删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新疆产棉区高强棉纤维形成的纤维素累积特征及适宜温度

本站小编 Free考研考试/2021-12-26

田景山,, 张煦怡, 虎晓兵, 随龙龙, 张鹏鹏, 王文敏, 勾玲,, 张旺锋,石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子 832003

Cellulose Deposition Characteristics of High Strength Cotton Fiber and Optimal Temperature Requirements in Xinjiang Region

TIAN JingShan,, ZHANG XuYi, HU XiaoBing, SUI LongLong, ZHANG PengPeng, WANG WenMin, GOU Ling,, ZHANG WangFeng,Agricultural College of Shihezi University/Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang

通讯作者: 张旺锋,E-mail: zhwf_agr@shzu.edu.cn勾玲,E-mail: glxj8162@sina.com.cn

第一联系人: 联系方式:田景山,E-mail: tjshan1983@sina.com
收稿日期:2018-05-14接受日期:2018-07-27网络出版日期:2018-11-16
基金资助:国家自然科学基金.31560366
国家科技支撑计划.2014BAD09B03


Received:2018-05-14Accepted:2018-07-27Online:2018-11-16


摘要
【目的】新疆是我国主要产棉区,该区棉花生育后期气温下降快。明确生育后期温度对棉纤维发育的影响,对新疆优质棉生产提供指导。【方法】采用分期播种、整段夜间增温(棉纤维发育期)和阶段夜间增温(开花至纤维素快速累积期起始时间、纤维素快速累积期和纤维素快速累积期终止时间至吐絮)的方式,使棉纤维发育处于不同的温度环境下,研究温度对纤维素累积特征的影响及其相互关系。【结果】结果表明,棉纤维比强度受纤维素快速累积期持续时间(T)、开花至纤维素快速累积期起始时间的平均累积速率(V1)和纤维素最大理论含量(Wm)的显著影响,其中棉纤维比强度与V1呈显著二次曲线关系、与Wm呈极显著线性关系。棉纤维发育期≥15℃有效积温是影响纤维比强度的主要温度因子,在开花至纤维素快速累积期起始时间内二者呈显著负相关关系,在纤维素快速累积期则呈显著正相关关系。自棉花开花至纤维素快速累积期起始时间内,较多的有效积温使纤维素在这段时间的平均累积速率(V1)直线降低,这并不利于纤维比强度的提高。在纤维素快速累积期,≥15℃有效积温的增加显著提高了V1,纤维素快速累积期持续时间(T)随有效积温的增加而显著延长,纤维比强度亦呈增加趋势。若获取≥30 cN/tex的纤维比强度,就需要V1维持在1.32%·d -1—1.76%·d -1,纤维素在铃龄6.7—13.3 d进入快速累积期,快速累积期持续20.2—25.6 d,纤维素累积时间经历39.0—46.9 d;在开花至纤维素快速累积期起始时间内需要≥15℃有效积温5.6℃—96.3℃,在纤维素快速累积期则需要181.5℃—262.3℃。 【结论】棉纤维不同发育阶段≥15℃有效积温对V1影响的差异性是造成纤维比强度差异的主要原因,适宜V1有利于形成高强纤维。
关键词: 棉花;有效积温;纤维素累积速率;比强度;顶部棉铃

Abstract
【Objective】 Xinjiang region is a major cotton growing-region in northwest China. Temperatures in the region, especially night-time temperatures, drop drastically at the end of the cotton growing season. The objective of research was to explicate the effects of temperatures on fiber development, so as to benefit to cotton production. 【Method】 Three field experiments were conducted by different sowing dates, elevated night-time temperature during entire fiber development (from anthesis to boll opening) and elevated night-time temperature during different stage of fiber development (from anthesis to the onset of rapid cellulose deposition, between the onset and termination of rapid cellulose deposition, and from the termination of rapid cellulose deposition to boll opening). The effects of temperatures on cellulose deposition were analyzed to explore the temperature conditions for producing high fiber strength. 【Result】 Fiber strength was significantly affected by the duration of rapid cellulose deposition (T), the average rate of cellulose deposition from anthesis until the onset of rapid cellulose deposition (V1) and the maximum cellulose content (Wm). Fiber strength was quadratically related to the V1 and was positively correlated with the Wm. Growing degree days was the factor associated with cellulose deposition in cotton fiber. The relationship between both was going to go the other way during the different fiber developing stages. During the early stage of fiber development (anthesis to the onset of rapid cellulose deposition), growing degree days was significantly and negatively correlated with fiber strength, whereas there was positive relationship between both during the period between the onset and termination of rapid cellulose deposition. During the period from anthesis until the onset of rapid cellulose deposition, the average rate of cellulose deposition decreased as growing degree days increased, which had an unfavorable about fiber strength. During the period of rapid cellulose deposition, growing degree days increased significantly the cellulose deposition rate during from anthesis until the onset of rapid cellulose deposition and the duration time of rapid cellulose deposition, then fiber strength increased. There was a possibility of producing more than 30 cN/tex of fiber strength, when the following conditions were met: (1) the V1 was between 1.32%·d -1and1.76%·d -1; (2) cellulose deposition entered the onset of rapid cellulose deposition (t1) at 6.7-13.3 days post-anthesis (dpa); (3) the duration of rapid cellulose deposition (T) was 20.2-25.6 days;(4) the time of cellulose deposition was 39.0-46.9 days, and (5) the growing degree days was 5.6℃-96.3℃ and 181.5℃-262.3℃ during from anthesis until the onset of rapid cellulose deposition and the duration time of rapid cellulose deposition, respectively. 【Conclusion】 Therefore, growing degree days resulted in different effects on fiber strength during the different fiber developing, and the main reason was that growing degree days caused variability effects on the average cellulose rate during the period from anthesis until the onset of rapid cellulose deposition.
Keywords:cotton;growing degree days;cellulose deposition;fiber strength;upper cotton boll


PDF (547KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
田景山, 张煦怡, 虎晓兵, 随龙龙, 张鹏鹏, 王文敏, 勾玲, 张旺锋. 新疆产棉区高强棉纤维形成的纤维素累积特征及适宜温度[J]. 中国农业科学, 2018, 51(22): 4252-4263 doi:10.3864/j.issn.0578-1752.2018.22.004
TIAN JingShan, ZHANG XuYi, HU XiaoBing, SUI LongLong, ZHANG PengPeng, WANG WenMin, GOU Ling, ZHANG WangFeng. Cellulose Deposition Characteristics of High Strength Cotton Fiber and Optimal Temperature Requirements in Xinjiang Region[J]. Scientia Agricultura Sinica, 2018, 51(22): 4252-4263 doi:10.3864/j.issn.0578-1752.2018.22.004


0 引言

【研究意义】新疆属典型大陆性干旱气候,具有发展棉花的资源优势,棉花总产量占全国总产量的60%以上。然而,分析我国新体制棉花公证检验质量数据发现,纤维比强度以新疆棉区最低,且“强级”所占比例全国最低[1]。棉花生长后期气温下降快,尤其是夜间温度过低成为限制新疆棉区纤维发育的关键因素[2]。开展棉花纤维比强度与温度关系的研究,探讨改善纤维品质成为棉花育种和栽培研究的重要内容。【前人研究进展】棉纤维比强度的形成主要取决于次生壁的形成特性[3,4,5],在次生壁加厚期纤维素大量沉积于胞壁内侧[6,7],促使次生壁几乎全部由纤维素组成[8]。前人研究表明,纤维素沉积时间的早晚对纤维成熟度及产量有着极其重要作用[9],高强纤维的棉花品种在棉纤维发育过程中能较早的进入次生壁加厚期[10,11]。棉纤维比强度的形成存在明显的基因型差异[12,13,14,15],高强纤维的形成与纤维素累积相协调,纤维素平缓累积且快速累积期历时长,其纤维比强度的增长幅度大,最终比强度较高[4, 16-19]。有研究认为可将纤维素最大累积速率和快速累积持续期作为研究纤维素累积特征及与纤维比强度关系的主要指标[13,14],张文静等[12]则认为晚秋桃的纤维素快速累积持续期较长、纤维素累积速率较低,纤维比强度增长的幅度较小,最终比强度则较低,说明纤维素快速累积持续期和累积速率与纤维比强度的关系必须在一定条件下才成立。因此,纤维素累积特征的改变直接影响着比强度的形成,快速累积持续时间长易形成高强纤维,累积速率过快或过慢似乎均不利于形成高强纤维。温度是影响棉纤维发育的首要生态因子,如何在有限时间内多结铃、结优质铃,是新疆棉花持续高产优质的关键所在[20]。在诸多温度因子中以最低温度研究报道居多,低温通过改变纤维素累积量及累积特征实现对纤维比强度的影响[4, 19, 21],主要表现为纤维素累积速率和纤维素累积量显著降低、纤维素快速累积期持续时间明显延长[4, 22]。前人研究证实,纤维比强度的高温胁迫窗口在铃龄11—26 d [23],期间的高温(日均温度31.1℃—35.2℃)虽使纤维累积量显著降低[5, 24],却延长了纤维比强度快速增加持续期,利于比强度的增加[5, 23, 25]。【本研究切入点】棉纤维发育可分为分化、伸长、次生壁加厚和脱水成熟4个有重叠的时期[26,27],温度因子在棉纤维不同发育阶段是如何影响纤维素累积特征,仍有待深入研究。棉花结铃具有很强的时空补偿能力,可通过各项栽培管理措施调控结铃的时空分布,以满足棉铃发育所需的温光资源,协调纤维素沉积特征实现棉花提质增产[8]。【拟解决的关键问题】本研究采用分期播种和夜间增温的方式,使棉纤维发育处于不同的温度环境,分析温度对纤维素累积特征的影响,探讨适宜纤维素累积和形成高强纤维的温度条件,以期根据环境温度的监测来制定栽培调控措施改善棉纤维品质。

