)大量积累的同时转氨基代谢(天冬酰胺、谷氨酰胺和&gamma;氨基丁酸)产物消耗, 研究证明干旱胁迫明显地促进小麦叶片的糖酵解和氨基酸合成途径, 但抑制了TCA循环和转氨基反应, 加速氨基酸代谢网络向脯氨酸合成转变过程。这些结果表明干旱胁迫引起了转氨基反应、TCA循环、糖酵解/糖异生、谷氨酸介导的脯氨酸合成, 以及嘧啶和嘌呤等代谢网络系统广泛的变化, 说明小麦在合成大量的氨基酸和碳水化合物类物质的同时也消耗了大量的能量, 暗示了糖异生到脯氨酸合成的转变。</p>

STEIDLE NETO A J, LOPES D C, SILVA T G F, FERREIRA S O, GROSSI J A S . Estimation of leaf water content in sunflower under drought conditions by means of spectral reflectance
Engineering in Agriculture, Environment and Food, 2017,10(2):104-108.

DOI:10.1016/j.eaef.2016.11.006URL [本文引用: 1]

GIZAW S A, GARLAND-CAMPBELL K, CARTER A H . Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions
Field Crops Research, 2016,196:168-179.

DOI:10.1016/j.fcr.2016.06.018URL [本文引用: 1]

YU G R, MIWA T, NAKAYAMA K, MATSUOKA N, KON H . A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties
Plant and Soil, 2000,227:47-58.

DOI:10.1023/A:1026556613082URL [本文引用: 1]

王纪华, 赵春江, 郭晓维, 田庆久 . 用光谱反射率诊断小麦叶片水分状况的研究
中国农业科学, 2001,34(1):1-4.

URLMagsci [本文引用: 1]
采用栽培稻遗传图第 4连锁群中与抗稻瘿蚊基因 ,Gm- 6和 Gm- 2等位的 RFL P标记 RG2 14和 RZ5 6 9筛选出来的两个 BAC克隆为探针 ,对药用野生稻进行了荧光原位杂交物理定位。两个 BAC克隆的大小分别为 5 0 kb和86 kb,在 Cot- 1DNA封阻的情况下它们均被定位于药用野生稻第 4染色体长臂 ,与着丝粒百分距为 72 .33± 4.40、77.10± 2 .40 ,信号检出率分别为 6 1.2 %和 5 9.5 %。与此同时 ,用 RG2 14和 RZ5 6 9对药用野生稻进行了杂交 ,它们也被定位于药用野生稻第 4染色体长臂 ,与着丝粒百分距分别为 74.18± 2 .6 2和 78.2 3± 2 .31,信号检出率分别为 8.3%和 9.4%。 BAC克隆的 RFL P标记探针杂交位置几乎一致 ,这表明在栽培稻和野生稻中 RFL P标记 RG2 14和RZ5 6 9都在同一 BAC克隆的大插入片段中 ,药用野生稻与抗性基因 Gm- 6和 Gm- 2同源顺序就在第 4染色体信号出现的相应位置。药用野生稻第 4染色体的确定是根据 Jena等 (1994)和本研究的 RFL P的杂交结果进行的。文中讨论了利用栽培稻 BAC克隆对药用野生稻进行原位杂交物理作图的可行性等问题。
WANG J H, ZHAO C J, GUO X W, TIAN Q J . Study on the water status of the wheat leaves diagnosed by the spectral reflectance
Scientia Agricultura Sinica, 2001,34(1):1-4. (in Chinese)

