Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices
ZENG XiangYuan1, ZHAO WuQi,1, LU Dan1, WU Ni1, MENG YongHong1, GAO GuiTian1, LEI YuShan2通讯作者:
收稿日期:2018-08-13接受日期:2018-09-27网络出版日期:2019-02-16
基金资助: |
Received:2018-08-13Accepted:2018-09-27Online:2019-02-16
作者简介 About authors
曾祥媛,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (4051KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
曾祥媛, 赵武奇, 卢丹, 吴妮, 孟永宏, 高贵田, 雷玉山. 超声波对猕猴桃片的渗糖效果及干燥能耗与品质的影响[J]. 中国农业科学, 2019, 52(4): 725-737 doi:10.3864/j.issn.0578-1752.2019.04.013
ZENG XiangYuan, ZHAO WuQi, LU Dan, WU Ni, MENG YongHong, GAO GuiTian, LEI YuShan.
0 引言
【研究意义】我国猕猴桃的栽培面积和产量均居世界第一[1],猕猴桃(Kiwifruit)为猕猴桃科猕猴桃属植物,又名藤梨、羊桃、毛木果、奇异果等,果实中含多种营养物质如多酚、多糖、蛋白质、氨基酸等,且维生素C(Vitamin C)含量远超其他水果,被称为“水果之王”“世界珍果”[2],深受消费者的青睐。猕猴桃片是目前国际和国内市场需求量较大的加工品,其发展前景极为广阔。渗糖是猕猴桃片加工关键工序之一,目前常用的糖渍方法主要是常压渗糖及真空渗糖,两者糖渍后的产品质地品质均较差,除此之外,常压渗糖还存在渗糖时间长、营养成分破坏严重等缺点,而真空渗糖存在能耗大的缺点[3]。因此,改变现有的猕猴桃片渗糖方法成为提高产品品质的主要手段之一,对于推进猕猴桃产业的进一步发展具有重要意义。【前人研究进展】超声波是一种高于人类听觉的机械波,频率在20—100 kHz [4]。超声波在液体中传播时,通过媒质不断受到拉伸和压缩形成的空化效应可提高果蔬的脱水速率[5],在番茄、樱桃番茄、西兰花、胡萝卜、土豆、苹果、香蕉、草莓、蓝莓等的渗透脱水研究中,取得了卓越的成果[6,7,8,9,10,11,12,13,14]。NOWACKA等[15]研究发现超声处理可使果肉形成微细通道,加快蔗糖溶液渗糖速率,促进猕猴桃脱水;BELLARY等[16]研究发现在椰肉中超声处理能提高姜黄素的渗透扩散速率,且溶质浓度越高,扩散越快;马空军等[17]研究证明超声在固液界面产生的声冲流能够减薄扩散边界层,加快糖液渗透;李军生等[18]研究发现超声波不会破坏果蔬组织的结构和细胞外形,处理后的果蔬产品结构和外形保持良好;李宁等[3]研究分析不同渗糖方式对牡丹花脯质构特性的影响,对比得出超声渗糖花脯相较于真空及常压渗糖花脯,呈现出更加良好的质构特性;李兴武等[19]研究常规、真空、微波、超声波4种渗糖方式对脆红李果脯品质及香气的影响,得到超声波渗糖干燥后果脯含糖量及感官评价得分最高。现有研究表明,超声渗糖可以提高渗透过程的传质效率,保持果蔬内部结构,减少营养成分和风味物质损失[20],为近年来果蔬渗糖工艺的研究热点。孙海涛等[21]以含糖量为品质评价指标,进行了野生软枣猕猴桃超声渗糖工艺优化研究;李薇[22]以渗糖液糖度变化率和产品感官评价得分为品质评价指标,进行了猕猴桃果片超声波渗糖预处理工艺优化的研究。【本研究切入点】不同研究者所选择的品质评价指标不尽相同,多以含糖量辅以感官评价为主,缺少猕猴桃片产品综合品质评价的系统研究。本研究将超声波技术应用于猕猴桃片的渗糖工艺,系统研究超声波对猕猴桃片的渗糖效果及干燥能耗与品质等综合评价指标的影响。【拟解决的关键问题】在响应面试验的基础上,通过因子分析筛选出猕猴桃片的特征指标,建立单位能耗及猕猴桃片特征指标的二次多项式回归方程模型,分析影响的主次因素及交互作用,优化超声渗糖工艺的最佳参数,在保证渗糖效果的前提下,最大程度提高猕猴桃片的品质,为猕猴桃片超声渗糖的工业化生产提供技术依据。1 材料与方法
试验于2018年在陕西师范大学食品工程与营养科学学院食品工程实验室进行。1.1 材料与试剂
供试猕猴桃品种为‘海沃德’,于2018年3月采摘自陕西佰瑞猕猴桃研究院种植基地。选取无明显机械损伤和腐坏、大小基本一致、成熟度相同的猕猴桃,试验前将猕猴桃样品置于(0±0.5)℃条件下贮藏。猕猴桃初始含水率采用烘干法(105℃烘干至恒重)进行测定,平均湿基含水量为82.62%。2, 6-二氯靛酚钠、抗坏血酸,成都市科龙化工试剂厂;蔗糖、草酸、蒽酮、碳酸钙,天津市天力化学试剂有限公司。所用试剂均为分析纯。1.2 仪器与设备
TA.XT plus质构仪,英国Stable Micro Systems公司;8101手持糖量计,辽宁大连先超科技有限公司;NS810色差仪,深圳市三恩驰科技有限公司;BA224S电子天平,北京赛多利斯仪器系统有限公司;UV-1800型紫外分光光度计,日本岛津公司;高速冷冻离心机,Thermo公司;超声波微波协同反应工作站,南京先欧仪器制造有限公司;气体射流冲击干燥试验设备,陕西师范大学食品工程实验室自制[23]。1.3 试验方法
1.3.1 猕猴桃片制备 猕猴桃片制备的工艺流程为:猕猴桃去皮切片→烫漂→护色硬化→不同超声渗糖处理→冲洗→气体射流冲击干燥。1.3.2 响应面设计 根据响应面Box-Behnken设计原理,以超声时间(A)、温度(B)、蔗糖浓度(C)、超声声能密度(D)为因素,以猕猴桃的固形物增加率(SG)、水分损失率(WL)、干燥能耗及猕猴桃片理化指标、质地指标、色泽为指标,进行四因素三水平响应面试验,试验设计如表1。
Table 1
表1
表1响应面设计试验因子与水平
Table 1
水平/因子 Level/Factor | A超声时间 Ultrasound time (min) | B超声温度 Ultrasound temperature (℃) | C蔗糖浓度 Sucrose concentration (°Brix) | D超声声能密度 Ultrasonic density (W·mL-1) |
---|---|---|---|---|
-1 | 40 | 40 | 40 | 0.63 |
0 | 50 | 50 | 50 | 0.75 |
1 | 60 | 60 | 60 | 0.88 |
新窗口打开|下载CSV
1.3.3 猕猴桃片理化指标的测定与计算 可滴定酸采用NaOH标准溶液滴定,参见GB/T 12456—2008;可溶性固形物(Total soluble solids,TSS)采用手持阿贝折光仪测定,含糖量采用蒽酮试剂法测定;叶绿素采用比色法测定,维生素C采用2,6-二氯靛酚滴定法,参照GB/T 6195—1986。其中叶绿素保存率Q1计算公式如下:
式中,Y1-鲜样测定值,X1-干燥后测定值;
维生素C保存率Q2计算公式如下:
式中,Y2-鲜样测定值,X2-干燥后测定值。
1.3.4 质地指标的测定TPA测试 采用质构仪,选用P 0.5型夹具,对厚度为0.3 mm的猕猴桃片进行TPA测试,测前速度为3 mm·s-1,测试速度为2 mm·s-1,测后返回速度为2 mm·s-1,样品形变50%。
1.3.5 猕猴桃片色泽的测定与计算 本试验采用CIE颜色评价体系,猕猴桃片色泽L*、a*、b*用NS810色差仪直接测定,选用直径2.54 cm光圈,色差值ΔE计算公式如下:
式中,0-鲜样测定值,*-干燥后测定值。
1.3.6 渗透脱水指标测定与计算 水分损失率(WL)、固形物增加率(SG)计算公式如下:
式中,M0-初始原料鲜重(g);M-某时刻原料鲜重(g);m0-初始原料干重(g);m-某时刻原料干重(g)。
1.3.7 单位能耗 通过读取气体射流冲击干燥设备上的电表读数,计算获得猕猴桃片干燥过程中的单位能耗,计算公式如下:
1.3.8 数据统计分析 每个试验均重复3次,取平均值。采用SPSS软件进行因子分析;利用Design-Expert软件设计Box-Behnken试验,并建立数学模型,进行响应面分析,显著性水平取0.05。
2 结果
2.1 响应面试验结果
响应面设计与结果见表2,共29个试验点。表中1—24号是析因试验,自变量取值在A、B、C、D所构成的四维顶点;25—29号是中心试验,自变量取值为区域中心点,重复5次用于估计试验误差。Table 2
表2
表2响应面试验设计与结果
Table 2
编号 Code | 时间 Time (min) | 温度 Tempe- rature (℃) | 蔗糖浓度 Sucrose concen- tration (°Brix) | 超声声 能密度 Ultrasonic density (W·mL-1) | 硬度 Hard- ness (g) | 黏性 Adhesive- ness | 弹性 Spring- iness | 粘聚性 Cohesi- veness | 胶粘性Gummi- ness (g) | 咀嚼性 Chewi- ness (g) | 回复性Resilie- nce | L* | a* | b* | ΔE | 可滴定酸 Titratable acid (%) | 叶绿素 保存率 Chlorophyll preservation rate (%) | 含糖量 Sugar content (%) | SG (%) | WL (%) | TSS (%) | 维生素C 保存率 Vitamin C preservation rate (%) | 单位能耗 Unit energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | 50 | 60 | 0.75 | 3390.83 | -1.64 | 0.84 | 0.55 | 1881.13 | 1573.14 | 0.18 | 74.07 | 2.24 | 29.83 | 24.31 | 1.58 | 89.18 | 31.02 | 18.90 | 20.79 | 39 | 81.20 | 18.5 |
2 | 50 | 40 | 50 | 0.88 | 1204.52 | -4.75 | 0.84 | 0.55 | 660.23 | 555.24 | 0.18 | 79.00 | -0.43 | 28.40 | 28.45 | 1.40 | 79.76 | 35.70 | 17.85 | 18.51 | 36 | 83.65 | 17 |
3 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
4 | 60 | 40 | 50 | 0.75 | 1841.43 | -5.02 | 0.84 | 0.55 | 1006.10 | 840.62 | 0.18 | 66.53 | 0.27 | 24.23 | 19.91 | 1.40 | 95.19 | 38.83 | 5.74 | 19.55 | 37 | 88.56 | 18.5 |
5 | 50 | 50 | 60 | 0.63 | 1539.59 | -3.15 | 0.84 | 0.55 | 850.97 | 712.38 | 0.18 | 73.01 | 1.27 | 30.29 | 22.98 | 1.84 | 89.17 | 37.89 | 16.82 | 19.13 | 34 | 90.11 | 13.5 |
6 | 40 | 50 | 50 | 0.88 | 1726.83 | -4.19 | 0.84 | 0.56 | 961.76 | 804.74 | 0.18 | 75.17 | -0.51 | 32.28 | 24.59 | 1.23 | 79.35 | 36.47 | 8.63 | 22.80 | 42 | 88.11 | 14 |
7 | 50 | 60 | 50 | 0.88 | 1518.26 | -8.65 | 0.85 | 0.56 | 842.82 | 720.18 | 0.18 | 65.51 | 1.06 | 32.86 | 18.01 | 1.23 | 81.14 | 37.51 | 17.80 | 30.78 | 45 | 85.75 | 18 |
8 | 40 | 50 | 60 | 0.75 | 1585.42 | -5.01 | 0.79 | 0.47 | 738.27 | 580.53 | 0.12 | 61.78 | -0.06 | 23.41 | 16.35 | 1.23 | 80.97 | 36.92 | 7.63 | 19.87 | 38 | 83.02 | 13 |
9 | 40 | 50 | 40 | 0.75 | 1636.43 | -0.37 | 0.84 | 0.55 | 893.02 | 748.93 | 0.18 | 58.26 | 4.81 | 27.61 | 15.34 | 1.40 | 91.19 | 37.90 | 12.03 | 27.07 | 41 | 89.32 | 19.5 |
10 | 60 | 50 | 40 | 0.75 | 1937.21 | -1.79 | 0.81 | 0.55 | 1071.53 | 872.66 | 0.18 | 51.75 | 3.16 | 26.22 | 12.38 | 1.66 | 90.34 | 37.89 | 15.19 | 31.64 | 38 | 91.63 | 20 |
11 | 60 | 60 | 50 | 0.75 | 1374.73 | -2.17 | 0.84 | 0.55 | 751.64 | 631.31 | 0.18 | 58.50 | 2.43 | 24.40 | 14.99 | 1.14 | 80.10 | 31.90 | 17.53 | 22.27 | 33 | 82.79 | 16 |