1 材料与方法

1.1 试验设计

试验一:播期试验。2008—2009、2015年在石河子大学农学试验站(45°19′N,86°03′E)进行,2016年在新疆乌兰乌苏农业气象试验站(44°17′N,85°49′E)进行。采用分期播种方法使棉铃发育处于不同温度条件下,2008—2009年设3个播期,供试棉花品种选择新陆早13号;2015年设2个播期,供试棉花品种选择新陆早24号和新陆早33号;2016年设3个播期,供试棉花品种选择新陆早59号。随机区组设计,重复3次,留苗密度19×104株/hm2—22×104株/hm2。待棉株开花后,对中部果枝(第5—6果枝)第1果节当日所开白花挂牌标记。具体播种日期和挂花日期见表1。第I播期在棉纤维发育期(0—50 d)的最低温度为15.3℃—19.1℃,较第III播期升高了0.8℃—2.0℃(图1)。

Table 1
表1
表1播期试验的播种日期和挂花日期
Table 1Sown dates and anthesis dates in 2008, 2009, 2015 and 2016
日期
Date
2008200920152016
IIIIIIIIIIIIIIIIIIIII
播种日期(月-日)
Sown dates (M-D)
4-155-15-154-155-15-154-205-204-84-154-22
挂花时期(月-日)
Anthesis dates (M-D)
7-127-197-277-147-218-47-57-267-157-157-22

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1棉纤维发育期不同播期间最低温度的变化

Fig. 1Daily minimum temperature between sown dates treatments



试验二:整段增温试验。在石河子大学农学试验站进行,2010年供试棉花品种选择新陆早13号和新陆早33号,2015年选择新陆早33号;试验设夜间增温处理(N),夜间温度控制在20±1℃,以自然温度为对照(CK),随机区组设计,小区面积为9.0 m2(长×宽= 6.0 m×1.5 m),重复3次。留苗密度19×104株/hm2— 22×104株/hm2。待棉株开花后,选择棉株上部果枝(第7—8果枝)第1果节当日所开白花挂牌标记,并进行夜间增温处理,加温时间段根据当日下午和次日清晨的温度确定,一般在20:00—8:00,具体加温日期见表2。与自然环境相比,棉纤维发育期进行整段增温(N),期间的最低温度升高了2.7℃—4.5℃(表2,图2);棉铃发育期(0—48 d、0—54 d)的最低温度升高了1.9℃—4.5℃、夜间温度升高了1.5℃—4.3℃(表2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2棉纤维发育期夜间增温期间的最低温度及与对照的差值

Fig. 2Daily minimum temperature and its difference value between elevated night-time and ambient temperatures



Table 2
表2
表2棉花纤维发育期夜间增温开始和结束日期及期间最低温度和夜间相对湿度与对照的差值
Table 2Anthesis, initial, final, elevated temperature value, and difference value of relative humidity for the elevated night-time temperatures regimes
年份
Year
增温处理
Temperature regimes
挂花日期(月-日)
Anthesis dates
(M-D)
增温开始
日期(月-日)
Initial dates
(M-D)
增温结束
日期(月-日)
Final dates
(M-D)
增温时段
Elevated regimes
(days post-anthesis, dpa)
最低温度增加幅度
Difference values of minimum temperatures (℃)
夜间相对湿度与对照的差值
Difference values of relative humidity (%)
2010N8-58-59-270-554.5-2.8
2014N17-317-318-150-154.3-0.4
N27-318-159-315-341.66.4
N37-138-159-334-511.66.4
2015N8-158-159-180-342.70.2
N18-158-159-60-223.1-0.8
N28-129-69-1822-342.02.0

新窗口打开|下载CSV

试验三:阶段增温试验。在石河子大学农学试验站进行,采用阶段增温的方式,2014年设置开花至纤维素快速累积期起始时间(N1)、快速累积期(N2)和快速累积期终止时间至吐絮(N3)3个增温时段,供试棉花品种选择新陆早13号和新陆早33号;2015年设置开花至纤维素快速累积期的起始时间(N1)和快速累积期(N2)2个增温时段,供试棉花品种选择新陆早33号。增温时段夜间温度控制在20±1℃,以自然温度为对照(CK),随机区组设计,小区面积为9.0 m2(长×宽=6.0 m×1.5 m),重复3次。留苗密度19×104株/hm2— 22×104株/hm2。待棉株开花后,阶段增温N1和阶段增温N2选择棉株上部果枝(第7—8果枝)、阶段增温N3选择棉株中部果枝(第5—6果枝),均对第1果节当日所开白花挂牌标记,并进行夜间增温处理,加温时间段根据当日下午和次日清晨的温度确定,一般在20:00—8:00,具体加温日期见表2。与自然环境相比,阶段增温N1的最低温度升高了3.1℃—4.3℃,阶段增温N2升高了1.6℃— 2.0℃,快速累积期终止时间至吐絮进行阶段增温N3升高了1.6℃(表2,图2);阶段增温N1在棉铃发育期(铃龄0—48 d)的最低温度升高了1.3℃—1.4℃,阶段增温N2升高了0.5℃—0.7℃,阶段增温N3在棉铃发育期(0—51 d)的最低温度升高了0.6℃(表2)。

1.2 田间增温控制装置

2010年和2014年的增温设施参照田景山等[18]的增温装置,采用远红外石英管作为加热源,通过鼓风机将加热的空气沿管道输送至半移动式保温箱(Semi-mobile incubator),实现棉花冠层增温,并通过智能温度控制仪控制温度;半移动式保温箱分为上、下两部分,保温箱下半部分一直放于田间,仅在晚上加盖上半部分。

2015年夜间增温通过“田间增温控制装置”实现[28],该装置由气室主构架、加热换气装置和温度控制装置3部分组成。气室主构架安装在试验区,通过置于卷筒式纱窗的聚乙烯塑料实现气室的开放与封闭。管道加热器将送风机送入的空气加热后输至输气管,输气管沿途开有散热孔,将热空气吹向试验区;温度控制器连接管道加热器以控制气室内的温度。

1.3 取样与测定

在铃龄15、22、29、34、41、48 d取大小相同棉铃6个左右(8:00—9:00取样),用装有冰袋的保鲜桶带回室内;部分棉瓣分离出纤维,混匀,在40℃下烘干至恒重供测定纤维素含量;剩余棉瓣自然风干,分离出纤维,供测定纤维断裂比强度(简称“比强度”)。

纤维素含量采用蒽酮比色法测定[29]。将自然风干的纤维样品混匀,用棉花纤维拉伸仪制成棉条,用Y-162A型束纤维强力机测定3.2 mm隔距比强度,测6次重复,取平均值作为试样代表值,并用农业部棉花品质监督检验测试中心的测定结果修正。

1.4 Logistic模型及其特征值

棉纤维发育过程中纤维素含量随铃龄的增长符合Logistic曲线,其基本模型为:

W=Wm/(1+ae-bt) (1)

式中,W为纤维素含量,t为铃龄,Wm为纤维素最大理论含量,a、b为待定系数,该模型参数能较好地分析棉纤维发育过程中纤维素的累积特征。对(1)式求1阶、2阶和3阶导数,可得出纤维素快速累积期的起始时间(t1)和终止时间(t2)、快速累积持续时间(T),将t1t2分别代入(1)式即得t1t2时的纤维素含量W1W2,进一步可得出快速累积期内的平均累积速率Vt和铃龄0 d至t1的平均累积速率V1

${{t}_{\text{1}}}=-\frac{\text{1}}{b}\ln \frac{2+\sqrt{3}}{a}$ (2)

${{t}_{\text{2}}}=-\frac{\text{1}}{b}\ln \frac{2-\sqrt{3}}{a}$ (3)

$V_{t}=\frac{W_{2}-W_{1}}{T}$ (4)

$V_{1}=\frac{W_{2}}{T_{1}}$ (5)

T=t2-t1 (6)

1.5 气象资料

棉花冠层温度数据用HOBO(Onset,美国)空气温湿度记录仪自动采集,每15 min记录一次,每天最低温度取22:00—8:00的最低值,每天最高温度取10:00—18:00的最高值。根据棉花纤维素快速累积期的起始时间(t1)和终止时间(t2),将棉纤维发育期划分为I段(开花—t1)和II段(t1t2),并选取各段区的最低温度、最高温度、平均温度、≥15℃有效积温和日温差等作为影响该段区纤维素累积的温度因子。