URLMagsci [本文引用: 1]
采用栽培稻遗传图第 4连锁群中与抗稻瘿蚊基因 ,Gm- 6和 Gm- 2等位的 RFL P标记 RG2 14和 RZ5 6 9筛选出来的两个 BAC克隆为探针 ,对药用野生稻进行了荧光原位杂交物理定位。两个 BAC克隆的大小分别为 5 0 kb和86 kb,在 Cot- 1DNA封阻的情况下它们均被定位于药用野生稻第 4染色体长臂 ,与着丝粒百分距为 72 .33± 4.40、77.10± 2 .40 ,信号检出率分别为 6 1.2 %和 5 9.5 %。与此同时 ,用 RG2 14和 RZ5 6 9对药用野生稻进行了杂交 ,它们也被定位于药用野生稻第 4染色体长臂 ,与着丝粒百分距分别为 74.18± 2 .6 2和 78.2 3± 2 .31,信号检出率分别为 8.3%和 9.4%。 BAC克隆的 RFL P标记探针杂交位置几乎一致 ,这表明在栽培稻和野生稻中 RFL P标记 RG2 14和RZ5 6 9都在同一 BAC克隆的大插入片段中 ,药用野生稻与抗性基因 Gm- 6和 Gm- 2同源顺序就在第 4染色体信号出现的相应位置。药用野生稻第 4染色体的确定是根据 Jena等 (1994)和本研究的 RFL P的杂交结果进行的。文中讨论了利用栽培稻 BAC克隆对药用野生稻进行原位杂交物理作图的可行性等问题。

YI Q X, BAO A M, WANG Q, ZHAO J . Estimation of leaf water content in cotton by means of hyperspectral indices
Computers and Electronics in Agriculture, 2013,90:144-151.

DOI:10.1016/j.compag.2012.09.011URL [本文引用: 1]

GLADIMIR V G B, SPENCER V L, TENN F C . On the detection and monitoring of reduced water content in plants using spectral responses in the visible domain
Land Surface & Cryosphere Remote Sensing III, SPIE Asia-Pacific Remote Sensing, 2016,9877:1-11.

[本文引用: 1]

NING L, LI W, LONGSHENG C, HONG S QIAOXUE D, JINGZHU W . Spectral characteristics analysis and water content detection of potato plants leaves
International Federation of Automatic Control, 2018,51(17):541-546.

[本文引用: 1]

CECCATO P, GOBRON N, FLASSE S, PINTY B, TARANTOLA S . Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach
Remote Sensing of Environment, 2002,82(2/3):188-197.

DOI:10.1016/S0034-4257(02)00037-8URL [本文引用: 1]

CLEVERS J G P W, KOOISTRA L, SCHAEPMAN M E . Estimating canopy water content using hyperspectral remote sensing data
International Journal of Applied Earth Observation & Geoinformation, 2010,12(2):119-125.

URL [本文引用: 1]

BLACKBURN G A, FERWERDA J G . Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis
Remote Sensing of Environment, 2008,112(4):1614-1632.

DOI:10.1016/j.rse.2007.08.005URL [本文引用: 2]

NOURANI V, BAGHANAM A H, ADAMOWSKI J, GEBREMICHAEL M . Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
Journal of Hydrology, 2013,476:228-243.

DOI:10.1016/j.jhydrol.2012.10.054URL [本文引用: 1]

MILLER J R, HARE E W, WU J . Quantitative characterization of the vegetation red edge reflectance 1, an inverted-Gaussian reflectance model
International Journal of Remote Sensing, 1990,11(10):1755-1773.

DOI:10.1080/01431169008955128URL [本文引用: 1]

王纪华, 赵春江, 黄文江 . 农业定量遥感基础与应用. 北京: 科学出版社, 2008.
[本文引用: 2]

WANG J H, ZHAO C J, HUANG W J. The Basis and Application of Agricultural Quantitative Remote Sensing. Beijing: Science Press, 2008. ( in Chinese)
[本文引用: 2]

LOBELL D B, ASNER G P . Moisture effects on soil reflectance
Soil Science Society of America Journal, 2002,66(3):722-727.

DOI:10.2136/sssaj2002.7220URL [本文引用: 1]

卢艳丽, 白由路, 王磊, 杨俐苹 . 农田不同粒级土壤含水量光谱特征及定量预测
中国农业科学, 2018,51(9):1717-1724.

URL [本文引用: 1]

LU Y L, BAI Y L, WANG L, YANG L P . Spectral characteristics and quantitative prediction of soil water content under different soil particle sizes
Scientia Agricultura Sinica. 2018,51(9):1717-1724. (in Chinese)

URL [本文引用: 1]

CHENG T, RIVARD B, SÁNCHEZAZOFEIFA G A . Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation
Remote Sensing of Environment, 2010,114(4):899-910.

DOI:10.1016/j.rse.2009.12.005URL [本文引用: 1]

BAUER M E . Spectral inputs to crop identification and condition assessment
Proceedings of the IEEE, 1985,73(6):1071-1085.