12 | 40 | 60 | 50 | 0.75 | 889.14 | -0.97 | 0.83 | 0.56 | 495.18 | 410.31 | 0.19 | 62.83 | 2.04 | 24.05 | 17.78 | 2.01 | 79.58 | 37.42 | 11.88 | 20.48 | 42 | 84.46 | 17 |
13 | 50 | 50 | 50 | 0.75 | 1828.27 | -1.74 | 0.84 | 0.55 | 997.71 | 836.14 | 0.18 | 46.66 | 3.40 | 18.16 | 18.64 | 1.66 | 77.84 | 36.88 | 13.93 | 22.36 | 36 | 87.98 | 21 |
14 | 50 | 40 | 60 | 0.75 | 1614.36 | -0.94 | 0.84 | 0.56 | 902.19 | 760.58 | 0.19 | 67.82 | 2.85 | 29.42 | 18.88 | 2.45 | 79.18 | 37.72 | 9.74 | 19.44 | 35 | 83.19 | 17.5 |
15 | 60 | 50 | 50 | 0.88 | 1284.56 | -3.20 | 0.78 | 0.52 | 665.40 | 517.79 | 0.14 | 72.31 | 1.63 | 31.48 | 22.41 | 1.75 | 80.97 | 36.89 | 16.61 | 35.61 | 39 | 88.95 | 18 |
16 | 50 | 40 | 40 | 0.75 | 1941.43 | -1.44 | 0.84 | 0.55 | 1058.63 | 885.31 | 0.17 | 78.30 | 1.10 | 31.91 | 27.99 | 1.40 | 91.38 | 31.69 | 11.47 | 26.62 | 35 | 95.41 | 15.5 |
17 | 50 | 40 | 50 | 0.63 | 1200.52 | -6.41 | 0.84 | 0.55 | 659.88 | 552.85 | 0.18 | 70.45 | 1.10 | 31.01 | 20.48 | 1.66 | 93.05 | 37.59 | 13.67 | 35.51 | 32 | 82.55 | 21 |
18 | 50 | 60 | 60 | 0.75 | 781.97 | -10.40 | 0.85 | 0.56 | 436.68 | 371.61 | 0.18 | 66.95 | 0.06 | 26.20 | 17.55 | 1.49 | 95.60 | 37.56 | 11.26 | 26.98 | 37 | 83.34 | 13.5 |
19 | 50 | 50 | 50 | 0.75 | 1828.27 | -1.74 | 0.84 | 0.55 | 997.71 | 836.14 | 0.18 | 46.66 | 3.40 | 18.16 | 16.64 | 1.66 | 77.84 | 36.88 | 13.93 | 22.36 | 36 | 87.98 | 21 |
20 | 40 | 50 | 50 | 0.63 | 1058.95 | -0.62 | 0.82 | 0.55 | 582.71 | 480.64 | 0.18 | 63.27 | 0.44 | 28.41 | 15.91 | 1.31 | 87.21 | 35.84 | 18.44 | 35.83 | 36 | 81.35 | 15 |
21 | 60 | 50 | 50 | 0.63 | 1631.72 | -2.40 | 0.82 | 0.55 | 894.86 | 731.25 | 0.16 | 47.24 | 1.26 | 18.62 | 16.99 | 1.31 | 80.45 | 36.70 | 17.49 | 29.27 | 42 | 89.24 | 13.5 |
22 | 50 | 50 | 40 | 0.88 | 1590.44 | -3.95 | 0.83 | 0.55 | 880.65 | 731.76 | 0.18 | 68.03 | 3.11 | 30.81 | 19.10 | 1.49 | 91.78 | 39.03 | 6.73 | 18.73 | 33 | 95.47 | 22 |
23 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
24 | 50 | 50 | 60 | 0.88 | 1196.24 | -0.70 | 0.84 | 0.55 | 661.65 | 553.66 | 0.18 | 78.00 | 0.63 | 31.75 | 27.58 | 1.88 | 92.48 | 38.00 | 9.07 | 22.93 | 36 | 82.12 | 17 |
25 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
26 | 50 | 60 | 50 | 0.63 | 1920.91 | -3.30 | 0.84 | 0.56 | 1082.32 | 905.49 | 0.18 | 60.25 | -0.70 | 24.08 | 14.61 | 1.66 | 82.94 | 36.93 | 12.45 | 21.21 | 40 | 82.68 | 17.5 |
27 | 50 | 60 | 40 | 0.75 | 2592.37 | -0.45 | 0.84 | 0.55 | 1420.48 | 1191.78 | 0.18 | 70.59 | 1.55 | 28.36 | 20.96 | 1.75 | 77.50 | 37.47 | 17.60 | 20.27 | 35 | 81.92 | 20.5 |
28 | 50 | 50 | 40 | 0.63 | 1384.35 | -1.54 | 0.78 | 0.53 | 729.24 | 571.65 | 0.15 | 69.37 | 2.07 | 31.74 | 19.86 | 1.23 | 97.28 | 31.24 | 19.24 | 20.14 | 36 | 94.17 | 19.5 |
29 | 40 | 40 | 50 | 0.75 | 1826.97 | -2.85 | 0.83 | 0.55 | 1003.09 | 832.33 | 0.18 | 61.64 | 2.38 | 23.42 | 17.42 | 1.49 | 88.31 | 37.81 | 15.52 | 34.80 | 34 | 90.79 | 18 |
新窗口打开|下载CSV
2.2 猕猴桃片品质评价特征指标的提取
节能环保是当前各产业发展的总趋势,因此将能耗作为响应面考察的主要指标之一,旨在优化工艺参数,生产高品质、低能耗的猕猴桃片。除能耗外,对表1中的含糖量、可滴定酸、L*、a*、b*、ΔE、硬度、黏性、弹性、黏聚性、胶黏性、咀嚼性、回复性、叶绿素保存率、维生素C保存率、TSS、WL和SG共18项猕猴桃片评价指标进行因子分析,以提取出猕猴桃片品质评价特征指标。由表3可知,因子分析所提出的6个主因子特征值分别为4.448、3.145、2.137、1.941、1.603和1.050,特征值均大于1,且累计方差贡献率达到79.583%,说明这6个主因子所表达的信息特征包括了18个猕猴桃片品质指标的绝大部分信息。因此,可以将描述猕猴桃的18个品质指标压缩为6个。图1为因子分析特征值的碎石图,主因子所处线段斜率陡峭,而在平缓斜率上的因子对变异的解释非常小。从图1可以直观地看出从第6个因子以后,曲线平缓,斜率减小,因此选择前6个因子作为主因子。
图1
新窗口打开|下载原图ZIP|生成PPT图1因子分析碎石图
Fig. 1Screen plot of factor analysis
Table 3
表3
表3因子分析解释总变量
Table 3
成分 Factor number | 特征值 Eigen value (λ) | 方差贡献率 Variance contribution (%) | 累计方差贡献率 Cumulative variance contribution (%) |
---|---|---|---|
1 | 4.448 | 24.713 | 24.713 |
2 | 3.145 | 17.471 | 42.184 |
3 | 2.137 | 11.873 | 54.057 |
4 | 1.941 | 10.786 | 64.843 |
5 | 1.603 | 8.907 | 73.750 |
6 | 1.050 | 5.834 | 79.583 |
新窗口打开|下载CSV
采用Kaiser标准化最大方差法进行因子旋转,得到旋转后的成分矩阵见表4,能更加清楚直观的表现主因子与变量之间的对应关系。由表4可知,第1个公因子与弹性、黏聚性、胶黏性、咀嚼性和回复性4个指标相关性最强,体现了猕猴桃片的质地特征;第2个公因子与L*值、a*值、b*值和ΔE 4个指标最为相关,体现了猕猴桃片的外观色泽特征;第3个公因子与含糖量和叶绿素保存率两个指标相关性强,体现了猕猴桃片的甜风味特征和绿色品质;第4个公因子与WL和SG两个指标相关性强,体现了猕猴桃片的渗透脱水特性;第5个公因子与可滴定酸相关性强,体现了猕猴桃片的酸风味特征;第6个公因子与维生素C保存率相关性高,体现了营养品质特征。以每个主成分中载荷系数最大(以绝对值计)为标准,可以得出回复性、L*、含糖量、WL、可滴定酸和维生素C保存率6个指标,但是考虑到L*是表示样品颜色的亮度,ΔE是色差评价的综合指标且其载荷系数大于0.8,所以选取回复性、ΔE、含糖量、WL、可滴定酸和维生素C保存率6个指标作为猕猴桃片的品质特征指标。
Table 4
表4
表4旋转成分矩阵
Table 4
指标Indicator | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
含糖量Sugar content | 0.187 | -0.038 | 0.856 | -0.104 | 0.106 | 0.068 |
可滴定酸Titratable acid | 0.341 | 0.204 | -0.171 | -0.062 | 0.632 | -0.063 |
L* | 0.057 | 0.960 | 0.086 | -0.186 | -0.058 | 0.043 |
a* | -0.009 | -0.532 | 0.387 | 0.065 | 0.601 | -0.075 |
b* | 0.056 | 0.882 | 0.254 | 0.123 | 0.021 | 0.095 |
ΔE | 0.030 | 0.860 | -0.125 | -0.248 | 0.176 | -0.162 |
硬度Hardness | 0.117 | 0.104 | 0.233 | 0.025 | 0.562 | 0.500 |
黏性Adhesiveness | -0.042 | -0.027 | -0.027 | -0.059 | 0.833 | 0.118 |
弹性Springiness | 0.904 | 0.047 | -0.039 | -0.107 | -0.079 | 0.048 |
黏聚性Cohesiveness | 0.835 | 0.029 | 0.065 | 0.163 | 0.132 | -0.289 |
胶黏性Gumminess | 0.783 | 0.018 | 0.109 | -0.052 | 0.059 | 0.414 |
咀嚼性Chewiness | 0.844 | 0.043 | 0.092 | -0.082 | 0.050 | 0.383 |
回复性Resilience | 0.970 | 0.031 | 0.079 | 0.018 | 0.152 | -0.035 |
叶绿素保存率Chlorophyll preservation rate | -0.041 | 0.221 | 0.809 | 0.057 | -0.234 | -0.277 |
维生素C保存率Vitamin C preservation rate | -0.134 | 0.022 | 0.326 | -0.044 | -0.079 | -0.754 |
TSS | -0.073 | -0.039 | -0.434 | 0.379 | -0.155 | 0.114 |
WL | -0.010 | -0.005 | 0.049 | 0.931 | -0.054 | 0.024 |
SG | -0.006 | -0.273 | -0.179 | 0.911 | 0.041 | -0.042 |
新窗口打开|下载CSV
2.3 二次响应面回归模型的建立与分析
应用Design Expert进行回归拟合分析,可分别得到回复性(Y1)、ΔE(Y2)、含糖量(Y3)、WL(Y4)、可滴定酸(Y5)、维生素C保存率(Y6)、单位能耗(Y7)与超声渗糖条件之间的二次多项式模型:各考察指标的方差分析结果如表5所示,各指标的回归方程均显著,失拟项均不显著(P>0.05),说明所得回归方程比较可靠,能用此回归方程对超声渗糖猕猴桃片各考察指标进行分析和预测。各因子对回复性影响的大小依次是A>C>B>D,A2对回复性有极显著的影响,B2、C2、D2和交互项CD影响显著;各因子对ΔE影响的大小依次是C>B=D>A,A2影响显著;各因子对含糖量影响的大小依次是C>A>B>D,AB、BC及CD交互作用均极显著,A2、C2和交互项BD影响显著;各因子对WL影响的大小依次是A>D>C>B,C2、AB及AD对WL的影响显著;各因子对可滴定酸影响的大小依次是A>D>C>B,A2、D2和交互项AD影响显著;各因子对维生素C保存率影响的大小依次是C>B>A>D;各因子对单位能耗的影响大小依次是C>A>D>B,A2、BC对单位能耗的影响显著。