2 结果

2.1 纤维素累积特征对比强度的影响及其关系

表3可知,纤维比强度与纤维素快速累积期的起始时间(t1)和快速累积期的平均累积速率(Vt)呈负相关性,相关系数分别为-0.3001和-0.0929,未达到显著性水平。纤维素快速累积期持续时间(T)和开花至纤维素快速累积期起始时间的平均累积速率(V1)与比强度呈显著正相关性,相关系数为0.3501和0.3855。纤维素最大理论含量(Wm)极显著影响着纤维比强度,呈正相关性;Wm则与V1的相关系数为0.4808,呈极显著正相关性。

通过对纤维素快速累积期持续时间(T)、开花至纤维素快速累积期起始时间的平均累积速率(V1)和纤维素最大理论含量(Wm)与纤维比强度进行曲线拟合(图3)。其中,Wm与纤维比强度呈线性相关,决定系数为0.4713,达到极显著性水平;T与比强度呈线性相关,未达到显著性水平。V1与纤维比强度和Wm均呈二次曲线关系,决定系数分别为0.3615和0.5233,达到显著性水平。

图3

新窗口打开|下载原图ZIP|生成PPT
图3棉纤维素累积特征值与纤维比强度之间的关系

Fig. 3Relationships describing the effects of cellulose deposition parameters on fiber bundle strength



2.2 温度对纤维素累积特征的影响及其关系

表4可知,在棉花开花至纤维素快速累积起始时间(I段区),纤维素快速累积期起始时间(t1)与该段区≥15℃有效积温呈极显著正相关性,开花至纤维素快速累积期起始时间的平均累积速率(V1)则与≥15℃有效积温呈极显著负相关,相关系数为-0.6589;t1V1与其余温度因子的相关系数均小于0.325,未达到显著性相关水平。纤维素最大理论含量(Wm)除与≥15℃有效积温呈负相关性外,与其他温度因子呈正相关性,相关系数在0.0926—0.2906,均未达到显著性水平。纤维比强度与最低温度、最高温度、平均温度和≥15℃有效积温呈负相关性,且仅与≥15℃有效积温的相关性达显著性水平,相关系数为-0.3696。

Table 4
表4
表4棉纤维发育不同阶段的温度因子与纤维素累积特征的相关分析
Table 4Correlation analysis of factors affecting cellulose deposition at different fiber development stages of cotton fiber (period I and II)
纤维素累积阶段
Period of cotton fiber development
纤维素特征值
Cellulose deposition parameters
最低温度
Daily minimum temperature
最高温度
Daily maximum temperature
平均温度
Average
temperature
≥15℃有效积温
Growing degree
days
日温差
Diurnal temperature range
I 段区 Period It1-0.15110.0075-0.00780.8236**0.1807
(0—t1)V10.20410.16790.1700-0.6589**-0.0453
Wm0.09940.29060.2730-0.09260.2228
Str-0.1299-0.1067-0.1332-0.3696*0.0295
II 段区 Period IIt2-0.6825**-0.4674**-0.5690**0.10980.4931**
(t1t2)T-0.3723*-0.2861-0.29450.6738**0.2178
Vt0.6543**0.6358**0.6341**-0.2759-0.1300
Wm0.4187*0.6011**0.5526**0.5674**0.2887
V10.4703**0.32470.4409**0.7481**-0.3277
Str0.12150.14800.13490.3636*0.0399

新窗口打开|下载CSV

在纤维素快速累积期起始时间至终止时间(II段区),纤维素累积特征受多个温度因子的影响(表4)。纤维素快速累积期终止时间(t2)除与≥15℃有效积温无显著性相关外,与最低温度、最高温度和平均温度的相关系数分别为-0.6825、-0.4674和-0.5690,呈极显著负相关性,与日温差呈极显著正相关。纤维素快速累积期持续时间(T)与最低温度呈显著负相关性,与≥15℃有效积温呈极显著正相关。纤维素快速累积期的平均累积速率(Vt)与最低温度、最高温度和平均温度的相关系数大于0.418,呈极显著正相关,而与≥15℃有效积温和日温差呈负相关,未达到显著性水平。纤维素最大理论含量(Wm)仅与日温差无显著性外,与其余温度因子均呈显著和极显著正相关性。纤维比强度仅与≥15℃有效积温的相关系数大于0.325,达显著性水平。开花至纤维素快速累积期起始时间的平均累积速率(V1)与最低温度、平均温度和≥15℃有效积温呈极显著正相关性,而与最高温度和日温差的相关性未达到显著性水平。

在棉花开花至纤维素快速累积起始时间(I段区),选择纤维素快速累积期起始时间(t1)、开花至纤维素快速累积期起始时间的平均累积速率(V1)和纤维比强度与该区段≥15℃有效积温进行曲线拟合(图4)。其中,t1与≥15℃有效积温呈极显著正线性相关,决定系数为0.6801;V1则与≥15℃有效积温呈极显著负线性相关。纤维比强度与≥15℃有效积温呈负线性相关,决定系数为0.1365,未达到显著性水平。

图4

新窗口打开|下载原图ZIP|生成PPT
图4棉花开花至纤维素快速累积期起始时间期间的≥15℃有效积温与纤维素累积特征值及纤维比强度的关系

Fig. 4Linear relationships describing the effects of growing degree days during the period from anthesis until the onset of rapid cellulose deposition (period I) on the average rate of cellulose deposition (V1), the time from anthesis until the onset of rapid cellulose deposition (t1) , and fiber bundle strength



在纤维素快速累积期起始时间至终止时间(II段区),选择纤维素快速累积期持续时间(T)、纤维素最大理论含量(Wm)、开花至纤维素快速累积期起始时间的平均累积速率(V1)和纤维比强度与该区段≥15℃有效积温进行曲线拟合(图5)。其中,TV1与≥15℃有效积温呈极显著正线性相关,决定系数分别为0.4541和0.5615;Wm和纤维比强度与≥15℃有效积温的决定系数分别为0.3216和0.1323,均未达到显著性水平。

图5

新窗口打开|下载原图ZIP|生成PPT
图5纤维素快速累积期起始时间至终止时间期间的≥15℃有效积温与纤维素累积特征及纤维比强度的关系

Fig. 5Linear relationships describing the effects of growing degree days during the period of rapid cellulose deposition (period II) on the duration of rapid cellulose deposition (T), the average rate of cellulose deposition (V1), the maximum cellulose content (Wm), and fiber bundle strength



2.3 温度与纤维素累积特征的定量关系分析

综合以上分析,纤维比强度(Str)与开花至纤维素快速累积期起始时间的平均累积速率(V1)呈显著二次曲线关系,拟合方程见公式(7)。在棉花开花至纤维素快速累积起始时间(I段区),纤维素快速累积期起始时间(t1)和开花至纤维素快速累积期起始时间的平均累积速率(V1)与该段区≥15℃有效积温(GDD)呈极显著线性关系,拟合方程见公式(8)、(9)。在纤维素快速累积期起始时间至终止时间(II段区),纤维素快速累积期持续时间(T)和开花至纤维素快速累积期起始时间的平均累积速率(V1)与该段区≥15℃有效积温(GDD)呈极显著线性关系,拟合方程见公式(10)、(11)。

Str =-2.8576 V12+8.8046 V1+23.36 (7)

t1 = 0.0729 GDD+6.3119 (8)

V1 =-0.0049 GDD+1.7901 (9)

T = 0.0667 GDD+8.1044 (10)

V1 = 0.0055 GDD+0.3201 (11)

当要求纤维比强度≥30 cN/tex时,由公式(7)计算出所需要的V1为1.32%·d-1—1.76%·d-1。据此,联立方程(8)、(9)计算出,在棉花开花至纤维素快速累积起始时间(I段区)需要≥15℃有效积温5.6℃—96.3℃,纤维素快速累积期起始时间(t1)介于6.7—13.3 d。联立方程(10)、(11)计算出,在纤维素快速累积期起始时间至终止时间(II段区),需要≥15℃有效积温181.5℃—262.3℃,纤维素快速累积期持续时间(T)介于20.2—25.6 d。

3 讨论

3.1 纤维素累积特征与比强度的关系及受有效积温的影响

棉花纤维素合成是棉花产量和纤维品质形成的物质基础[30],其合成量的多少由累积速率和累积时间共同决定,≥15℃有效积温则是影响纤维素累积的主要温度因子[31]。在棉纤维发育前期(开花至纤维素快速累积期起始时间),纤维素累积量与其累积速率密切相关(图3),纤维素累积速率维持较高水平才能促使纤维素累积量接近或达到最大理论含量。本试验研究表明,棉纤维发育前期的累积速率(V1)与比强度呈显著正相关关系(表3),较高的V1将有利于形成高强纤维;然而,持续增加≥15℃有效积温则会致使V1直线降低,纤维素快速累积期的起始时间(t1)也显著推迟(图4)。可见,在棉纤维发育前期,较多的有效积温并不能提高纤维素的累积速率,这限制了纤维比强度的形成。