DOI:10.1109/PROC.1985.13238URL [本文引用: 1]

GRANT L . Diffuse and specular characteristics of leaf reflectance
Remote Sensing of Environment, 1987,22(2):309-322.

DOI:10.1016/0034-4257(87)90064-2URL [本文引用: 1]

郑兴明, 丁艳玲, 赵凯, 姜涛, 李晓峰, 张世轶, 李洋洋, 武黎黎, 孙建, 任建华, 张宣宣 . 基于Landsat 8 OLI数据的玉米冠层含水量反演研究
光谱学与光谱分析, 2014,34(12):3385-3390.

URL [本文引用: 2]
植被含水量是作物长势好坏的指示因子, 利用遥感技术及时准确监测植被含水量对农业生产、 作物估产和干旱状况评价具有重要意义。 基于新一代对地观测计划Landsat 8 OLI传感器(Operational Land Imager, 陆地成像仪), 评价其植被含水量反演的能力与局限性。 首先, 利用ProSail冠层模型模拟冠层光谱反射率数据集, 分析OLI传感器的植被含水量敏感波段以及土壤背景对各波段反射率的影响, 然后利用基于Landsat OLI影像计算的植被水分指数和2013年6月1日—8月14日期间采样的植被含水量数据, 比较12种植被水分指数与地面实际采样的植被含水量的相关性, 评价估算植被含水量的最佳植被水分指数。 结果表明: OLI传感器的红、 近红外和两个短波红外对植被含水量敏感, 其中近红外波段最为敏感;在低植被覆盖度时, 土壤背景反射率的太阳辐射将达到光谱传感器影响植被水分指数与植被含水量之间的关系, 利用ProSail模拟干湿土壤背景反射率结果也表明土壤背景对植被冠层反射率的影响很大;引入优化土壤调整植被指数(OSAVI)去除土壤背景对植被水分指数的影响;在12种植被水分指数中, MSI2与植被含水量的拟合关系最好(R2=0.948), 植被含水量的平均拟合误差为0.52 kg·m-2;在植被生长晚期即植被含水量大于2 kg·m-2时, 各植被水分指数出现饱和情况, 植被含水量的估算结果不佳。
ZHENG X M, DING Y L, ZHAO K, JIANG T, LI X F, ZHANG S Y, LI Y Y, WU L L, SUN J, REN J H, ZHANG X X . Estimation of vegetation water content from Landsat 8 OLI data
Spectroscopy and Spectral Analysis, 2014,34(12):3385-3390. (in Chinese)

URL [本文引用: 2]
植被含水量是作物长势好坏的指示因子, 利用遥感技术及时准确监测植被含水量对农业生产、 作物估产和干旱状况评价具有重要意义。 基于新一代对地观测计划Landsat 8 OLI传感器(Operational Land Imager, 陆地成像仪), 评价其植被含水量反演的能力与局限性。 首先, 利用ProSail冠层模型模拟冠层光谱反射率数据集, 分析OLI传感器的植被含水量敏感波段以及土壤背景对各波段反射率的影响, 然后利用基于Landsat OLI影像计算的植被水分指数和2013年6月1日—8月14日期间采样的植被含水量数据, 比较12种植被水分指数与地面实际采样的植被含水量的相关性, 评价估算植被含水量的最佳植被水分指数。 结果表明: OLI传感器的红、 近红外和两个短波红外对植被含水量敏感, 其中近红外波段最为敏感;在低植被覆盖度时, 土壤背景反射率的太阳辐射将达到光谱传感器影响植被水分指数与植被含水量之间的关系, 利用ProSail模拟干湿土壤背景反射率结果也表明土壤背景对植被冠层反射率的影响很大;引入优化土壤调整植被指数(OSAVI)去除土壤背景对植被水分指数的影响;在12种植被水分指数中, MSI2与植被含水量的拟合关系最好(R2=0.948), 植被含水量的平均拟合误差为0.52 kg·m-2;在植被生长晚期即植被含水量大于2 kg·m-2时, 各植被水分指数出现饱和情况, 植被含水量的估算结果不佳。

宋小宁, 马建威, 李小涛, 冷佩, 周芳成, 李爽 . 基于Hyperion高光谱数据的植被冠层含水量反演
光谱学与光谱分析, 2013,33(10):2833-2837.