Table 5
表5
表5各指标的回归方程系数显著性检验结果
Table 5
变异来源 Source | P值 P value | ||||||
---|---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
模型Model | <0.0001 | 0.0005 | <0.0001 | 0.0078 | 0.0004 | 0.0025 | 0.0396 |
A | <0.0001 | 0.6991 | 0.0347 | 0.2509 | 0.0058 | 0.6519 | 0.2423 |
B | 0.3429 | 0.0049 | 0.0505 | 0.9331 | 0.7939 | 0.0034 | 0.4581 |
C | 0.0007 | 0.0041 | <0.0001 | 0.7845 | 0.2815 | 0.0001 | 0.0026 |
D | 0.8851 | 0.0049 | 0.1385 | 0.3448 | 0.0742 | 0.6668 | 0.3753 |
AB | 0.6548 | <0.0001 | 0.0282 | 0.626 | 0.6977 | ||
AC | 0.0531 | 0.0538 | 0.0801 | 0.6059 | 0.2075 | ||
AD | 0.0658 | 0.3979 | 0.0149 | 0.046 | 0.1964 | 0.168 | |
BC | 0.2957 | < 0.0001 | 0.0655 | 0.201 | 0.191 | 0.0321 | |
BD | 0.0014 | 0.082 | 0.4654 | 0.7122 | 0.254 | ||
CD | 0.0023 | <0.0001 | 0.3522 | 0.0945 | 0.7954 | ||
A2 | <0.0001 | 0.0034 | 0.001 | 0.0915 | 0.0003 | 0.0173 | |
B2 | 0.0003 | 0.3097 | 0.0745 | 0.702 | 0.2886 | 0.0559 | 0.2562 |
C2 | 0.0046 | 0.0002 | 0.0251 | 0.7761 | 0.2562 | ||
D2 | 0.0013 | 0.9418 | 0.002 | 0.7433 | 0.0845 | ||
失拟项 Lack of fit | 0.059 | 0.919 | 0.2937 | 0.1032 | 0.5381 | 0.053 | 0.1061 |
新窗口打开|下载CSV
2.4 因子间交互作用分析
响应面因子间交互作用分析结果如图2、图3、图4、图5、图6所示。各图是由响应值和各试验因子构成的立体曲面图,显示了时间、温度、蔗糖浓度和超声声能密度中任意两个变量取零水平时,其余两个变量对各考察指标的影响。图2
新窗口打开|下载原图ZIP|生成PPT图2蔗糖浓度和声能密度交互作用对回复性影响的响应面图
Fig. 2Response surface plots of the interaction of sucrose concentration and ultrasonic density on the resilience
图3
新窗口打开|下载原图ZIP|生成PPT图3各因素交互作用对含糖量影响的响应面图
Fig. 3Response surface plots of the interaction of various factors on the sugar content
图4
新窗口打开|下载原图ZIP|生成PPT图4各因素交互作用对WL影响的响应面图
Fig. 4Response surface plots of the interaction of various factors on WL
图5
新窗口打开|下载原图ZIP|生成PPT图5时间和声能密度交互作用对可滴定酸影响的响应面图
Fig. 5Response surface plots of the interaction of time and ultrasonic density on titratable acid
图6
新窗口打开|下载原图ZIP|生成PPT图6温度和蔗糖浓度交互作用对单位能耗影响的响应面图
Fig. 6Response surface plots of the interaction of temperature and sucrose concentration on unit energy consumption
由图2可知,随着声能密度增加,蔗糖浓度增大,猕猴桃片回复性指标呈现出先增大后趋于平缓的趋势。图3可知,当声能密度一定时,随着浓度和温度的增加,含糖量不断增加;在温度一定时,含糖量随着浓度的增大不断增加,随着时间的延长先增加后减小。图4可知,在时间一定时,WL随温度的增加而增大;在声能密度一定时,WL随时间的延长而增大。图5显示,当时间一定时,随着声能密度增加,可滴定酸指标呈现出先增大后减小的趋势;当声能密度一定时,随着时间的延长,可滴定酸含量先增大后减小。由图6可明显看出,当温度一定时,单位能耗随着浓度的增大而不断减小。
2.5 超声渗糖工艺最佳条件的确定及验证
在试验参数范围内,以含糖量在32%—35%、可滴定酸在1.5%—2%时,回复性最大,ΔE最小,WL最大,维生素C保存率最大,单位能耗最小作为优化目标对超声渗糖工艺进行综合优化。得到最佳的工艺参数为:超声渗糖时间57.71 min、超声温度47.16℃、蔗糖浓度40 °Brix、声能密度0.7 W·mL-1。考虑到实际条件,调整为:超声渗糖时间58 min、超声温度47℃、蔗糖浓度40 °Brix、声能密度0.7 W·mL-1。表6是用此最优条件进行验证的结果。由表6可以看出,各考察指标的实测值与理论预测值比较吻合,相对误差均小于5%,说明所得回归方程可靠,可用于对超声渗糖猕猴桃片各考察指标进行预测。Table 6
表6
表6回归方程预测效果表
Table 6
指标 Indicator | 回复性 Resilience | ΔE | 含糖量 Sugar content (%) | WL (%) | 可滴定酸 Titratable acid (%) | 维生素C保存率 Vitamin C preservation rate (%) | 单位能耗 Unit energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|
理论预测值 Theoretical predicted value | 0.172 | 15.51 | 35.03 | 27.85 | 1.58 | 92.23 | 18.15 |
实测值 Measured value | 0.179 | 14.88 | 36.49 | 28.94 | 1.65 | 91.63 | 19 |
相对误差 Relative error (%) | 4.07 | -4.06 | 4.17 | 3.91 | 4.43 | -0.65 | 4.68 |
新窗口打开|下载CSV
3 讨论
3.1 关于因子分析法应用于猕猴桃片品质特征的提取
因子分析是一种从关系错综复杂的变量群中提取出共性因子的统计方法,以较少的几个因子反映原变量大部分信息,起到降维作用。因子分析技术可用于提取猕猴桃片的品质特征。赵洪卫等[24]通过因子分析筛选出含糖量、瓜瓤含水率两个指标来评价西瓜品质;靳志强等[25]利用因子分析提取出生理生化、黏度特性、淀粉含量及组成和糊化特性4个指标用于评价玉米综合品质;张唐伟等[26]通过因子分析筛选出灰分、蛋白质、粗脂肪、pH、L*、b*、失水率和蒸煮损失等8个关键品质指标来评价岗巴羊肉品质;吕健等[27]运用因子分析法筛选出还原糖、复水比、L值、粗蛋白和膨化度5个指标来评价桃变温压差膨化脆片的品质;马庆华等[28]运用因子分析法筛选出果实甜脆因子、果重及其他内质因子、果皮质地因子、果实外观因子和其他因子5个主因子来评价冬枣的品质。本研究采用因子分析法提取出的猕猴桃片品质特征指标分别为回复性、ΔE、含糖量、WL、可滴定酸、维生素C保存率。曾凡杰等[29]以色差、质构和维生素C为指标评价真空冻干猕猴桃片的品质特性,杨玲等[30]研究发现回复性可作为反映苹果质地变化规律、评价和比较果肉质地差异性的重要参数,这些与本试验中选取回复性、色差、维生素C保存率作为特征指标一致。孙海涛等[21]以含糖量为考察指标,优化野生软枣猕猴桃果脯的渗糖工艺;脱水率WL是评价渗透效果的重要指标,在提高WL时尽可能保证营养品质不受影响;可滴定酸是影响产品风味品质的重要因素。可以看出,本研究通过因子分析提取含糖量、WL及可滴定酸作为特征品质比较合理。
3.2 超声波对猕猴桃片脱水率和含糖量的影响
渗透过程就是在物料内外液体形成渗透压差而进行的水分、固形物的迁移过程。超声波处理会破坏物料的组织细胞结构,促进物料表面显微通道的形成,增加渗透过程的传质速度,促进猕猴桃片内部水分损失,固形物含量增加。本研究结果也证明了这一点。在时间一定时,水分损失率随温度的增加而增大。这可能是由于猕猴桃片中水分主要以自由水的形态存在,温度高能加快物料中的分子运动,减弱物料内部固形物对水分的束缚,自由水流动性加强,同时超声波处理使物料不断收缩膨胀,形成海绵状结构,这些均加速水分的扩散流失,使WL增大。图4-b表明在声能密度一定时,WL随时间的延长而增大。这与张鹏飞等[31]对桃片超声处理的研究结果一致,随着超声作用时间的增加,空穴效应增强,水分在高渗透压作用下迁移至渗透液中,水分损失增加。
含糖量是衡量果蔬加工产品品质的重要参数,过高不能满足消费者注重健康的产品需求,过低会影响产品风味。结合图3及Y3方程,影响猕猴桃片含糖量指标的主次因素为:蔗糖浓度>超声时间>温度>超声声能密度。由图3-a及图3-b可知,在声能密度一定时,随着浓度的增大和温度的增加,含糖量不断增加,且在低浓度范围内含糖量变化更加明显。这与BELLARY等[16]在椰肉中超声处理渗透姜黄素和李茜等[32]优化杏鲍菇脆片加工中超声浸渍工艺的研究结果基本一致。渗糖过程中糖液扩散方向是从高质量浓度向低质量浓度,浓度差愈大,渗透速率愈大。温度的增加能促使渗透液中溶质分子运动加快,有利于蔗糖进入猕猴桃片。此外图3-d显示在温度一定时,随着时间的延长,含糖量先略微增加后减小。MULET等[33]的研究表明,超声处理时间过长,会明显破坏果蔬组织结构。因而造成猕猴桃片边缘糜烂,固形物流出,影响渗糖效果。在55—60 min范围内,含糖量与温度呈负相关,这可能是因为在较长的渗透时间下,温度较高可能更易使猕猴桃组织结构遭到破坏,造成内部营养成分流失。在低温区间内,随着浸糖时间的延长,含糖量呈现先略微增加后减少的趋势。这与李茜等[32]研究浸渍时间对杏鲍菇脆片浸渍效果影响的结果一致。渗糖过程初期猕猴桃片内外浓度差大,糖渗入速率大于猕猴桃片内部小分子可溶性物质外流速率,含糖量增加;但随着浸糖时间的进一步延长,进入猕猴桃片的糖含量趋于饱和而猕猴桃片内部小分子可溶性物质外流继续,导致含糖量呈降低趋势。
3.3 超声波对猕猴桃片能耗及产品品质的影响
由图6可见,当温度一定时,单位能耗随着浓度的增大而不断减小。干燥过程就是物料中不同状态的水分按自由度大小逐次去除,渗透液浓度越大,物料中固形物含量也越大,导致更多的自由水因渗透压作用而流失到渗透液中,物料中自由水比例下降,节省了能量。这与XIN等[8]研究西兰花超声渗透处理后的自由水比例下降的结果一致。回复性指样品在第一次压缩过程中回弹的能力,反映了物质以弹性变形保存的能量,是反映质构特性的重要指标。由图2可见,随着声能密度增加,蔗糖浓度增大,猕猴桃片回复性指标呈现出先增大后略微降低的趋势。物料受到超声波处理时,反复受到压缩和拉伸作用,不断收缩和膨胀,形成海绵状结构,导致其回复性增大。但是当声能密度过大、浓度过高时,猕猴桃片内部组织细胞结构出现松散,细胞结构遭到破坏,会产生许多微观通道,使猕猴桃片细胞间结合作用力减弱或遭到破坏,导致其回复性降低。这与罗登林等[34]研究超声辅助面团醒发对面条品质影响的结果一致,随超声功率密度的增大,面条的回复性呈先增加后减少的趋势。
随着声能密度增加、时间的延长,可滴定酸指标呈现出先增大后减小的趋势。其增大的机理可能是由于超声处理使有机酸与猕猴桃组织细胞的结合力或被包埋率降低,释放速率大于扩散到渗糖液的速率,导致可滴定酸含量增大。这与岳田利等[35]的研究结果一致,其研究表明,超声波处理前后苹果中的总酸含量存在显著性差异,随着超声功率的增加,苹果中总酸含量增大。减小可能是基于溶液中物质扩散原理,猕猴桃片中的有机酸向渗糖液扩散速率加大,此外声能密度过高、处理时间过长时,会明显破坏物料组织结构,造成内容物流出,导致猕猴桃片中的有机酸呈减少的趋势。
4 结论
猕猴桃片的品质特征指标为回复性、ΔE、含糖量、水分损失率、可滴定酸、维生素C保存率。建立的猕猴桃片超声渗糖工艺参数与单位能耗及品质特征指标的二次多项式回归方程模型,可用于分析和预测超声波处理参数对猕猴桃片的渗糖效果及干燥能耗与品质的影响。猕猴桃片超声渗糖工艺的最佳工艺条件为:超声渗糖时间58 min、超声温度47℃、蔗糖浓度40 °Brix、声能密度0.7 W·mL-1。超声渗糖处理具有渗糖速率快、对样品破坏小、单位能耗低、产品质地品质好等优点,可用于猕猴桃片的加工中。(责任编辑 赵伶俐)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.11924/j.issn.1000-6850.2013-2887URL [本文引用: 1]