Table 3
表3
表3纤维素累积特征值与比强度之间的相关分析
Table 3Correlation analysis of factors affecting cellulose deposition on fiber bundle strength
因素Factort1t2TV1VtWmStr
t110.00990.00450.00010.09830.17490.0754
t20.4241**10.00010.05270.00010.98940.6073
T-0.4624**0.6069**10.00530.00010.23030.0363
V1-0.8822**-0.32560.4554**10.35130.00300.0202
Vt0.2799-0.5932**-0.8265**-0.160010.14200.5900
Wm-0.23120.00230.20500.4808**0.249710.0001
Str-0.30010.08860.3501*0.3855*-0.09290.6865**1
n=36. * and ** represent significant difference at 0.05 and 0.01 levels. t1, the onset time of rapid cellulose deposition; t2, the termination time of rapid cellulose deposition; T, the duration of rapid cellulose deposition; Vt, the average rate of rapid cellulose deposition; V1, the average rate from anthesis until the onset time of rapid cellulose deposition; Wm, the maximum cellulose content; Str, fiber bundle strength. The same as below
n=36。***表示0.05和0.01水平差异显著。t1t2表示纤维素快速累积期的起始时间和终止时间;T表示纤维素快速累积期的持续时间;Vt表示快速累积期内的平均累积速率;V1表示铃龄0 d至t1的纤维素平均累积速率;Wm表示纤维素最大理论含量;Str表示纤维比强度。下同

新窗口打开|下载CSV

棉花纤维素快速累积期的最主要特征参数是快速累积持续时间及累积速率。多数研究认为,可将二者作为研究纤维素累积特征及与比强度关系的主要指标[14,15]。前期研究表明,增加纤维素快速累积期的夜间温度显著延迟了纤维素快速累积期的起始时间(t1),由此改变了开花至纤维素快速累积期起始时间的累积速率(V1)。本研究表明,V1随纤维素快速累积期≥15℃有效积温的增加而增加(图5),较高的有效积温可使V1维持较高水平,而在棉纤维发育前期则表现相反的变化规律;造成这种差异的生理机制是什么,仍需深入分析。可见,在棉纤维发育不同阶段≥15℃有效积温对V1的影响有所差异,适宜V1有利于高强纤维的形成。

纤维素最大累积速率是影响纤维比强度的关键因子[32],纤维素快速累积期持续时间长则比强度增幅大[4, 6]。在棉花生长后期,棉花纤维素快速累积期持续时间虽较长,但纤维素累积速率较低,比强度增幅较小;说明纤维素快速累积持续期和累积速率与纤维比强度的关系必须在一定条件下才成立[12]。本研究表明,在纤维素快速累积期≥15℃有效积温的增加可使T呈显著的正线性延长趋势(图5),T则与纤维素快速累积期的累积速率(Vt)呈极显著负线性关系(表3),即纤维素快速累积期持续时间的延长降低了纤维素的累积速率。可见,在满足纤维素所需的积温条件下,使纤维素快速累积期的累积速率维持适宜范围、延长快速累积期持续时间,才能促进纤维素合成和提高纤维比强度。然而,在纤维素快速累积期,纤维比强度与Vt无显著性关系,T虽与纤维比强度呈显著正相关(表3),却无显著的定量关系(图3)。前人研究表明,纤维比强度除受纤维素累积特征影响外,还与纤维取向分散角、取向分布角、螺旋角等超分子结构密切相关[33,34],而超分子结构与纤维素沉积的动态变化是决定纤维比强度的根本原因[35]。那么,超分子结构如何影响纤维素累积特征以及二者之间存在怎样的定量关系,仍有待深入研究。

3.2 棉株顶部棉铃开花日期的界定

棉花化学脱叶催熟是机采棉农艺配套技术的关键环节,脱叶催熟剂的使用加快了棉铃成熟[36]和叶片脱落[37]。一般而言,合理使用脱叶催熟剂不仅能实现良好的脱叶催熟效果,并且可以降低对棉花产量和纤维品质的负面影响[38,39,40,41]。在新疆棉区,脱叶催熟剂的使用需综合考虑棉花顶部棉铃铃期、吐絮率及施用后的气温状况。正常年份情况下,北疆棉区9月5日至10日,南疆和东疆棉区9月15日至20日施用脱叶催熟剂。本试验研究表明,在现有生产条件下,获得比强度≥30 cN/tex的纤维,纤维素累积时间就需经历39.0—46.9 d。据此可推测出,北疆棉区棉花顶部棉铃的开花日期应在7月20日至8月1日,南疆和东疆棉区的则在7月30日至8月11日。此时,才能确保纤维素在铃龄6.7—13.3 d进入快速累积期,快速累积期持续20.2—25.6 d,纤维素累积时间经历了33 d左右,即北疆棉区在8月22日至9月3日、东疆和南疆棉区在9月1日至13日,纤维素累积才能结束快速累积。前期研究表明,在纤维素快速累积期终止时间之后,温度对纤维比强度及纤维累积特征无显著影响。有研究表明,过早使用脱叶催熟剂,势必减少养料向棉铃的供应量,使棉铃和纤维发育进程受阻,增加了不成熟棉铃及纤维的比例,导致产量下降和品质变劣[36, 41]。在铃龄30 d时喷施脱叶催熟剂,单铃纤维重显著降低了2.1 g,纤维比强度降幅高达3.8 cN/tex[42]。由此可看出,在北疆棉区8月1日开花的棉铃、东疆和南疆棉区8月11日开花的棉铃不宜在9月3日和9月13日之前使用脱叶催熟剂。

4 结论

在开花至纤维素快速累积期起始时间,≥15℃有效积温是影响纤维素快速累积起始时间(t1)和开花至纤维素快速累积期起始时间的平均累积速率(V1)的关键因素,较高的有效积温显著推迟了t1、降低了V1。在纤维素快速累积期,纤维素累积特征受多个温度因子的影响,≥15℃有效积温与TV1均呈显著正线性关系。可见,高强纤维的形成需要适宜的V1,棉纤维不同发育阶段所需的有效积温有所差异。

(责任编辑 杨鑫浩)

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

田景山, 张煦怡, 张旺锋 . 新疆近年机采棉发展过程中的棉纤维品质变化
中国棉花, 2017,44(12):27-31, 34.

[本文引用: 1]

TIAN J S, ZHANG X Y, ZHANG W F . Change of fiber quality along with the development of machine-harvested cotton in Xinjiang
China Cotton, 2017,44(12):27-31, 34. (in Chinese)

[本文引用: 1]

过兴先, 曾伟 . 新疆棉区的气温和棉铃发育关系的研究
作物学报, 1989,15(3):202-212.

URLMagsci [本文引用: 1]
本研究从1984年起,在石河子、莫索湾、博乐、库尔勒、库车、阿拉尔、喀什、麦盖提和吐鲁番进行。3年结果表明,上述各地6至9月上旬气温条件优越,适宜棉铃发育。从9月起,气温下降快,其变化特点是:白天气温保持相当高;一天内气温≥20℃的时间逐渐减少;夜间温度下降急剧。从9月中旬至10月中旬的某一时期起,夜温就成为各地棉铃正常
GUO X X, ZENG W . A study on relationship between temperature and cotton boll development in Xinjiang
Acta Agronomica Sinica, 1989,15(3):202-212. (in Chinese)

URLMagsci [本文引用: 1]
本研究从1984年起,在石河子、莫索湾、博乐、库尔勒、库车、阿拉尔、喀什、麦盖提和吐鲁番进行。3年结果表明,上述各地6至9月上旬气温条件优越,适宜棉铃发育。从9月起,气温下降快,其变化特点是:白天气温保持相当高;一天内气温≥20℃的时间逐渐减少;夜间温度下降急剧。从9月中旬至10月中旬的某一时期起,夜温就成为各地棉铃正常

SHU H M, ZHOU Z G, XU N Y, WANG Y H, ZHENG M . Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development.
European Journal of Agronomy, 2009,31(2):61-68.

[本文引用: 1]

WANG Y H, SHU H M, CHEN B L, MCGIFFEN JR M E, ZHANG W J, XU N Y, ZHOU Z G . The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature
Plant Growth Regulation, 2009,57(3):203-209.

DOI:10.1007/s10725-008-9337-9URL [本文引用: 5]
This experiment was conducted to study the relationship between the increase in cellulose content in developing cotton bolls and their final cotton fibre strength. The rate of cellulose increase over time was estimated using logistical regression, and the logistic equation parameters were then used to compare different cotton cultivars in different temperature environments. The increase in cellulose content followed a typical “S” curve, with the boll period time divided into slow-fast-slow stages. In different cultivars, the final fibre strength was closely related to the characters of the fast cellulose content increasing stage, negatively related to the maximal cellulose increasing rate ( P 02<020.05), and positively related to the duration of the fast cellulose content increasing stage ( P02 <020.01). In the same cultivar, low temperature reduced the maximal cellulose increasing rate and prolonged the duration of the fast cellulose increasing stage. The results indicate that, in diverse genetic background, long-lasting and tempered cellulose growth during the rapid cellulose increasing stage is of significant benefit to high strength fibre development. For closely related cotton cultivars, decreasing the maximal cellulose increasing rate and the termination of rapid cellulose increasing stage reduced fibre strength that often occurs when temperatures are low.

DAI Y J, CHEN B L, MENG Y L, ZHAO W Q, ZHOU Z G. OOSTERHUIS D M, WANG Y H . Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development
Functional Plant Biology, 2015,42(9):909-919.