URL [本文引用: 1]
植被冠层含水量广泛应用于农业、 生态和水文等研究中。 本文基于PROSAIL模型, 建立了利用Hyperion高光谱数据定量反演植被冠层含水量的模型。 首先, PROSAIL模型模拟植被冠层反射特征表明, 970 nm水吸收带右侧曲线(980~1 070 nm)一阶导数D980~1 070与冠层含水量关系密切, 决定系数达0.96。 基于此, 利用Hyperion数据的983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053, 1 063 nm共9个波段计算D980~1 070, 并利用所建模型反演植被冠层含水量。 最后, 利用黑河流域盈科绿洲的实测数据对反演结果进行了验证, 其平均相对误差为12.5%, 均方根误差在0.1 kg·m-2内, 结果表明该模型可靠。 该研究可以为大范围获取植被含水量信息提供有效方法。
SONG X N, MA J W, LI X T, LENG P, ZHOU F C, LI S . Estimation of vegetation canopy water content using Hyperion hyperspectral data
Spectroscopy and Spectral Analysis, 2013,33(10):2833-2837. (in Chinese)

URL [本文引用: 1]
植被冠层含水量广泛应用于农业、 生态和水文等研究中。 本文基于PROSAIL模型, 建立了利用Hyperion高光谱数据定量反演植被冠层含水量的模型。 首先, PROSAIL模型模拟植被冠层反射特征表明, 970 nm水吸收带右侧曲线(980~1 070 nm)一阶导数D980~1 070与冠层含水量关系密切, 决定系数达0.96。 基于此, 利用Hyperion数据的983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053, 1 063 nm共9个波段计算D980~1 070, 并利用所建模型反演植被冠层含水量。 最后, 利用黑河流域盈科绿洲的实测数据对反演结果进行了验证, 其平均相对误差为12.5%, 均方根误差在0.1 kg·m-2内, 结果表明该模型可靠。 该研究可以为大范围获取植被含水量信息提供有效方法。

束美艳, 顾晓鹤, 孙林, 朱金山, 杨贵军, 王延仓, 张丽妍 . 基于新型植被指数的冬小麦LAI高光谱反演
中国农业科学, 2018,51(18):3486-3496.

URL [本文引用: 1]

SHU M Y, GU X H, SUN L, ZHU J S, YANG G J, WANG Y C, ZHANG L Y . High spectral inversion of winter wheat LAI based on new vegetation index
Scientia Agricultura Sinica, 2018,51(18):3486-3496. (in Chinese)

URL [本文引用: 1]

张俊华, 张佳宝 . 不同生育期冬小麦光谱特征对叶绿素和氮素的响应研究
土壤通报, 2008,39(3):586-592.

[本文引用: 1]

ZHANG J H, ZHANG J B . Response of winter wheat spectral reflectance to leaf chlorophyll, total nitrogen of above ground
Chinese Journal of Soil Science, 2008,39(3):586-592. (in Chinese)

[本文引用: 1]

卢艳丽, 胡昊, 白由路, 王磊, 王贺, 杨俐苹 . 植被覆盖度对冬小麦冠层光谱的影响及定量化估产研究
麦类作物学报, 2010,30(1):96-100.

DOI:10.7606/j.issn.1009-1041.2010.01.020URLMagsci [本文引用: 1]
为避免土壤背景对冠层光谱的干扰,提高冬小麦定量化估产精度,以河北廊坊中低产田条件下的冬小麦为研究对象,利用ASD Field Spec高光谱仪定点获取冬小麦冠层光谱信息,分析了田间植被覆盖度和冠层NDVI在生育期内的变化,并利用植被覆盖度对冠层NDVI进行了校正。结果表明,通过三基色即RGB、色度和亮度可将数字图像中冬小麦和土壤背景进行分割,从而获得单位面积上冬小麦的覆盖百分比。而通过覆盖度校正后的植被指数即C NDVI能够更具针对性地反映植株冠层氮素信息。在本试验条件下利用灌浆中期的C NDVI与产量进行一元回归或利用全生育期的C NDVI与产量进行多元回归均取得了较好的效果,决定系数分别为0.849和0.853。由于多元回归模型考虑了不同时期的C NDVI的变化,因此模型具有更强的可靠性和稳定性,较适合于冬小麦定量化估产。
LU Y L, HU H, BAI Y L, WANG L, WANG H, YANG L P . Effects of vegetation coverage on the canopy spectral and yield quantitative estimation in wheat
Journal of Triticeae Crops, 2010,30(1):96-100. (in Chinese)