Kiwifruit production, trade and competitiveness in china and the world have taken a new look science entering the 21st century. In this paper, kiwifruit production and development of the world situation, and trade and competitiveness of kiwifruit in china were analyzed based on the data from the FAO and related documents. Area harvested and production of kiwifruit in the world were increasing continued entering 21st century. Kiwifruit industry has been rapid development in China, and cultivation area and production were rank first in the world. Kiwifruit yield of China has huge gap compared to that of New Zealand. Imports and exports of kiwifruit in the world and China steady growth entering 21st century, however, The amount and money of imports kiwifruit in China were much larger than those of exports. The level of Chinese kiwifruit export competitiveness is poor or even very poor. The kiwifruit quality of china export was medium to low. Aiming at the problems in kiwifruit production and trade, the countermeasures of improving kiwifruit production in China and strengthening its international competitiveness were discussed.
DOI:10.11924/j.issn.1000-6850.2013-2887URL [本文引用: 1]
Kiwifruit production, trade and competitiveness in china and the world have taken a new look science entering the 21st century. In this paper, kiwifruit production and development of the world situation, and trade and competitiveness of kiwifruit in china were analyzed based on the data from the FAO and related documents. Area harvested and production of kiwifruit in the world were increasing continued entering 21st century. Kiwifruit industry has been rapid development in China, and cultivation area and production were rank first in the world. Kiwifruit yield of China has huge gap compared to that of New Zealand. Imports and exports of kiwifruit in the world and China steady growth entering 21st century, however, The amount and money of imports kiwifruit in China were much larger than those of exports. The level of Chinese kiwifruit export competitiveness is poor or even very poor. The kiwifruit quality of china export was medium to low. Aiming at the problems in kiwifruit production and trade, the countermeasures of improving kiwifruit production in China and strengthening its international competitiveness were discussed.
,
DOI:10.3864/j.issn.0578-1752.2018.07.014URL [本文引用: 1]
【目的】研究‘海沃德’猕猴桃冷破碎果浆的超高压杀菌最优条件及超高压处理后果浆贮藏过程中的杀菌效果,为猕猴桃的非热加工及产品开发提供参考。【方法】采用冷破碎技术设备获得猕猴桃纯果肉果浆,以菌落总数、VC、褐变度等为评价指标,利用响应面分析建立模型,得到超高压杀菌最优工艺条件;利用微生物学方法,研究超高压处理的果浆在4℃、-20℃下贮藏期菌落总数、霉菌酵母和大肠杆菌的变化。【结果】通过单因素试验和Box-Behnken模型响应曲面分析获得超高压杀菌的最佳条件为压力497 MPa,温度27℃,保压时间24 min;在此条件下超高压处理对果浆的菌落总数、大肠杆菌、霉菌酵母杀菌率分别达到73.18%、97.46%、100.00%。超高压杀菌的冷破碎果浆于4℃、-20℃下贮藏6周、14周,在符合标准范围内菌落总数的增量较大,与贮藏第1天相比分别达到97.19%、85.98%,但菌落总数增长速度不大;而果浆中的霉菌酵母、大肠杆菌的增量相对较少,且增殖也较慢;果浆中的霉菌酵母、大肠杆菌仅分别为1.36、0.67和0.32、0.35 lg(CFU/m L)。【结论】超高压处理作为一种非热杀菌方式对热敏性的猕猴桃果浆有较好的杀菌效果。冷破碎果浆作为猕猴桃加工的中间原料在超高压处理后于-20℃下贮藏14周依然符合商业无菌要求,因此低温贮藏与超高压杀菌结合有利于冷破碎果浆的贮藏和进一步加工利用。
DOI:10.3864/j.issn.0578-1752.2018.07.014URL [本文引用: 1]
【目的】研究‘海沃德’猕猴桃冷破碎果浆的超高压杀菌最优条件及超高压处理后果浆贮藏过程中的杀菌效果,为猕猴桃的非热加工及产品开发提供参考。【方法】采用冷破碎技术设备获得猕猴桃纯果肉果浆,以菌落总数、VC、褐变度等为评价指标,利用响应面分析建立模型,得到超高压杀菌最优工艺条件;利用微生物学方法,研究超高压处理的果浆在4℃、-20℃下贮藏期菌落总数、霉菌酵母和大肠杆菌的变化。【结果】通过单因素试验和Box-Behnken模型响应曲面分析获得超高压杀菌的最佳条件为压力497 MPa,温度27℃,保压时间24 min;在此条件下超高压处理对果浆的菌落总数、大肠杆菌、霉菌酵母杀菌率分别达到73.18%、97.46%、100.00%。超高压杀菌的冷破碎果浆于4℃、-20℃下贮藏6周、14周,在符合标准范围内菌落总数的增量较大,与贮藏第1天相比分别达到97.19%、85.98%,但菌落总数增长速度不大;而果浆中的霉菌酵母、大肠杆菌的增量相对较少,且增殖也较慢;果浆中的霉菌酵母、大肠杆菌仅分别为1.36、0.67和0.32、0.35 lg(CFU/m L)。【结论】超高压处理作为一种非热杀菌方式对热敏性的猕猴桃果浆有较好的杀菌效果。冷破碎果浆作为猕猴桃加工的中间原料在超高压处理后于-20℃下贮藏14周依然符合商业无菌要求,因此低温贮藏与超高压杀菌结合有利于冷破碎果浆的贮藏和进一步加工利用。
,
URL [本文引用: 2]
以牡丹花为原料,利用超声波的强化传质特性制备牡丹花脯,优化超声渗糖的工艺条件,并对比分析不同渗糖方式对牡丹花脯质构特性的影响。结果表明,超声渗糖的最佳工艺条件为:超声功率110 W、渗糖时间40 min、蔗糖浓度40%,渗糖后花脯含糖量为32.96%,且花脯渗糖速率得到提高;采用超声渗糖法制备的牡丹花脯的硬度值为16.069N,凝聚性为0.606,弹性为0.876,胶着性为9.738N,咀嚼性为8.530mJ,且超声渗糖花脯的硬度、胶着性及咀嚼性与真空及常压渗糖花脯对比均有显著性差异,呈现出良好的质构特性。
URL [本文引用: 2]
以牡丹花为原料,利用超声波的强化传质特性制备牡丹花脯,优化超声渗糖的工艺条件,并对比分析不同渗糖方式对牡丹花脯质构特性的影响。结果表明,超声渗糖的最佳工艺条件为:超声功率110 W、渗糖时间40 min、蔗糖浓度40%,渗糖后花脯含糖量为32.96%,且花脯渗糖速率得到提高;采用超声渗糖法制备的牡丹花脯的硬度值为16.069N,凝聚性为0.606,弹性为0.876,胶着性为9.738N,咀嚼性为8.530mJ,且超声渗糖花脯的硬度、胶着性及咀嚼性与真空及常压渗糖花脯对比均有显著性差异,呈现出良好的质构特性。
,
DOI:10.1016/S0924-2244(00)89139-6URL [本文引用: 1]
Ultrasonic techniques are finding increasing use in the food industry for both the analysis and modification of foods. Low-intensity ultrasound is a non-destructive technique that provides information about physicochemical properties, such as composition, structure, physical state and flow rate. High-intensity ultrasound is used to alter, either physically or chemically, the properties of foods, for example to generate emulsions, disrupt cells, promote chemical reactions, inhibit enzymes, tenderize meat and modify crystallization processes.
,
DOI:10.1016/j.jfoodeng.2008.06.021URL [本文引用: 1]
The effect of ultrasound-assisted osmotic dehydration applied for different lengths of time on pineapple tissue structure was evaluated. Using distilled water as the liquid medium, ultrasound induced disruption of cells and formation of microscopic channels in the fruit structure but did not induce breakdown of the cells. Consequently, ultrasound application increased sugar loss and water diffusivity because of the formation of microscopic channels, which offered lower resistance to water and sugar diffusion. Osmotic dehydration induced gradual distortion of shape of the cells, disconnection between the cells and the formation of channels by breakdown of the tissue. The changes caused by the application of osmotic dehydration in the fruit tissue structure resulted in a higher water loss and higher sugar gain. During the air-drying process, the effective water diffusivity increased when an osmotic solution with low sugar content was used (35 Brix). It decreased when an osmotic solution with high sugar content was used (70 Brix) because the high sugar gain observed under this condition has saturated of the microscopic channels with sugar creating an extra mass transfer resistance for water and sugar diffusion through the channels.