DOI:10.1071/FP14361URL [本文引用: 3]
Global warming has the potential to increase air temperatures by 1.8 to 4.0°C by the end of the 21st century. In order to reveal the effects of increased temperatures on the sucrose metabolism and cellulose synthesis in cotton fibre during its flowering and boll formation stage, field experiments with elevated temperature regimes (32.6/28.6°C, mean daytime/night-time temperature during flowering and boll formation stage during 2010–12, the same below) and ambient temperature regimes (30.1/25.8°C) were conducted. Activities of sucrose synthase and acid/alkaline invertase decreased under elevated temperature in fibre, but activities of sucrose phosphate synthase were increased. Callose content increased, but sucrose content decreased within the cotton fibre under elevated temperature. The disparity of callose content and sucrose content between the two temperature regimes decreased with the number of days post anthesis, indicating that the effects of elevated temperature on both sucrose content and cellulose content were diminished as the boll matured. Due to the dynamics of the carbohydrate content and associated enzyme activities, we hypothesise that the restrained sucrose metabolism and cellulose biosynthesis under elevated temperatures were mainly attributed to the changed activities of sucrose synthase and invertase. Furthermore, 32.6/28.6°C had a negative effect on the cellulose synthesis compared with 30.1/25.8°C.

MEINERT M C, DELMER D P . Change in biochemical composition of the cell wall of the cotton fiber during development
Plant Physiology, 1977,59(6):1088-1097.

DOI:10.1104/pp.59.6.1088URLPMID:16660000 [本文引用: 2]
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development. Compositional analyses of cell walls derived from culture-grown fibers indicate that these walls are remarkably similar to those derived from fibers grown on the plant, both in terms of composition and in terms of relative changes in composition during development. A comparison of our results on total cell wall composition and linkages of sugars as determined by a preliminary methylation analysis of unfractionated fiber walls indicates that the primary cell wall of cotton fibers is similar to that of primary cell walls of other dicotyledons and of gymnosperms as reported in the literature.

TOKUMOTO H, WAKABAYASHI K, KAMISAKA S, HOSON T . Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development
Plant and Cell Physiology, 2002,43(4):411-418.

DOI:10.1093/pcp/pcf048URLPMID:11978869 [本文引用: 1]
Cotton (Gossypium herbaceum L.) fiber development consists of a fiber elongation stage (up to 20 d post-anthesis) and a subsequent cell wall thickening stage. Cell wall analysis revealed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted for 30-50% of total sugar content in the fiber elongation stage but less than 3% in the cell wall thickening stage. By contrast, cellulose increased dramatically after the fiber elongation ceased. The amounts of extractable xyloglucans and arabinose- and galactose-containing polymers per seed increased in the early fiber elongation stage and decreased thereafter. The amounts of extractable acidic polymers and non-cellulosic beta-glucans (mainly composed of beta-1,3-glucans) increased in parallel with fiber elongation and then decreased. The molecular masses of extractable non-cellulosic beta-glucans, and arabinose- and galactose-containing polymers decreased during both fiber elongation and cell wall thickening stages. The molecular mass of extractable xyloglucans also decreased during the fiber elongation stage, but this decrease ceased during the cell wall thickening stage. Conversely, the molecular size of acidic polymers in the extractable pectic fraction increased during both stages. Thus, not only the amounts but also the molecular size of the extractable matrix polysaccharides showed substantial changes during cotton fiber development.

HAIGLER C H, ZHANG D S, WILKERSON C G . Biotechnological improvement of cotton fibre maturity
Physiologia Plantarum, 2005,124(3):285-294.

DOI:10.1111/j.1399-3054.2005.00480.xURL [本文引用: 2]
This mini-review focuses on the prospects and tools for controlling cotton fibre secondary wall thickness. Cotton fibre secondary walls are composed of almost 100% cellulose, and are responsible for fibre maturity and a large component of fibre yield. Improved fibre yield and maturity would result from the ability to control secondary wall cellulose deposition quantitatively, including making the process less sensitive to environmental stress. Both genetic engineering and marker-assisted breeding are possible avenues for effecting such improvements, but first key genes that participate in the regulation and control of secondary wall cellulose biogenesis must be identified. Recent advances towards understanding and manipulating cotton fibre secondary wall deposition that are discussed here include: (i) experimental approaches to identify metabolic participants in cellulose biogenesis; (ii) isolation and characterization of promoters to drive foreign gene expression preferentially during secondary wall deposition; and (iii) a novel set of cDNA sequences representing genes that are differentially expressed during cotton fibre secondary wall deposition compared with primary wall deposition.

ABIDI N, HEQUET E, CABRALES L . Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers
Cellulose, 2010,17(1):153-160.

DOI:10.1007/s10570-009-9364-3URL [本文引用: 1]
Two cotton cultivars TX19 and TX55 ( Gossypium hirsutum L. cv.) were planted in the greenhouse and fibers were harvested at different stages of development. The percentage of sugars present on the fibers was determined by High Performance Liquid Chromatography and the cellulose content was determined using the anthrone method. The percentage of sugars (sucrose, glucose, fructose, and galacturonic acid) showed statistically significant changes during fiber development. The decrease in the percentages of these sugars as the secondary cell wall develops was associated with an increase in the cellulose content. It is important to point out that these analyses were done on intact fibers, no cell wall extractions and purifications were performed.

HINCHLIFFE D J, MEREDITH W R, DELHOM C D, THIBODEAUX D P, FANG D D . Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength
Crop Science, 2011,51(4):1683-1692.

DOI:10.2135/cropsci2010.10.0569URL [本文引用: 1]
Abstract Growing degree days required for cotton (Gossypium hirsutum L.) growth and development were recorded for four growing seasons and compared with fiber-quality measurements and gene expression data indicative of different stages of fiber development. Fiber-bundle strength differences between the Upland cotton near-isogenic lines MD 52ne and MD 90ne were observed using immature and mature fibers collected at different time points of development stages. Previously characterized fiber-bundle-strength differences between the near-isogenic lines, known as a result of early entrance into the transition stage of fiber development, were present as early as 20 d postanthesis and persisted to boll opening and fiber maturity. The onset of transition stage was correlated with the accumulated degree day heat units from the day of anthesis in both cotton lines in all seasons. Fiber-quality measurements obtained over multiple growing seasons indicated that an earlier entrance into the transition stage of fiber development resulted in increased fiber-bundle strength. These data suggest that the identification of genes associated with early entrance into the transition stage can be used to temporally manipulate fiber development and improve fiber quality.

HINCHLIFFE D J, MEREDITH W R, YEATER K M, KIM H J, WOODWARD A W, CHEN Z J, TRIPLETT B A . Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling
Theoretical and Applied Genetics, 2010,120(7):1347-1366.

DOI:10.1007/s00122-010-1260-6URLPMID:20087569 [本文引用: 1]
Gene expression profiles of developing cotton ( Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

张文静, 胡宏标, 陈兵林, 王友华, 周治国 . 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系
作物学报, 2008,34(5):859-869.

DOI:10.3724/SP.J.1006.2008.00859URLMagsci [本文引用: 3]
选用3类棉纤维比强度差异明显的4个棉花品种, 研究棉花伏前桃、伏桃、早秋桃和晚秋桃纤维加厚发育过程中主要生理特征的差异及与纤维比强度的关系。结果表明, 棉花季节桃纤维加厚发育过程中物质转化特征和相关酶活性存在较大差异, 最终导致纤维比强度差异的形成, 且季节桃间的差异在各类品种内表现一致。伏前桃和伏桃纤维加厚发育处于较为适宜的温度条件(铃龄10~50 d日均温26.0~28.5℃)和棉株生理年龄(3~9果枝)下, 纤维素合成相关酶活性越高, 相关物质转化越多, 纤维素快增持续期长, 纤维素累积速率平缓, 越利于高强纤维的形成。早秋桃纤维发育后期温度条件较伏前桃差且棉株开始衰老, 但其纤维合成相关物质转化率高, 纤维素累积特征优于伏前桃, 最终纤维强度高于伏前桃; 随着铃龄10~50 d日均温降至20℃以下和棉株进一步的衰老(16果枝以上), 晚秋桃纤维素快速累积期延长, 相关物质转化率降低, 纤维累积速率过慢, 纤维细胞发育迟缓, 造成最终纤维比强度较低。
ZHANG W J, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Difference of physiological characteristics of cotton bolls in development of fiber thickening and its relationship with fiber strength
Acta Agronomica Sinica, 2008,34(5):859-869. (in Chinese)

DOI:10.3724/SP.J.1006.2008.00859URLMagsci [本文引用: 3]
选用3类棉纤维比强度差异明显的4个棉花品种, 研究棉花伏前桃、伏桃、早秋桃和晚秋桃纤维加厚发育过程中主要生理特征的差异及与纤维比强度的关系。结果表明, 棉花季节桃纤维加厚发育过程中物质转化特征和相关酶活性存在较大差异, 最终导致纤维比强度差异的形成, 且季节桃间的差异在各类品种内表现一致。伏前桃和伏桃纤维加厚发育处于较为适宜的温度条件(铃龄10~50 d日均温26.0~28.5℃)和棉株生理年龄(3~9果枝)下, 纤维素合成相关酶活性越高, 相关物质转化越多, 纤维素快增持续期长, 纤维素累积速率平缓, 越利于高强纤维的形成。早秋桃纤维发育后期温度条件较伏前桃差且棉株开始衰老, 但其纤维合成相关物质转化率高, 纤维素累积特征优于伏前桃, 最终纤维强度高于伏前桃; 随着铃龄10~50 d日均温降至20℃以下和棉株进一步的衰老(16果枝以上), 晚秋桃纤维素快速累积期延长, 相关物质转化率降低, 纤维累积速率过慢, 纤维细胞发育迟缓, 造成最终纤维比强度较低。

张文静, 胡宏标, 王友华, 陈兵林, 束红梅, 周治国 . 棉纤维发育相关酶活性的基因型差异与纤维比强度的关系
中国农业科学, 2007,40(10):2177-2184.