DOI:10.7606/j.issn.1009-1041.2010.01.020URLMagsci [本文引用: 1]
为避免土壤背景对冠层光谱的干扰,提高冬小麦定量化估产精度,以河北廊坊中低产田条件下的冬小麦为研究对象,利用ASD Field Spec高光谱仪定点获取冬小麦冠层光谱信息,分析了田间植被覆盖度和冠层NDVI在生育期内的变化,并利用植被覆盖度对冠层NDVI进行了校正。结果表明,通过三基色即RGB、色度和亮度可将数字图像中冬小麦和土壤背景进行分割,从而获得单位面积上冬小麦的覆盖百分比。而通过覆盖度校正后的植被指数即C NDVI能够更具针对性地反映植株冠层氮素信息。在本试验条件下利用灌浆中期的C NDVI与产量进行一元回归或利用全生育期的C NDVI与产量进行多元回归均取得了较好的效果,决定系数分别为0.849和0.853。由于多元回归模型考虑了不同时期的C NDVI的变化,因此模型具有更强的可靠性和稳定性,较适合于冬小麦定量化估产。

ZARCO-TEJADA P J, MILLER J R, NOLAND T L, MOHAMMED G H, SAMPSON P H . Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.

DOI:10.1109/36.934080URL [本文引用: 1]

丛建鸥, 李宁, 许映军, 顾卫, 乐章燕, 黄树青, 席宾, 雷飏 . 干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系
中国生态农业学报, 2010,18(1):67-71.

URLMagsci
通过控制生育期水分条件形成不同程度的干旱胁迫, 对冬小麦生长、产量及生理指标和冠层高光谱反射率对干旱胁迫的反应进行监测, 建立冬小麦减产率与生长、生理及冠层光谱反射率的相关模型。研究结果表明: 不同生育期冬小麦干物质积累速度随水分胁迫程度的增大而减小; 叶绿素含量与水分条件的关系不同于其他参数, 表现为中等水分条件下叶绿素含量最大, 严重水分胁迫下叶绿素含量最低; 不同水分条件下光合速率呈两种不同日变化特征, 且正常供水处理的光合速率明显高于严重干旱处理。光合速率和增强植被指数(<i>EVI</i>)同冬小麦减产率相关性较强, 能够建立较好的关系模型用于小麦产量预测。
CONG J O, LI N, XU Y J, GU W, LE Z Y, HUANG S Q, XI B, LEI Y . Relationship between indices of growth, physiology and reflectivity and yield of winter wheat under water stress
Chinese Journal of Eco-Agriculture, 2010,18(1):67-71. (in Chinese)

URLMagsci
通过控制生育期水分条件形成不同程度的干旱胁迫, 对冬小麦生长、产量及生理指标和冠层高光谱反射率对干旱胁迫的反应进行监测, 建立冬小麦减产率与生长、生理及冠层光谱反射率的相关模型。研究结果表明: 不同生育期冬小麦干物质积累速度随水分胁迫程度的增大而减小; 叶绿素含量与水分条件的关系不同于其他参数, 表现为中等水分条件下叶绿素含量最大, 严重水分胁迫下叶绿素含量最低; 不同水分条件下光合速率呈两种不同日变化特征, 且正常供水处理的光合速率明显高于严重干旱处理。光合速率和增强植被指数(<i>EVI</i>)同冬小麦减产率相关性较强, 能够建立较好的关系模型用于小麦产量预测。

谷艳芳, 丁圣彦, 陈海生, 高志英, 邢倩 . 干旱胁迫下冬小麦(Triticum aestivum)高光谱特征和生理生态响应
生态学报, 2008,28(6):2690-2697.