,
[本文引用: 1]
,
DOI:10.1111/j.1365-2621.2011.02927.xURL [本文引用: 1]
In order to elaborate dehydration and osmotic equilibrium characteristics of cherry tomatoes and to analyse the applicability of Peleg model in prediction of equilibrium moisture content and the methodology of Crank’s solution to Fick’s diffusion law in calculation of effective diffusivity, cherry tomatoes were osmotically treated in ternary solution (water, sucrose and NaCl) with or without ultrasound at 30 °C. Results indicated that, a time cumulative effect of ultrasound occurred about 30 min for water loss (WL), while for sugar gain it happened after 45 min, which made the dehydration efficiency index best at the ultrasonic power of 150 W for 40 min. As a function of salt content, the equilibrium WL followed well the first order exponential decay model, and the equilibrium salt content followed well the second order polynomial. A great relative error (29.13%) between the practical determination and the predicted value indicated that Peleg model was not suitable for prediction of equilibrium moisture content. A great truncation error (865%) occurred when moisture effective diffusivity (6.66 × 10619 m2 s611) was calculated with Crank’s solution to Fick’s diffusion law by letting n = 1 as compared to that (0.77 × 10619 m2 s611) by letting n = 100.
,
DOI:10.1016/j.jfoodeng.2013.06.035URL [本文引用: 2]
The effects of trehalose and ultrasound-assisted osmotic dehydration on the glass transition temperature (Tg′) and the state of water in broccoli were analyzed by using differential scanning calorimetry (DSC), low field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI). The results showed that osmotic dehydration using trehalose can affect the Tg′ of broccoli by changing the state of water within the sample structure. The values of Tg′ of the osmotically dehydrated broccoli samples ranged between 6127.52°C and 6123.31°C, which constituted an increase of about 2–6°C compared with that of the untreated sample. Compared with the normal osmotic dehydration with 2h, ultrasound-assisted dehydration with shorter time (30min) could get the higher value of Tg′ by increased the water loss and accumulation of trehalose and decrease the mobility of water in the broccoli cell tissue. However, when the ultrasound treatment time was 40min, it resulted into decrease in Tg′ indicating the important role of treatment time in ultrasound-assisted osmotic dehydration process.
//,
DOI:10.1109/ICAMechS.2013.6681719URL [本文引用: 1]
Ultrasound can enhance mass transfer rate inside and outside materials during dehydration, so it's often used to strengthen osmotic dehydration. Yet osmotic dehydration can't obtain dry products and is usually applied as pretreatment for other drying process. Ultrasonic osmotic dehydration combined hot-air drying process is investigated in this paper. The influences of operation parameters such as time, ultrasound power, solution concentration and system temperature on water removal ratio are discussed. The effects of ultrasonic osmosis on total dehydration time of drying carrot slices are also studied.
,
DOI:10.1016/j.fbp.2017.07.008URL [本文引用: 1]
,
DOI:10.1016/j.jfoodeng.2005.10.018URL [本文引用: 1]
The influence of the ultrasonic intensity in water and dry matter transport on a system constituted by apple and sucrose solution was studied in this work. Apple slices were immersed in a 30 °Brix sucrose solution at 30 °C. Three types of treatments were carried out: static (ST), with agitation (AG) and with ultrasound application (US) at five different levels of intensity, characterized using a calorimetric method. After 45 min treatment, the water losses and the increase of dry matter were significantly higher in US samples than ST samples when the ultrasonic intensity was above 10.8 W/cm 2. At 11.5 W/cm 2, the increase of dry matter was significantly higher than in samples from AG experiments. Diffusivity of water and dry matter was identified using a model based on Fick’s law. Ultrasonic treatments (11.5 W/cm 2) supposed an increase of 117% for water diffusivity and 137% for dry matter diffusivity compared with ST experiments.
,
DOI:10.1016/j.jfoodeng.2007.02.032URL [本文引用: 1]
Dehydration of fruits is an alternative to reduce post-harvest loss of fruits and also a process to produce dried fruits, which can be directly consumed or become part of foodstuffs like cakes, pastries and many others. The effect of ultrasonic pre-treatment prior to air-drying on dehydration of bananas ( Musa ssp.) was investigated. The study allowed estimating the water diffusivity in the air-drying process for bananas submitted to ultrasound. Results showed that the water diffusivity increases after application of ultrasound and that the overall drying time was reduced by 11%, which represents an economy of energy since air-drying is energy cost intensive. During the ultrasonic treatment the bananas lost sugar, so the ultrasonic pre-treatment can be an interesting process to produce dried fruits with low sugar content. The use of ultrasound as a pre-treatment prior to air-drying was compared to the use of osmotic dehydration as a pre-treatment prior to air-drying. Results showed that the use of ultrasonic pre-treatment is interesting when large amounts of water needs to be removed from the fruit, case in which the combined processing time (pre-treatment and air-drying) is shorter.
,
DOI:10.1007/s11947-014-1355-1URL [本文引用: 1]
The effect of power ultrasound and pulsed vacuum (PV) treatments on the dehydration kinetics and the status of water during osmotic dehydration of strawberries was investigated. Low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) were used to determine the spatial distribution and status of water within the cellular and intercellular spaces. Differential scanning calorimetry (DSC) was used to determine the freezing point depression and the amount of frozen water. Osmotic treatment was performed by immersing the samples in 25 and 5002% ( w / w ) sucrose solutions at 4002°C for 302h. Water loss and solid gain of strawberry samples were measured and the data were fitted by Peleg’s model. The Peleg’s model fitted the experimental water loss and solid gain kinetics data well ( R 2 65>650.98). At a given sucrose concentration, the highest water loss and the highest decrease in firmness occurred while using ultrasound treatment, while the highest solid gain and the highest firmness values were achieved by pulsed vacuum treatment. LF-NMR signals were able to quantify the effect of water-osmotic solute exchange on the cell compartments (vacuole, cytoplasm plus intercellular space, and cell wall). The LF-NMR data showed that the relative space occupied by the vacuole decreased and the relative space occupied by the cytoplasm and intercellular space were increased due to these osmotic treatments. MRI results indicated that a bright “water strip” appeared in the periphery of all the osmotically dehydrated samples. DSC results showed that the decrease in water content and the increase in the osmotic solutes depressed the initial freezing point and the freezable water content in osmotically dehydrated strawberry.
,
DOI:10.1007/s11947-012-0997-0URL [本文引用: 1]
The paper presents an assessment of the influence of selected highbush blueberry pretreatment methods and parameters on the process of osmotic dehydration conducted in 65 A degrees Brix sucrose solution for 5 to 240 min at 30-70 A degrees C. The pretreatment methods used included: fruit immersion in boiling water (15 s) and in 0.5 % NaOH solution (15 s at 95 A degrees C), exposure to ultrasound at atmospheric pressure (vibration frequency of 35 A +/- 5 kHz, 500 W, for 15 min.) and at low pressure (0.92 kg cm(-1)), and enzymatic processing; pectinase (enzyme activity of 46,000 PGU/mL; 0.6 mL/90 g of fruits; 30 min at approx. 22 A degrees C) and lipase (enzyme activity of 750 PGU/mL; 0.7 mL/90 g of fruits; 30 min at approx. 22 A degrees C) were used. Dehydration was also conducted in the presence of pectinolytic enzymes. The dehydrated material was analyzed in terms of the content of dry matter, total polyphenols, and particular polyphenols using high performance liquid chromatography. It was observed that dehydration was much more intensive at 60 and 70 A degrees C, but such temperatures led to substantial losses of phenolic compounds (by 15-30 % after 2-h dehydration) and unfavorable changes in the texture of the final product. A promising method of pretreatment is fruit immersion in solutions containing pectinolytic and lipolytic enzymes, which increase dry matter content by 26 % (after 1 h of dehydration at 30 A degrees C) with a low loss of phenolic compounds (4 %). Among the identified anthocyanins, the greatest retention during dehydration at various temperatures was displayed by petunidin-3-galactoside (over 80 % after 1 h of dehydration) and petunidin-3-glucoside (over 78 %).
,
DOI:10.1016/j.foodchem.2013.05.129URLPMID:24099537 [本文引用: 1]
The present work investigates how ultrasound pretreatment modulates the effects of osmotic dehydration (OD) on the water state and microstructure of kiwifruit. Kiwifruit slices (10mm thick) were subjected to ultrasonic waves in a water bath at a frequency of 35kHz for 10, 20 and 30min. OD process was then carried out by immersing the samples in 61.5% sucrose solution equilibrated at 25 C for a contact period of 0, 10, 20, 30, 60 and 120min. The partition of water into the cellular tissue structures (vacuole, cytoplasm, extracellular spaces and cell wall) was investigated by Time Domain Nuclear Magnetic Resonance (TD-NMR). In parallel, the microstructure of kiwifruits slices was examined using a Scanning Electron Microscope. The results showed that US pretreatment performed for more than 10min had a positive effect on the mass exchange caused by osmotic dehydration. A creation of microchannels and an increase of the average cross-section area of cells were observed when the samples were pretreated with US before OD. TD-NMR showed a slight redistribution of water through the substructures of the cells, as a function of the length of the US pretreatment applied.
,
DOI:10.1016/j.ifset.2012.04.003URL [本文引用: 2]
78 Effect of hypotonic and hypertonic solutions on infusion of curcuminoids in foods 78 Mass transfers was studied in binary and ternary solutions. 78 Ultrasound was used for possible enhancement in mass transfer. 78 Direction mass transfer was found to be dependent on osmotic pressure gradient.