URLMagsci [本文引用: 2]
【目的】以纤维比强度差异较大的不同基因型棉花为材料,研究它们纤维发育过程中相关酶活性的动态变化与纤维比强度的关系,为探索改善棉纤维比强度的生理调控途径提供理论依据。【方法】选择棉纤维比强度分属高(科棉1号)、中(美棉33B)、低(德夏棉1号和苏棉15号)3种类型,4个不同基因型的品种,在大田栽培条件下,研究棉纤维次生壁加厚过程中相关酶活性的动态变化、纤维素累积和纤维比强度形成的关系。【结果】β-1,3-葡聚糖酶活性在次生壁加厚发育过程中呈下降趋势,蔗糖合成酶、过氧化物酶和IAA氧化酶活性变化均呈单峰曲线,基因型间差异主要表现在酶活性的大小和峰值出现的时间。科棉1号属高强纤维基因型,棉纤维中与纤维发育相关的酶活性在整个次生壁加厚期高于中、低强纤维基因型,前者酶活的动态变化与纤维素累积快速增长期的协调性好,纤维素累积平缓,纤维比强度增强的幅度大;反之,如低强纤维品种德夏棉1号和苏棉15号,其纤维发育相关酶在次生壁加厚期活性低,纤维素累积快速增长期短,纤维比强度增强的幅度小;美棉33B棉纤维发育相关酶活性、纤维素累积和纤维比强度形成特征介于上述两种基因型之间。【结论】不同基因型棉花纤维中与纤维发育相关的酶活性存在显著差异,该差异可能是导致纤维素累积特性及纤维比强度形成基因型间差异的主要生理原因之一。
ZHANG W J, HU H B, WANG Y H, CHEN B L, SHU H M, ZHOU Z G . Fiber strength and enzyme activities of different cotton genotypes during fiber development
Scientia Agricultura Sinica, 2007,40(10):2177-2184. (in Chinese)

URLMagsci [本文引用: 2]
【目的】以纤维比强度差异较大的不同基因型棉花为材料,研究它们纤维发育过程中相关酶活性的动态变化与纤维比强度的关系,为探索改善棉纤维比强度的生理调控途径提供理论依据。【方法】选择棉纤维比强度分属高(科棉1号)、中(美棉33B)、低(德夏棉1号和苏棉15号)3种类型,4个不同基因型的品种,在大田栽培条件下,研究棉纤维次生壁加厚过程中相关酶活性的动态变化、纤维素累积和纤维比强度形成的关系。【结果】β-1,3-葡聚糖酶活性在次生壁加厚发育过程中呈下降趋势,蔗糖合成酶、过氧化物酶和IAA氧化酶活性变化均呈单峰曲线,基因型间差异主要表现在酶活性的大小和峰值出现的时间。科棉1号属高强纤维基因型,棉纤维中与纤维发育相关的酶活性在整个次生壁加厚期高于中、低强纤维基因型,前者酶活的动态变化与纤维素累积快速增长期的协调性好,纤维素累积平缓,纤维比强度增强的幅度大;反之,如低强纤维品种德夏棉1号和苏棉15号,其纤维发育相关酶在次生壁加厚期活性低,纤维素累积快速增长期短,纤维比强度增强的幅度小;美棉33B棉纤维发育相关酶活性、纤维素累积和纤维比强度形成特征介于上述两种基因型之间。【结论】不同基因型棉花纤维中与纤维发育相关的酶活性存在显著差异,该差异可能是导致纤维素累积特性及纤维比强度形成基因型间差异的主要生理原因之一。

束红梅, 王友华, 陈兵林, 胡宏标, 张文静, 周治国 . 棉花纤维素累积特性的基因型差异与纤维比强度形成的关系
作物学报, 2007,33(6):921-926.

DOI:10.3321/j.issn:0496-3490.2007.06.009URLMagsci [本文引用: 3]
<P>以14个纤维比强度差异明显的棉花品种为材料,研究了棉纤维素累积特性的基因型差异及与纤维比强度的关系。结果表明,棉株不同果枝部位棉铃的纤维素累积均符合Logistic曲线,棉纤维素累积的5个特征值(纤维素快速累积期的起始、终止时期,最大累积速率及其出现的时期,快速累积持续期)在品种间的变异均较大,与纤维比强度的相关系数存在大小和正负的差异。其中,纤维素最大累积速率和快速累积持续期的变异最大,前者与纤维比强度呈极显著负相关,后者与纤维比强度呈极显著正相关。进一步以纤维素最大累积速率和快速累积持续期为变量,在同样欧氏距离下,基于棉株上、中、下3个果枝部位数据的聚类结果不完全一致,但总体上14个品种可分为纤维素累积快、平缓、中等3种类型,德夏棉1号、科棉1号和美棉33B分别是其中心品种。同时以纤维比强度为变量的聚类分析表明,这3个品种又分别是低强纤维、高强纤维、中等强度纤维3种类型的中心品种。总之,在棉纤维发育过程中,纤维素累积特性存在明显的基因型差异,且高强纤维的形成是以纤维素平缓累积为基础,纤维素累积过快似乎不利于纤维比强度的形成。</P>
SHU H M, WANG Y H, CHEN B L, HU H B, ZHANG W J, ZHOU Z G . Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength
Acta Agronomica Sinica, 2007,33(6):921-926. (in Chinese)

DOI:10.3321/j.issn:0496-3490.2007.06.009URLMagsci [本文引用: 3]
<P>以14个纤维比强度差异明显的棉花品种为材料,研究了棉纤维素累积特性的基因型差异及与纤维比强度的关系。结果表明,棉株不同果枝部位棉铃的纤维素累积均符合Logistic曲线,棉纤维素累积的5个特征值(纤维素快速累积期的起始、终止时期,最大累积速率及其出现的时期,快速累积持续期)在品种间的变异均较大,与纤维比强度的相关系数存在大小和正负的差异。其中,纤维素最大累积速率和快速累积持续期的变异最大,前者与纤维比强度呈极显著负相关,后者与纤维比强度呈极显著正相关。进一步以纤维素最大累积速率和快速累积持续期为变量,在同样欧氏距离下,基于棉株上、中、下3个果枝部位数据的聚类结果不完全一致,但总体上14个品种可分为纤维素累积快、平缓、中等3种类型,德夏棉1号、科棉1号和美棉33B分别是其中心品种。同时以纤维比强度为变量的聚类分析表明,这3个品种又分别是低强纤维、高强纤维、中等强度纤维3种类型的中心品种。总之,在棉纤维发育过程中,纤维素累积特性存在明显的基因型差异,且高强纤维的形成是以纤维素平缓累积为基础,纤维素累积过快似乎不利于纤维比强度的形成。</P>

ZHANG W J, SHU H M, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Genotypic differences in some physiological characteristics during cotton fiber thickening and its influence on fiber strength
Acta Physiologiae Plantarum, 2009,31(5):927-935.

DOI:10.1007/s11738-009-0306-3URL [本文引用: 2]
The secondary wall thickening stage is a key period to cotton fiber strength development and many complex physiological and biochemical processes are involved in it.To investigate the relationship between the genotypic differences in some physiological characteristics during cotton fiber thickening and the fiber strength,we carried out the 2-year experiments in Nanjing,Jiangsu Province(cotton belts in lower basin of the Yangtze River)in 2004-2005 by using three genotypes with significant difference in fiber strength as materials.Flowers were labeled at anthesis and sampling was conducted every seven days from 10 DPA(day post-anthesis)on.The results showed that the genotype Ⅰ with high strength fiber(Kemian 1 was representative cultivar)had more soluble sugar transformed,higher peak of β-1,3-glucan content at the onset of fiber secondary wall thickening.Sucrose synthetase and β-1,3-glucanase,playing very important roles in fiber development,always kept in higher activities in Kemian 1 than in other tested cultivars during the fiber secondary wall thickening.All these resulted in longer term and more tempered cellulose accumulation and higher strength fiber formation.On the contrary,the genotype Ⅱ with lower strength fiber(Dexiamian 1 and Sumian 15 were representative cultivars)had less soluble sugar transformed,lower peak of β-1,3-glucan content at the onset of fiber secondary wall thickening,slower increasing trend of the key enzymes activities and a more quickly descended trend afterward,leading to a shorter term and rapid cellulose accumulation and lower strength fiber.Dexiamian 1,an early cultivar,reached the peak values of β-1,3-glucan content and key enzymes activities earlier than other cultivars for about a week.And the starting time of cellulose rapid accumulation was also earlier than other tested cultivars.The characters of the genotype Ⅲ with medium strength fiber(NuCOTN 33B)were intermediate.From above results,we suggest that the differences of the dynamics of soluble sugar and β-1,3-glucan contents and sucrose synthetase and β-1,3-glucanase might be one of the physiological reasons for the differences in the cellulose accumulation and fiber strength formation.Furthermore,the occurrence of β-1,3-glucan content peak may be proposed as a sign of the onset of secondary wall thickening in the fiber cell.