URLMagsci [本文引用: 1]
2006年于冬小麦(Triticum&nbsp;aestivum)孕穗期、开花期和灌浆期,采用ASD&nbsp;Fieldspec&nbsp;HH光谱仪测定了不同水分胁迫下冬小麦高光谱反射率、红边参数和对应的冬小麦生理生态参数叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a+b(Chla+b),叶片水分含量(LWC),叶面积指数(LAI)。结果表明,冬小麦生理生态参数随生长发育呈现先上升后下降趋势,Chla、Chlb和Chla+b开花期达最大值;LWC和LAI孕穗期达最大值。随干旱胁迫程度增加,Chla、Chlb和Chla+b、LWC和LAI减少。不同水分处理下冬小麦高光谱反射率具有绿色植物特征。用红边一阶微分光谱特征参数分析,冬小麦孕穗期和开花期红边(λred)位于728~730nm,灌浆期红边(λred)移到734nm。Chla、Chlb和Chla+b与Dλ730:Dλ702、Dλ730∶Dλ718,LWC与Dλred、Dλ718以及LAI与Dλ718、Dλred、Sred均呈正相关,相关系数大于0.5(p&lt;0.05)。经回归分析,Chl与Dλ730∶Dλ702、LWC与Dλred呈线性关系(R2=0.87),LAI与Sred呈二次关系(R2=0.68)。因此,用冬小麦高光谱特征及红边参数能判断冬小麦生育后期长势和农田水分胁迫程度。
GU Y F, DING S Y, CHEN H S, GAO Z Y, XING Q . Ecophysiological responses and hyperspectral characteristics of winter wheat (Triticum aestivum) under drought stress.
Acta Ecologica Sinica, 2008,28(6):2690-2697. (in Chinese)

URLMagsci [本文引用: 1]
2006年于冬小麦(Triticum&nbsp;aestivum)孕穗期、开花期和灌浆期,采用ASD&nbsp;Fieldspec&nbsp;HH光谱仪测定了不同水分胁迫下冬小麦高光谱反射率、红边参数和对应的冬小麦生理生态参数叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a+b(Chla+b),叶片水分含量(LWC),叶面积指数(LAI)。结果表明,冬小麦生理生态参数随生长发育呈现先上升后下降趋势,Chla、Chlb和Chla+b开花期达最大值;LWC和LAI孕穗期达最大值。随干旱胁迫程度增加,Chla、Chlb和Chla+b、LWC和LAI减少。不同水分处理下冬小麦高光谱反射率具有绿色植物特征。用红边一阶微分光谱特征参数分析,冬小麦孕穗期和开花期红边(λred)位于728~730nm,灌浆期红边(λred)移到734nm。Chla、Chlb和Chla+b与Dλ730:Dλ702、Dλ730∶Dλ718,LWC与Dλred、Dλ718以及LAI与Dλ718、Dλred、Sred均呈正相关,相关系数大于0.5(p&lt;0.05)。经回归分析,Chl与Dλ730∶Dλ702、LWC与Dλred呈线性关系(R2=0.87),LAI与Sred呈二次关系(R2=0.68)。因此,用冬小麦高光谱特征及红边参数能判断冬小麦生育后期长势和农田水分胁迫程度。

牟筱玲, 鲍啸 . 土壤水分胁迫对棉花叶片水分状况及光合作用的影响
中国棉花, 2003,30(9):9-10.

[本文引用: 1]

MOU X L, BAO X . Effects of soil water stress on water status and photosynthesis of cotton leaves
Chinese Cotton, 2003,30(9):9-10. (in Chinese)

[本文引用: 1]

许振柱, 于振文, 亓新华, 余松烈 . 土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响
植物生理学报, 1995,21(3):295-301.

[本文引用: 1]

XU Z Z, YU Z W, QI X H, YU S L . Effect of soil drought on ethylene evolution, polyamine accumulation and cell membrane in flag leaf of winter wheat
Acta Phytophysiologica Sinica, 1995,21(3):295-301. (in Chinese)

[本文引用: 1]

AL-GHAMDI A A , Evaluation of oxidative stress tolerance in two wheat ( Triticum aestivum) cultivars in response to drought
International Journal of Agriculture & Biology, 2009,11(1):1560-8530.

[本文引用: 1]

相关话题/光谱 数据 生育 土壤 作物