,
URLMagsci [本文引用: 1]
研究超声场强化芋头渗透脱水,探讨芋头失水速率和干物质增加率随溶液质量浓度、温度、超声功率、材料厚度以及超声场下处理时间段的变化规律。分析超声空化泡在相间的传质过程,由此建立超声空化气泡强化相间传质数学模型Km≈ DABπtmRδAfφ(BI-cf2)(A为经验常数(10-8~10-15m2);B、C为超声波作用液体的有关常数,数量值分别在1014、106左右;f为声波频率/s-1;DAB为扩散系数/(m2/s) ;tm为时间/s;R为半径/m;δ为边界层厚度/m;φ为半径为R的气泡数占生成空化气泡总数百分比;I为声强/(W/cm2)),与实验结果相吻合,能较好地描述超声空化泡在液体中的传质行为。该关系式为超声波强化传质过程提供了理论依据。
URLMagsci [本文引用: 1]
研究超声场强化芋头渗透脱水,探讨芋头失水速率和干物质增加率随溶液质量浓度、温度、超声功率、材料厚度以及超声场下处理时间段的变化规律。分析超声空化泡在相间的传质过程,由此建立超声空化气泡强化相间传质数学模型Km≈ DABπtmRδAfφ(BI-cf2)(A为经验常数(10-8~10-15m2);B、C为超声波作用液体的有关常数,数量值分别在1014、106左右;f为声波频率/s-1;DAB为扩散系数/(m2/s) ;tm为时间/s;R为半径/m;δ为边界层厚度/m;φ为半径为R的气泡数占生成空化气泡总数百分比;I为声强/(W/cm2)),与实验结果相吻合,能较好地描述超声空化泡在液体中的传质行为。该关系式为超声波强化传质过程提供了理论依据。
,
DOI:10.3321/j.issn:0253-990X.2002.08.008URL [本文引用: 1]
通过跟踪测定果蔬组织中含糖量 的变化及显微切片技术 ,对超声波影响果蔬渗糖及组织细胞完整性问题进行了比较研究。结果表明 ,与常规渗糖方法相比 ,超声波提高果蔬组织渗糖速度的幅度在 3 8 63 %以上。超声波可以显著提高果蔬组织的渗糖速率 ,同时可以明显降低糖煮对果蔬组织细胞结构的破坏作用
DOI:10.3321/j.issn:0253-990X.2002.08.008URL [本文引用: 1]
通过跟踪测定果蔬组织中含糖量 的变化及显微切片技术 ,对超声波影响果蔬渗糖及组织细胞完整性问题进行了比较研究。结果表明 ,与常规渗糖方法相比 ,超声波提高果蔬组织渗糖速度的幅度在 3 8 63 %以上。超声波可以显著提高果蔬组织的渗糖速率 ,同时可以明显降低糖煮对果蔬组织细胞结构的破坏作用
,
DOI:10.3969/j.issn.1005-6521.2017.21.016URL [本文引用: 1]
以脆红李为原料,选取常规、真空、微波、超声波4种渗糖方式,分析渗糖方式对脆红李果脯品质及香气的影响。结果表明:超声波渗糖干燥后含糖量最高为47.35 %,且感官评价得分最高为90.8分。真空渗糖后VC、总黄酮及香气相对含量最高分别为1.86 mg/100 g、3.45 mg/g、91.593 %。微波渗糖后总酚含量最高为5.37mg/g。综合评价超声波渗糖脆红李果脯品质最好且能较好保留脆红李的风味及营养,而微波渗糖在生产成本、生产效率及后期干燥等方面则可以做到较好的平衡。
DOI:10.3969/j.issn.1005-6521.2017.21.016URL [本文引用: 1]
以脆红李为原料,选取常规、真空、微波、超声波4种渗糖方式,分析渗糖方式对脆红李果脯品质及香气的影响。结果表明:超声波渗糖干燥后含糖量最高为47.35 %,且感官评价得分最高为90.8分。真空渗糖后VC、总黄酮及香气相对含量最高分别为1.86 mg/100 g、3.45 mg/g、91.593 %。微波渗糖后总酚含量最高为5.37mg/g。综合评价超声波渗糖脆红李果脯品质最好且能较好保留脆红李的风味及营养,而微波渗糖在生产成本、生产效率及后期干燥等方面则可以做到较好的平衡。
,
DOI:10.7506/spkx1002-6630-201701005URL [本文引用: 1]
以脱水率、固形物获取率、脱水率与固形物获取率比值、有效水分扩散系数、活化能、VC保留率、辣度、复水比、复原率和感官评价为考察指标,通过渗透脱水实验、渗后热风干燥实验和复水实验,考察了辣椒的渗透脱水特性、渗后热风干燥特性、复水特性和品质。结果表明:随着渗透温度的升高或渗透液中食盐含量的增加,辣椒的脱水率和固形物获取率增大。对渗透后的辣椒样品进行热风干燥处理发现,热风温度是影响热风干燥的最主要因素,其次是风速。辣椒样品的有效水分扩散系数随着温度的升高而增大,在风速为1.8 m/s的条件下,直接热风干燥辣椒样品和渗后热风干燥辣椒样品的活化能分别为(53.25±1.08)k J/mol和(44.42±0.88)k J/mol。渗后热风干燥样品的有效水分扩散系数、VC保留率、辣度、复水比和复原率均高于直接热风干燥样品,渗后热风干燥样品的复水特性和品质更好。
DOI:10.7506/spkx1002-6630-201701005URL [本文引用: 1]
以脱水率、固形物获取率、脱水率与固形物获取率比值、有效水分扩散系数、活化能、VC保留率、辣度、复水比、复原率和感官评价为考察指标,通过渗透脱水实验、渗后热风干燥实验和复水实验,考察了辣椒的渗透脱水特性、渗后热风干燥特性、复水特性和品质。结果表明:随着渗透温度的升高或渗透液中食盐含量的增加,辣椒的脱水率和固形物获取率增大。对渗透后的辣椒样品进行热风干燥处理发现,热风温度是影响热风干燥的最主要因素,其次是风速。辣椒样品的有效水分扩散系数随着温度的升高而增大,在风速为1.8 m/s的条件下,直接热风干燥辣椒样品和渗后热风干燥辣椒样品的活化能分别为(53.25±1.08)k J/mol和(44.42±0.88)k J/mol。渗后热风干燥样品的有效水分扩散系数、VC保留率、辣度、复水比和复原率均高于直接热风干燥样品,渗后热风干燥样品的复水特性和品质更好。
,
DOI:10.7506/spkx1002-6630-201520009URLMagsci [本文引用: 2]
<p>采用超声渗糖制备野生软枣猕猴桃果脯并进行质构分析,探讨超声波对渗糖效果的影响。以含糖量为考察指标,通过响应面法分析优化超声渗糖条件为超声渗糖时间5.1 h、超声功率140 W、渗糖液糖度54 °Brix,此条件渗糖后的果脯湿基含糖量为32.27%,提高了果脯的渗糖速率。全质构分析和穿刺测试结果表明,采用超声渗糖法制备的软枣猕猴桃果脯的硬度值为4 345 g,咀嚼性为52.73 mJ,凝聚性为0.22 mJ,黏性值为58 g,脆性值为435.5 g,其主要质构指标与对比蜜枣果脯接近,感官质量优于真空渗糖软枣猕猴桃果脯。</p>
DOI:10.7506/spkx1002-6630-201520009URLMagsci [本文引用: 2]
<p>采用超声渗糖制备野生软枣猕猴桃果脯并进行质构分析,探讨超声波对渗糖效果的影响。以含糖量为考察指标,通过响应面法分析优化超声渗糖条件为超声渗糖时间5.1 h、超声功率140 W、渗糖液糖度54 °Brix,此条件渗糖后的果脯湿基含糖量为32.27%,提高了果脯的渗糖速率。全质构分析和穿刺测试结果表明,采用超声渗糖法制备的软枣猕猴桃果脯的硬度值为4 345 g,咀嚼性为52.73 mJ,凝聚性为0.22 mJ,黏性值为58 g,脆性值为435.5 g,其主要质构指标与对比蜜枣果脯接近,感官质量优于真空渗糖软枣猕猴桃果脯。</p>
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2013.02.015Magsci [本文引用: 1]
【目的】为了提高紫薯干制品质、提高干燥效率,研究不同条件对紫薯气体射流冲击干燥特性的影响并筛选出最适干燥模型。【方法】采用自制气体射流冲击干燥机干燥紫薯片,探讨风温、风速、预处理和切片厚度对物料干燥特性和水分有效扩散系数的影响。利用数据统计对6个干燥模型进行拟合筛选。【结果】与大多数食品物料干燥试验结果一样,紫薯的气体射流冲击干燥主要属于降速干燥。预处理可增加物料初温且使物料更快达到干燥环境温度,但降低干燥速率并延长干燥时间。干燥速率随着切片厚度增加而降低,但随着风温和风速的增加而增加。物料厚度和风速对物料升温影响小,但风温对物料升温有较大影响,随着风温增加会延长物料达到干燥环境温度所需时间。有效扩散系数随着片层厚度、风温和风速的增加而增加,最高有效水分扩散系数为7.0033×10-10 m2•s-1。所有模型都能较好地描述紫薯气体射流冲击干燥过程中紫薯的水分变化规律,其中Modified Henderson and Pabis模型有最大确定系数,最小卡方值和均方根误差。【结论】风温、风速、切片厚度、预处理对紫薯气体射流冲击干燥曲线、干燥速率曲线和温度、有效水分扩散系数均有影响。在风温50—80℃,风速10—13 m•s-1且切片厚度为1.87—4.80 mm条件下,Modified Henderson and Pabis模型是拟合紫薯干燥曲线的最适模型。
DOI:10.3864/j.issn.0578-1752.2013.02.015Magsci [本文引用: 1]
【目的】为了提高紫薯干制品质、提高干燥效率,研究不同条件对紫薯气体射流冲击干燥特性的影响并筛选出最适干燥模型。【方法】采用自制气体射流冲击干燥机干燥紫薯片,探讨风温、风速、预处理和切片厚度对物料干燥特性和水分有效扩散系数的影响。利用数据统计对6个干燥模型进行拟合筛选。【结果】与大多数食品物料干燥试验结果一样,紫薯的气体射流冲击干燥主要属于降速干燥。预处理可增加物料初温且使物料更快达到干燥环境温度,但降低干燥速率并延长干燥时间。干燥速率随着切片厚度增加而降低,但随着风温和风速的增加而增加。物料厚度和风速对物料升温影响小,但风温对物料升温有较大影响,随着风温增加会延长物料达到干燥环境温度所需时间。有效扩散系数随着片层厚度、风温和风速的增加而增加,最高有效水分扩散系数为7.0033×10-10 m2•s-1。所有模型都能较好地描述紫薯气体射流冲击干燥过程中紫薯的水分变化规律,其中Modified Henderson and Pabis模型有最大确定系数,最小卡方值和均方根误差。【结论】风温、风速、切片厚度、预处理对紫薯气体射流冲击干燥曲线、干燥速率曲线和温度、有效水分扩散系数均有影响。在风温50—80℃,风速10—13 m•s-1且切片厚度为1.87—4.80 mm条件下,Modified Henderson and Pabis模型是拟合紫薯干燥曲线的最适模型。
,
DOI:10.3969/j.issn.1002-6819.2012.17.041URLMagsci [本文引用: 1]
为了判断小型西瓜生长过程中的成熟度,实时监控其内部品质,该文研究了小型西瓜"京秀"果实在生长过程中,多种基础信息随着生长天数的变化情况。西瓜的内部品质指标变化具有一定的规律性,且部分指标的变化规律相似。由相关性分析、因子分析及构造新变量的结果可知,小型西瓜"京秀"果实在授粉后20~38 d的过程中,品质变化主要表现为可溶性固形物、可滴定酸、瓜瓤含水率及叶绿素含量的变化,其中叶绿素含量的变化主要在22~25 d的过程中表现较为显著,28~30 d的过程中主要表现为可溶性固形物、可滴定酸和含水率的变化,31~38 d的过程中品质基本上已经达到稳定,只在小范围内有些波动。研究结果为小型西瓜品质和成熟度的光学无损检测提供了参数选择的依据。