束红梅, 王友华, 张文静, 周治国 . 两个棉花品种纤维发育关键酶活性变化特性及其与纤维比强度的关系
作物学报, 2008,34(3):437-446.

DOI:10.3724/SP.J.1006.2008.00437URLMagsci [本文引用: 1]
<P>选择棉纤维比强度差异明显的2个品种,研究了棉纤维发育关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性的变化特征及其与纤维比强度的关系。结果表明,棉纤维发育过程中蔗糖合酶、β-1,3-葡聚糖酶活性变化特征在生化和mRNA转录水平上均存在明显的差异,影响纤维素的沉积特性及纤维比强度。高强纤维品种(科棉1号,平均比强度为35 cN·tex-1)的蔗糖合酶和β-1,3-葡聚糖酶活性及其基因表达量和维持高表达时间均高于低强纤维品种(德夏棉1号,平均比强度为26 cN·tex-1)。其中,高强纤维品种蔗糖合酶的基因表达量铃龄25 d时明显高于低强纤维品种,而β-1,3-葡聚糖酶的基因表达量则在铃龄10~25 d高于低强纤维品种。在纤维素形成过程中,高强纤维品种的纤维素累积平缓且纤维素累积持续期长于低强纤维品种,品种间差异程度受棉株果枝部位影响。在棉纤维发育过程中,Expansin、β-1,4-葡聚糖酶的基因表达量随铃龄的增加呈下降趋势(铃龄20 d时表达量显著下降),这与棉纤维形成过程(铃龄25 d前伸长较快,随后趋于停止)一致,且高强纤维品种维持高表达时间长与其纤维伸长期较长相吻合。</P>
SHU H M, WANG Y H, ZHANG W J, ZHOU Z G . Activity changes for enzymes associated with fiber development and relation to fiber strength in two cotton cultivars
Acta Agronomica Sinica, 2008,34(3):437-446. (in Chinese)

DOI:10.3724/SP.J.1006.2008.00437URLMagsci [本文引用: 1]
<P>选择棉纤维比强度差异明显的2个品种,研究了棉纤维发育关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性的变化特征及其与纤维比强度的关系。结果表明,棉纤维发育过程中蔗糖合酶、β-1,3-葡聚糖酶活性变化特征在生化和mRNA转录水平上均存在明显的差异,影响纤维素的沉积特性及纤维比强度。高强纤维品种(科棉1号,平均比强度为35 cN·tex-1)的蔗糖合酶和β-1,3-葡聚糖酶活性及其基因表达量和维持高表达时间均高于低强纤维品种(德夏棉1号,平均比强度为26 cN·tex-1)。其中,高强纤维品种蔗糖合酶的基因表达量铃龄25 d时明显高于低强纤维品种,而β-1,3-葡聚糖酶的基因表达量则在铃龄10~25 d高于低强纤维品种。在纤维素形成过程中,高强纤维品种的纤维素累积平缓且纤维素累积持续期长于低强纤维品种,品种间差异程度受棉株果枝部位影响。在棉纤维发育过程中,Expansin、β-1,4-葡聚糖酶的基因表达量随铃龄的增加呈下降趋势(铃龄20 d时表达量显著下降),这与棉纤维形成过程(铃龄25 d前伸长较快,随后趋于停止)一致,且高强纤维品种维持高表达时间长与其纤维伸长期较长相吻合。</P>

刘娟, 宋宪亮, 朱玉庆, 李学刚, 陈二影, 孙学振 . 高品质陆地棉蔗糖代谢关键酶活性对纤维品质形成的影响
作物学报, 2008,34(10):1781-1787.

DOI:10.3724/SP.J.1006.2008.01781URLMagsci
以高品质陆地棉鲁324系(324)、渝棉1号(YM-1)和普通陆地棉鲁棉研18 (L18)为材料, 研究蔗糖代谢关键酶活性变化对纤维品质形成的影响。结果表明, 高品质陆地棉叶片蔗糖磷酸合成酶(sucrose phosphate synthetase, SPS)活性高, 蔗糖合成能力强, 主茎叶和果枝叶蔗糖含量高, 蔗糖供应能力强。Logistic方程模拟纤维素累积过程, 高品质陆地棉纤维素进入快速累积期的时间晚, 终止期延后, 快速累积持续期长, 累积速率平缓, 最终纤维素含量高, 纤维比强度高。在纤维发育前期, 高品质陆地棉蔗糖贮存较多, 为次生壁发育提供了充足的初始底物。高品质陆地棉蔗糖合成酶(sucrose synthetase, SS)活性高, 降解蔗糖能力强, 酶活性迅速增加时期与纤维素快速累积期相吻合; SPS活性在纤维素快速累积期终止前均明显高于普通陆地棉。叶片SPS活性和棉纤维中SS、SPS活性与纤维素累积及纤维品质形成有密切关系。
LIU J, SONG X L, ZHU Y Q, LI X G, CHEN E Y, SUN X Z . Effects of key activities in sucrose metabolism on fiber quality in high quality upland cotton
Acta Agronomica Sinica, 2008,34(10):1781-1787. (in Chinese)

DOI:10.3724/SP.J.1006.2008.01781URLMagsci
以高品质陆地棉鲁324系(324)、渝棉1号(YM-1)和普通陆地棉鲁棉研18 (L18)为材料, 研究蔗糖代谢关键酶活性变化对纤维品质形成的影响。结果表明, 高品质陆地棉叶片蔗糖磷酸合成酶(sucrose phosphate synthetase, SPS)活性高, 蔗糖合成能力强, 主茎叶和果枝叶蔗糖含量高, 蔗糖供应能力强。Logistic方程模拟纤维素累积过程, 高品质陆地棉纤维素进入快速累积期的时间晚, 终止期延后, 快速累积持续期长, 累积速率平缓, 最终纤维素含量高, 纤维比强度高。在纤维发育前期, 高品质陆地棉蔗糖贮存较多, 为次生壁发育提供了充足的初始底物。高品质陆地棉蔗糖合成酶(sucrose synthetase, SS)活性高, 降解蔗糖能力强, 酶活性迅速增加时期与纤维素快速累积期相吻合; SPS活性在纤维素快速累积期终止前均明显高于普通陆地棉。叶片SPS活性和棉纤维中SS、SPS活性与纤维素累积及纤维品质形成有密切关系。

田景山, 虎晓兵, 勾玲, 罗宏海, 张亚黎, 赵瑞海, 张旺锋 . 新疆棉花生育后期夜间增温对纤维产量和比强度的影响
作物学报, 2012,38(1):140-147.

DOI:10.3724/SP.J.1006.2012.00140URLMagsci [本文引用: 1]
选用早熟品种新陆早13和新陆早33为试验材料,设两个夜间增温(nighttime warming, NW I和NW II)处理,自然温度为对照(CK),以组装在半移动式保温箱上的远红外石英管作为增温装置,在大田中模拟夜间增温环境,调查棉花生育后期夜间增温对纤维产量和比强度的影响。结果表明,与对照相比,棉花生育后期夜间增温导致棉铃铃期缩短,单铃纤维干物质快速累积期提前,单铃皮棉产量增加。夜间增温提前棉纤维中可溶性糖进入转化期的时间,且持续期明显延长;提前纤维素累积期的起始时间,在快速累积期终止之前,&ge;15.0℃的夜间最低温度对快速累积期的持续时间及最大累积速率无明显影响,棉纤维发育期&ge;14.1℃的夜间最低温度对纤维比强度影响较小。因此,夜间最低温度是影响棉纤维中可溶性糖转化和纤维素累积特性的重要因子,进而影响单铃纤维干物质累积及单铃纤维产量。
TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHAO R H, ZHANG W F . Effects of nighttime temperature increase at the late growth stage on the cotton fiber yield and fiber strength in Xinjiang
Acta Agronomica Sinica, 2012,38(1):140-147. (in Chinese)

DOI:10.3724/SP.J.1006.2012.00140URLMagsci [本文引用: 1]
选用早熟品种新陆早13和新陆早33为试验材料,设两个夜间增温(nighttime warming, NW I和NW II)处理,自然温度为对照(CK),以组装在半移动式保温箱上的远红外石英管作为增温装置,在大田中模拟夜间增温环境,调查棉花生育后期夜间增温对纤维产量和比强度的影响。结果表明,与对照相比,棉花生育后期夜间增温导致棉铃铃期缩短,单铃纤维干物质快速累积期提前,单铃皮棉产量增加。夜间增温提前棉纤维中可溶性糖进入转化期的时间,且持续期明显延长;提前纤维素累积期的起始时间,在快速累积期终止之前,&ge;15.0℃的夜间最低温度对快速累积期的持续时间及最大累积速率无明显影响,棉纤维发育期&ge;14.1℃的夜间最低温度对纤维比强度影响较小。因此,夜间最低温度是影响棉纤维中可溶性糖转化和纤维素累积特性的重要因子,进而影响单铃纤维干物质累积及单铃纤维产量。

TIAN J S, HU Y Y, GAN X X, ZHANG Y L, HU X B, GOU L, LUO H H, ZHANG W F . Effects of increased night temperature on cellulose synthesis and the activity of sucrose metabolism enzymes in cotton fiber
Journal of Integrative Agriculture, 2013,12(6):979-988.