DOI:10.3969/j.issn.1002-6819.2012.17.041URLMagsci [本文引用: 1]
为了判断小型西瓜生长过程中的成熟度,实时监控其内部品质,该文研究了小型西瓜"京秀"果实在生长过程中,多种基础信息随着生长天数的变化情况。西瓜的内部品质指标变化具有一定的规律性,且部分指标的变化规律相似。由相关性分析、因子分析及构造新变量的结果可知,小型西瓜"京秀"果实在授粉后20~38 d的过程中,品质变化主要表现为可溶性固形物、可滴定酸、瓜瓤含水率及叶绿素含量的变化,其中叶绿素含量的变化主要在22~25 d的过程中表现较为显著,28~30 d的过程中主要表现为可溶性固形物、可滴定酸和含水率的变化,31~38 d的过程中品质基本上已经达到稳定,只在小范围内有些波动。研究结果为小型西瓜品质和成熟度的光学无损检测提供了参数选择的依据。
,
DOI:10.6041/j.issn.1000-1298.2013.04.029URL [本文引用: 1]
测定了不同微波条件处理的玉米样品关于种子品质和加工品质的13项品质指标,采用隶属函数法对各项指标数据进行转换,通过因子分析法对玉米品质进行综合评价,在此基础上选择最优的玉米微波灭霉工艺参数。结果表明,隶属函数法同时考虑到玉米品质指标对评价体系的正、负影响,采用该方法转换的数据适于因子分析;经因子分析提取出影响玉米品质评价的4个公因子依次是生理生化因子、黏度特性因子、淀粉含量及组成因子和糊化特性因子,累积方差贡献率为94.45%;玉米品质综合评价结果显示,玉米品质变化是玉米初始含水率、微波处理温度和处理时间共同作用的结果,当玉米初始含水率为13.8%、18.4%和22.6%时,宜采用70℃(14 min)、50℃(22 min)和60℃(18 min)的微波灭霉工艺参数。
DOI:10.6041/j.issn.1000-1298.2013.04.029URL [本文引用: 1]
测定了不同微波条件处理的玉米样品关于种子品质和加工品质的13项品质指标,采用隶属函数法对各项指标数据进行转换,通过因子分析法对玉米品质进行综合评价,在此基础上选择最优的玉米微波灭霉工艺参数。结果表明,隶属函数法同时考虑到玉米品质指标对评价体系的正、负影响,采用该方法转换的数据适于因子分析;经因子分析提取出影响玉米品质评价的4个公因子依次是生理生化因子、黏度特性因子、淀粉含量及组成因子和糊化特性因子,累积方差贡献率为94.45%;玉米品质综合评价结果显示,玉米品质变化是玉米初始含水率、微波处理温度和处理时间共同作用的结果,当玉米初始含水率为13.8%、18.4%和22.6%时,宜采用70℃(14 min)、50℃(22 min)和60℃(18 min)的微波灭霉工艺参数。
,
URL [本文引用: 1]
为探究岗巴县孔玛乡的岗巴羊羊肉的营养品质,对3个年龄的岗巴羊的营养成份、食用品质和感官品质指标进行比较分析,并结合主成分分析研究其影响因子,结果表明:孔玛乡岗巴羊羊肉水分含量为74.78%,灰分含量为1.20%,蛋白质含量为19.70%,粗脂肪为3.63%;L~*和a~*值分别为50.17和10.02,色泽好;剪切力低至33.54 N,失水率、滴水损失、蒸煮损失分别低至33.72%、9.37%、47.53%,具有很好加工特性和出肉率。通过因子分析以0.75为界限值进行关键品质指标的筛选,其关键指标为灰分、蛋白质、粗脂肪、p H、L~*、b~*、失水率和蒸煮损失等8个品质指标,本实验结果为岗巴羊产业的发展提供基础数据。
URL [本文引用: 1]
为探究岗巴县孔玛乡的岗巴羊羊肉的营养品质,对3个年龄的岗巴羊的营养成份、食用品质和感官品质指标进行比较分析,并结合主成分分析研究其影响因子,结果表明:孔玛乡岗巴羊羊肉水分含量为74.78%,灰分含量为1.20%,蛋白质含量为19.70%,粗脂肪为3.63%;L~*和a~*值分别为50.17和10.02,色泽好;剪切力低至33.54 N,失水率、滴水损失、蒸煮损失分别低至33.72%、9.37%、47.53%,具有很好加工特性和出肉率。通过因子分析以0.75为界限值进行关键品质指标的筛选,其关键指标为灰分、蛋白质、粗脂肪、p H、L~*、b~*、失水率和蒸煮损失等8个品质指标,本实验结果为岗巴羊产业的发展提供基础数据。
,
DOI:10.3864/j.issn.0578-1752.2016.04.019URL [本文引用: 1]
【目的】探讨不同品种桃脆片的综合品质差异,建立桃脆片综合品质评价判别函数模型,为桃合理加工利用提供理论支持,为桃脆片综合品质的科学评价奠定基础。【方法】试验以中国北方的49个主栽桃品种为试材,测定桃脆片包括感官品质(色泽、硬度、脆度、膨化度等)、理化与营养品质(可溶性固形物、粗脂肪、粗蛋白、粗纤维等)和加工品质(出品率和复水比)在内的17项品质评价指标,分别采用变异系数法分析不同品种桃脆片品质评价指标的差异情况,采用因子分析法系统分析指标间的相关关系并筛选得到桃脆片品质评价的核心指标,运用层次分析法得到核心指标的权重并计算不同品种桃脆片的综合品质得分,最后选用70%样品作为建模样本,综合利用K-均值聚类法和判别分析法建立桃脆片综合品质判别函数,选用其余样品作为检验样本,验证判别函数的适用性和正确性。【结果】(1)桃脆片品质指标之间离散度有差异,变异系数范围在0.70%—344.02%。(2)依据主成分解释的总变量和碎石图提取了5个主因子,反应了原变量74.626%的信息。其中第一主因子(PC1)综合了还原糖和糖酸比的信息,即口感品质;第二主因子(PC2)主要综合了出品率和复水比的信息,体现的是脆片产品的加工品质指标;第三主因子(PC3)主要综合了L值和b值信息,可命名为色泽品质指标;第四主因子(PC4)和第5主因子(PC5)中粗蛋白和膨化度指标的权重值明显高于其他指标,可分别作为该主因子的代表性指标。根据每个代表因子的权重大小并以指标测定的简便、快捷程度为依据,筛选得到5项桃脆片品质评价核心指标,即还原糖、复水比、L值、粗蛋白和膨化度。(3)依据层次分析法确立了5个核心指标的权重值分别为0.0824、0.1724、0.2732、0.0480、0.4240;选用极差法建立了桃脆片品质评价核心指标的评分标准。(4)建立了桃脆片品质等级判别函数,建模样本判别正确率为100%,检验样本仅一个被误判。其中‘瑞蟠19号’、‘德来福莱卡’、‘大久保’等15个品种是适于桃脆片的加工品种,品质为优;‘瑞蟠21’、‘菊黄’、‘艳红’等28个品种为较适宜加工桃脆片的品种,品质为中;‘瑞蟠20号’、‘森格林’、‘黄金秀’等6个品种不适于桃脆片加工,品质为差。【结论】桃脆片综合品质可用还原糖、复水比、L值、粗蛋白和膨化度等5项核心指标进行评价,建立的桃脆片综合品质判别函数具有较高的准确性,可用于桃脆片综合品质的定性判别。
DOI:10.3864/j.issn.0578-1752.2016.04.019URL [本文引用: 1]
【目的】探讨不同品种桃脆片的综合品质差异,建立桃脆片综合品质评价判别函数模型,为桃合理加工利用提供理论支持,为桃脆片综合品质的科学评价奠定基础。【方法】试验以中国北方的49个主栽桃品种为试材,测定桃脆片包括感官品质(色泽、硬度、脆度、膨化度等)、理化与营养品质(可溶性固形物、粗脂肪、粗蛋白、粗纤维等)和加工品质(出品率和复水比)在内的17项品质评价指标,分别采用变异系数法分析不同品种桃脆片品质评价指标的差异情况,采用因子分析法系统分析指标间的相关关系并筛选得到桃脆片品质评价的核心指标,运用层次分析法得到核心指标的权重并计算不同品种桃脆片的综合品质得分,最后选用70%样品作为建模样本,综合利用K-均值聚类法和判别分析法建立桃脆片综合品质判别函数,选用其余样品作为检验样本,验证判别函数的适用性和正确性。【结果】(1)桃脆片品质指标之间离散度有差异,变异系数范围在0.70%—344.02%。(2)依据主成分解释的总变量和碎石图提取了5个主因子,反应了原变量74.626%的信息。其中第一主因子(PC1)综合了还原糖和糖酸比的信息,即口感品质;第二主因子(PC2)主要综合了出品率和复水比的信息,体现的是脆片产品的加工品质指标;第三主因子(PC3)主要综合了L值和b值信息,可命名为色泽品质指标;第四主因子(PC4)和第5主因子(PC5)中粗蛋白和膨化度指标的权重值明显高于其他指标,可分别作为该主因子的代表性指标。根据每个代表因子的权重大小并以指标测定的简便、快捷程度为依据,筛选得到5项桃脆片品质评价核心指标,即还原糖、复水比、L值、粗蛋白和膨化度。(3)依据层次分析法确立了5个核心指标的权重值分别为0.0824、0.1724、0.2732、0.0480、0.4240;选用极差法建立了桃脆片品质评价核心指标的评分标准。(4)建立了桃脆片品质等级判别函数,建模样本判别正确率为100%,检验样本仅一个被误判。其中‘瑞蟠19号’、‘德来福莱卡’、‘大久保’等15个品种是适于桃脆片的加工品种,品质为优;‘瑞蟠21’、‘菊黄’、‘艳红’等28个品种为较适宜加工桃脆片的品种,品质为中;‘瑞蟠20号’、‘森格林’、‘黄金秀’等6个品种不适于桃脆片加工,品质为差。【结论】桃脆片综合品质可用还原糖、复水比、L值、粗蛋白和膨化度等5项核心指标进行评价,建立的桃脆片综合品质判别函数具有较高的准确性,可用于桃脆片综合品质的定性判别。
,
URLMagsci [本文引用: 1]
<P><FONT face=Verdana>【目的】建立一套适合冬枣果实品质评价的方法,探求冬枣果实品质评价中的主要影响因子,并为选择品质优良的冬枣单株(或候选单株)提供依据。【方法】测定20项冬枣优良单株的果实品质指标,采用隶属函数法对各项指标数据进行转化,采用SPSS13.0软件进行因子分析,采用四次方最大旋转法获得因子载荷矩阵,以公因子贡献率为权重,计算样品前6个公因子分值与相应权重之积的累加和,得到综合分值,结合公因子的二维排序图进行优良单株的选择。【结果】转化后的数据经因子分析,提取出6个特征根>1的公因子,累计方差贡献率为80.571%,第1公因子为果实甜脆因子,方差贡献率为26.257%,第2公因子为果重及其它内质因子,方差贡献率为16.734%,第3公因子为果皮质地因子,方差贡献率为14.503%,第4公因子为果实外观因子,方差贡献率为9.091%,第5公因子和第6公因子统称为其它因子;二维排序图揭示了不同优良单株前3个公因子的分布情况,可以为冬枣选优提供参照;20份冬枣优良单株及对照的综合排序为:16、22、14、15、18、5、12、17、4、21、1、19、8、10、13、6、2、7、3、CK和20号。【结论】隶属函数法同时考虑到果实品质指标对评价体系的正、负影响,采用该法转化的数据适于进行因子分析;影响冬枣优良单株果实品质综合评价的关键因子依次是果实甜脆因子、果重及其它内质因子、果皮质地因子、果实外观因子和其它因子;20份优良单株及对照冬枣的综合评价结果为:16、22、15和18号综合品质性状较优,可作为候选单株,结合其它性状进行下一步筛选,其它单株不宜选择。<BR></FONT></P>
URLMagsci [本文引用: 1]
<P><FONT face=Verdana>【目的】建立一套适合冬枣果实品质评价的方法,探求冬枣果实品质评价中的主要影响因子,并为选择品质优良的冬枣单株(或候选单株)提供依据。【方法】测定20项冬枣优良单株的果实品质指标,采用隶属函数法对各项指标数据进行转化,采用SPSS13.0软件进行因子分析,采用四次方最大旋转法获得因子载荷矩阵,以公因子贡献率为权重,计算样品前6个公因子分值与相应权重之积的累加和,得到综合分值,结合公因子的二维排序图进行优良单株的选择。【结果】转化后的数据经因子分析,提取出6个特征根>1的公因子,累计方差贡献率为80.571%,第1公因子为果实甜脆因子,方差贡献率为26.257%,第2公因子为果重及其它内质因子,方差贡献率为16.734%,第3公因子为果皮质地因子,方差贡献率为14.503%,第4公因子为果实外观因子,方差贡献率为9.091%,第5公因子和第6公因子统称为其它因子;二维排序图揭示了不同优良单株前3个公因子的分布情况,可以为冬枣选优提供参照;20份冬枣优良单株及对照的综合排序为:16、22、14、15、18、5、12、17、4、21、1、19、8、10、13、6、2、7、3、CK和20号。【结论】隶属函数法同时考虑到果实品质指标对评价体系的正、负影响,采用该法转化的数据适于进行因子分析;影响冬枣优良单株果实品质综合评价的关键因子依次是果实甜脆因子、果重及其它内质因子、果皮质地因子、果实外观因子和其它因子;20份优良单株及对照冬枣的综合评价结果为:16、22、15和18号综合品质性状较优,可作为候选单株,结合其它性状进行下一步筛选,其它单株不宜选择。<BR></FONT></P>
,
URL [本文引用: 1]
冻干前处理及冻结方式是果蔬冻干的关键工序。选用新鲜猕猴桃为研究对象,以色泽、质构和Vc为评价指标,研究了超声波预处理和真空冻结对真空冻干猕猴桃片品质的影响。结果表明,超声波处理后的猕猴桃片色差变化大、Vc含量较低,但其硬度小、脆性高,产品松脆可口、综合排名好。真空冻结处理后猕猴桃片色差值变化小,但其硬度大、酥脆性差,且Vc含量低、综合排名差。研究结果为猕猴桃脆片冻干前处理及冻结方式的优化提供了理论依据,为新型果蔬脆片的开发提供了参考。
URL [本文引用: 1]
冻干前处理及冻结方式是果蔬冻干的关键工序。选用新鲜猕猴桃为研究对象,以色泽、质构和Vc为评价指标,研究了超声波预处理和真空冻结对真空冻干猕猴桃片品质的影响。结果表明,超声波处理后的猕猴桃片色差变化大、Vc含量较低,但其硬度小、脆性高,产品松脆可口、综合排名好。真空冻结处理后猕猴桃片色差值变化小,但其硬度大、酥脆性差,且Vc含量低、综合排名差。研究结果为猕猴桃脆片冻干前处理及冻结方式的优化提供了理论依据,为新型果蔬脆片的开发提供了参考。
,
DOI:10.7506/spkx1002-6630-201421012Magsci [本文引用: 1]
<p>为了细致研究“华红”苹果贮藏期间果肉质地变化和不同苹果品种质构特性差异,本实验以套袋和未套袋“华红”苹果为试材,应用质地多面分析法定期测定贮藏期间果肉质地参数;以及以不同熟期“华红”、“华苹”、“寒富”、“红星”、“嘎拉”、“津轻”为试材,比较不同苹果品种果肉质地品质差异,同时分析各质地参数之间相关性。“华红”套袋和未套袋果肉质地参数在常温贮藏过程中变化趋势基本一致,且未套袋果肉的各项质地参数稍高于套袋的。硬度呈下降趋势,在黏附性、内聚性、弹性、咀嚼性、回复性方面,贮藏0 d的果实与48 d相比稍有升高。“华红”果肉贮藏期间质地参数变化相关性和6 个苹果品种之间质地参数相关性有相似处,内聚性与弹性、回复性、咀嚼性都呈正相关,弹性与回复性、咀嚼性都呈较好地正相关,回复性与咀嚼性呈较好的正相关。不同的是,“华红”果肉硬度与黏附性、内聚性呈负相关,而不同品种之间果肉硬度与内聚性、弹性、回复性、咀嚼性呈高度正相关。不同品种之间各质地参数也进行了量化比较。综上说明本实验选用的P5探头测定的果肉内聚性、弹性、回复性、咀嚼性能反映“华红”果肉质地变化规律,适用于苹果果肉质地品质的客观评价。硬度、内聚性、弹性、回复性、咀嚼性质地参数中的一项或多项可以作为评价“华红”果肉质地和比较这6 个苹果品种果肉质地差异性的重要参数。</p>
DOI:10.7506/spkx1002-6630-201421012Magsci [本文引用: 1]
<p>为了细致研究“华红”苹果贮藏期间果肉质地变化和不同苹果品种质构特性差异,本实验以套袋和未套袋“华红”苹果为试材,应用质地多面分析法定期测定贮藏期间果肉质地参数;以及以不同熟期“华红”、“华苹”、“寒富”、“红星”、“嘎拉”、“津轻”为试材,比较不同苹果品种果肉质地品质差异,同时分析各质地参数之间相关性。“华红”套袋和未套袋果肉质地参数在常温贮藏过程中变化趋势基本一致,且未套袋果肉的各项质地参数稍高于套袋的。硬度呈下降趋势,在黏附性、内聚性、弹性、咀嚼性、回复性方面,贮藏0 d的果实与48 d相比稍有升高。“华红”果肉贮藏期间质地参数变化相关性和6 个苹果品种之间质地参数相关性有相似处,内聚性与弹性、回复性、咀嚼性都呈正相关,弹性与回复性、咀嚼性都呈较好地正相关,回复性与咀嚼性呈较好的正相关。不同的是,“华红”果肉硬度与黏附性、内聚性呈负相关,而不同品种之间果肉硬度与内聚性、弹性、回复性、咀嚼性呈高度正相关。不同品种之间各质地参数也进行了量化比较。综上说明本实验选用的P5探头测定的果肉内聚性、弹性、回复性、咀嚼性能反映“华红”果肉质地变化规律,适用于苹果果肉质地品质的客观评价。硬度、内聚性、弹性、回复性、咀嚼性质地参数中的一项或多项可以作为评价“华红”果肉质地和比较这6 个苹果品种果肉质地差异性的重要参数。</p>
,
URL [本文引用: 1]
为探究超声及超声渗透预处理对桃片水分迁移及红外辐射干燥特性的影响,经超声及超声渗透30、60 min预处理后,进行红外辐射80℃干燥处理,采用低场核磁共振技术测定预处理后桃片横向弛豫时间T2图谱,分析水分状态及分布变化,得到干燥特性曲线,并分析水分状态及分布对干燥特性的影响。结果表明,超声降低桃片固形物含量,超声渗透明显增加固形物含量并降低水分含量;不同预处理均改变桃片内部水分状态和分布。超声后,桃片不易流动水和自由水弛豫时间增加,水分自由度增加,从而提高干燥速率,增加水分有效扩散系数;超声渗透后,桃片结合水、不易流动水及自由水弛豫时间均减小,且自由水含量明显降低,而不易流动水及结合水含量相对升高,从而降低干燥速率,减小水分有效扩散系数。该研究为超声及超声渗透预处理对红外辐射干燥水分扩散研究提供参考。
URL [本文引用: 1]
为探究超声及超声渗透预处理对桃片水分迁移及红外辐射干燥特性的影响,经超声及超声渗透30、60 min预处理后,进行红外辐射80℃干燥处理,采用低场核磁共振技术测定预处理后桃片横向弛豫时间T2图谱,分析水分状态及分布变化,得到干燥特性曲线,并分析水分状态及分布对干燥特性的影响。结果表明,超声降低桃片固形物含量,超声渗透明显增加固形物含量并降低水分含量;不同预处理均改变桃片内部水分状态和分布。超声后,桃片不易流动水和自由水弛豫时间增加,水分自由度增加,从而提高干燥速率,增加水分有效扩散系数;超声渗透后,桃片结合水、不易流动水及自由水弛豫时间均减小,且自由水含量明显降低,而不易流动水及结合水含量相对升高,从而降低干燥速率,减小水分有效扩散系数。该研究为超声及超声渗透预处理对红外辐射干燥水分扩散研究提供参考。
,
DOI:10.13386/j.issn1002-0306.2014.14.055URL [本文引用: 2]
选取杏鲍菇为原材料、麦芽糊精溶液为浸渍液,采用超声浸渍法处理原料,并通过真空微波干燥工艺加工制得一种杏鲍菇非油炸脆片。以杏鲍菇脆片的理化及感官品质为指标,在单因素实验上,采用正交实验方法研究超声浸渍工艺对产品的理化指标及感官品质的影响,并优化了超声浸渍工艺。单因素实验结果表明:不同的超声浸渍条件可显著影响浸渍效果及杏鲍菇脆片的理化和感官性质。通过正交实验优化所得最优超声浸渍工艺为:浸渍温度55℃、浸渍液浓度15%、浸渍时间20min。在此条件下,杏鲍菇脆片的浸渍效果为29.35%,硬度为2115.21g,韧度为114.44J/cm2,L*值为76.02,具有形状均匀、色泽淡黄、口感酥脆的特点,感官评定后得分最高。因此,该超声浸渍工艺可用于生产高品质杏鲍菇片,并且可应用于工业化生产。
DOI:10.13386/j.issn1002-0306.2014.14.055URL [本文引用: 2]
选取杏鲍菇为原材料、麦芽糊精溶液为浸渍液,采用超声浸渍法处理原料,并通过真空微波干燥工艺加工制得一种杏鲍菇非油炸脆片。以杏鲍菇脆片的理化及感官品质为指标,在单因素实验上,采用正交实验方法研究超声浸渍工艺对产品的理化指标及感官品质的影响,并优化了超声浸渍工艺。单因素实验结果表明:不同的超声浸渍条件可显著影响浸渍效果及杏鲍菇脆片的理化和感官性质。通过正交实验优化所得最优超声浸渍工艺为:浸渍温度55℃、浸渍液浓度15%、浸渍时间20min。在此条件下,杏鲍菇脆片的浸渍效果为29.35%,硬度为2115.21g,韧度为114.44J/cm2,L*值为76.02,具有形状均匀、色泽淡黄、口感酥脆的特点,感官评定后得分最高。因此,该超声浸渍工艺可用于生产高品质杏鲍菇片,并且可应用于工业化生产。
,
DOI:10.1177/1082013203034641URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1002-6819.2009.12.056URLMagsci [本文引用: 1]
中国是世界苹果第一生产大国,但中国苹果出口仅占世界贸易量的不足10%,其主要制约因素是安全性,其中农药残留是主要原因之一。论文采用响应曲面法对超声波去除苹果中有机氯农药残留的工艺条件(功率、时间、温度)及其交互作用进行了优化,并就超声波处理对苹果主要品质指标的影响进行了分析。结果表明:超声波去除苹果中有机氯农药残留的适宜工艺参数为:超声波功率为609.16 W,时间为70.46 min,温度为15.45℃,去除率可达到64.32%;超声波处理对苹果的硬度没有显著性影响;对苹果的总糖、总酸具有一定的显著性影响,但没有超出国家标准及主要出口国苹果标准的要求。超声波处理简单快速,能有效去除苹果中有机氯农药的残留,极大提高苹果的安全性,很容易和现有鲜果清洗、分级、打蜡生产线耦合链接,其产业化应用前景极为广阔。
DOI:10.3969/j.issn.1002-6819.2009.12.056URLMagsci [本文引用: 1]
中国是世界苹果第一生产大国,但中国苹果出口仅占世界贸易量的不足10%,其主要制约因素是安全性,其中农药残留是主要原因之一。论文采用响应曲面法对超声波去除苹果中有机氯农药残留的工艺条件(功率、时间、温度)及其交互作用进行了优化,并就超声波处理对苹果主要品质指标的影响进行了分析。结果表明:超声波去除苹果中有机氯农药残留的适宜工艺参数为:超声波功率为609.16 W,时间为70.46 min,温度为15.45℃,去除率可达到64.32%;超声波处理对苹果的硬度没有显著性影响;对苹果的总糖、总酸具有一定的显著性影响,但没有超出国家标准及主要出口国苹果标准的要求。超声波处理简单快速,能有效去除苹果中有机氯农药的残留,极大提高苹果的安全性,很容易和现有鲜果清洗、分级、打蜡生产线耦合链接,其产业化应用前景极为广阔。