DOI:10.1016/S2095-3119(13)60318-4URL [本文引用: 2]
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature.

白岩, 毛树春, 田立文, 李莉, 董合忠 . 新疆棉花高产简化栽培技术评述与展望
中国农业科学, 2017,50(1):38-50.

DOI:10.3864/j.issn.0578-1752.2017.01.004URL [本文引用: 1]
近20年来,新疆产棉区采取"促早栽培,向‘温’要棉;密植矮化,向‘光’要棉;水肥一体化,向‘水肥’要棉;农机农艺融合,向‘轻简化’要效益"的技术途径,通过机械代替人工大幅度减少人工投入,膜上精量播种免除放苗、定苗,合理密植配合化学调控实现简化整枝与集中收花,节水灌溉与水肥一体化实现节本增产增效,关键农艺技术与物质装备有机结合和综合运用,既保证了高产甚至超高产,又实现了轻简化,较好地解决了高产与简化的矛盾,使得以新疆为主的西北内陆棉区成为全国平均单产最高的优势棉花产区。展望未来,为保障棉花持续高产高效,今后新疆棉花栽培的技术途径须与时俱进,一方面由"向温、向水要产量、要效益",转变为"向光、向水肥一体化、向农艺技术与物质装备高度融合要产量、要品质、要效益";另一方面棉花栽培管理要改过去"三分种、七分管"为"七分种、三分管"。要通过棉田综合调控建立棉花高光效群体,提高群体光能利用率,协同提高棉花产量和品质;重视种子品质、提高播种质量,在"种"的环节多下功夫,减少管理环节,进一步节本增效;加强新疆棉花高效轻简化栽培的基础理论创新,为新疆棉花可持续发展提供理论支撑。
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z . Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area
Scientia Agricultura Sinica, 2017,50(1):38-50. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2017.01.004URL [本文引用: 1]
近20年来,新疆产棉区采取"促早栽培,向‘温’要棉;密植矮化,向‘光’要棉;水肥一体化,向‘水肥’要棉;农机农艺融合,向‘轻简化’要效益"的技术途径,通过机械代替人工大幅度减少人工投入,膜上精量播种免除放苗、定苗,合理密植配合化学调控实现简化整枝与集中收花,节水灌溉与水肥一体化实现节本增产增效,关键农艺技术与物质装备有机结合和综合运用,既保证了高产甚至超高产,又实现了轻简化,较好地解决了高产与简化的矛盾,使得以新疆为主的西北内陆棉区成为全国平均单产最高的优势棉花产区。展望未来,为保障棉花持续高产高效,今后新疆棉花栽培的技术途径须与时俱进,一方面由"向温、向水要产量、要效益",转变为"向光、向水肥一体化、向农艺技术与物质装备高度融合要产量、要品质、要效益";另一方面棉花栽培管理要改过去"三分种、七分管"为"七分种、三分管"。要通过棉田综合调控建立棉花高光效群体,提高群体光能利用率,协同提高棉花产量和品质;重视种子品质、提高播种质量,在"种"的环节多下功夫,减少管理环节,进一步节本增效;加强新疆棉花高效轻简化栽培的基础理论创新,为新疆棉花可持续发展提供理论支撑。

GIPSON J R, JOHAM H E . Influence of night temperature on growth and development of cotton (Gossypium birsutum L.). I. Fruiting and boll development.
Agronomy Journal, 1968,60(3):292-295.

DOI:10.2134/agronj1968.00021962006000030014xURL [本文引用: 1]
Different night temperature regimes were maintained throughout the boll development period on cotton growing in the field during the 1963, 1964, and 1965 seasons. Both fruiting and boll development were found to be closely associated with night temperature. Decreased night temperature resulted in the formation of more flowers and, in some cases, increased fruit set. Relative fruitfulness increased as night temperature decreased between the interval of 21 and 8.8 C and 21 and 14.4 C with &#145;Paymaster&#146; and &#145;Acala&#146; varieties respectively. Temperatures above 19.4 and below 13.3 C reduced fruiting index. Rate of boll development was inversely related to temperature, with a decrease of either day or night temperature resulting in slower boll dvelopment, thus, increasing boll periods. However, in this work night temperature was the dominant environmental factor associated with boll periods. In general, the Paymaster variety appeared to be better adapted to low night temperatures than the Acala variety.

蒋光华, 孟亚利, 陈兵林, 卞海云, 周治国 . 低温对棉纤维比强度形成的生理机制影响
植物生态学报, 2006,30(2):335-343.

DOI:10.17521/cjpe.2006.0045URLMagsci [本文引用: 1]
通过设置播期试验使棉纤维加厚发育过程(铃龄25~50 d)处于不同的温度条件下 ,研究低温对棉花纤维比强度形成的内在生理机制影响,为采取调控措施解决目前棉花(<EM>Gossypium</EM>)生产中存在的晚熟劣质问题提供理论依据。两年试验结果表明:棉纤维加厚发育期24.0 ℃左右 的日均温是高强纤维形成的最佳温度,其内在生理机制表现为棉纤维蔗糖合成酶活性最高, β-1,3-葡聚糖酶活性最低,纤维素的累积量和累积速率均明显高于其它低温条件,纤维超分子结构取向参数角较小,处于优化状态,最终表现为纤维比强度亦最大;低于21.0 ℃时即对棉纤维加厚发育相关酶活性产生明显影响,纤维比强度降低。当温度降到15.0 ℃左右 时,棉纤维蔗糖合成酶活性显著降低,而β-1,3-葡聚糖酶活性显著升高,同时纤维素累积量和累积速率均显著降低,纤维超分子结构取向参数角明显宽化,棉纤维不能正常发育,不利于高强纤维的形成(铃重仅为3.22 g,纤维比强度仅为15.73 cN&#8226;tex<SUP>-1</SUP>)。
JIANG G H, MENG Y L, CHEN B L, BIAN H Y, ZHOU Z G . Effects of low temperature on physiological mechanisms of cotton fiber strength formation process
Journal of Plant Ecology, 2006,30(2):335-343. (in Chinese)

DOI:10.17521/cjpe.2006.0045URLMagsci [本文引用: 1]
通过设置播期试验使棉纤维加厚发育过程(铃龄25~50 d)处于不同的温度条件下 ,研究低温对棉花纤维比强度形成的内在生理机制影响,为采取调控措施解决目前棉花(<EM>Gossypium</EM>)生产中存在的晚熟劣质问题提供理论依据。两年试验结果表明:棉纤维加厚发育期24.0 ℃左右 的日均温是高强纤维形成的最佳温度,其内在生理机制表现为棉纤维蔗糖合成酶活性最高, β-1,3-葡聚糖酶活性最低,纤维素的累积量和累积速率均明显高于其它低温条件,纤维超分子结构取向参数角较小,处于优化状态,最终表现为纤维比强度亦最大;低于21.0 ℃时即对棉纤维加厚发育相关酶活性产生明显影响,纤维比强度降低。当温度降到15.0 ℃左右 时,棉纤维蔗糖合成酶活性显著降低,而β-1,3-葡聚糖酶活性显著升高,同时纤维素累积量和累积速率均显著降低,纤维超分子结构取向参数角明显宽化,棉纤维不能正常发育,不利于高强纤维的形成(铃重仅为3.22 g,纤维比强度仅为15.73 cN&#8226;tex<SUP>-1</SUP>)。

郭林涛, 徐波, 周治国, 赵文青, 王友华 . 棉纤维发育响应高温胁迫的关键时间窗口
应用生态学报, 2015,26(8):2428-2436.

URLMagsci [本文引用: 2]
<p>以温度弱敏感性棉花品种(科棉1号)和温度敏感性棉花品种(苏棉15)为材料,在人工气候室模拟自然温周期设置高温(34 ℃\[38/30 ℃\],HT)和对照(26 ℃\[30/22 ℃\],CK)2个温度处理,研究了花铃期不同时段进行高温胁迫后纤维发育重要相关物质的变化及其与纤维品质的关系.结果表明: 在花后不同时间开始高温胁迫持续处理5 d,苏棉15纤维长度、纤维比强度、马克隆值响应高温胁迫的关键时间窗口分别为花后0~18.3 d,花后10.9~26.1 d和花后10.5~34.0 d.因此,花后11~18 d左右是棉花综合纤维品质形成响应高温胁迫的关键时间窗口.在关键时间窗口对棉花进行高温处理5 d后,苏棉15纤维中的蔗糖含量相对常温条件下呈先降低后增加的变化趋势,胼胝质含量上升,纤维素含量下降4.2%,纤维长度变短(最大变幅为23.3%),纤维比强度上升(最大变幅为4.3%),马克隆值下降(最大变幅为10.5%)并偏离最适范围,纤维品质变差.科棉1号的上述纤维发育主要相关物质含量及纤维品质与苏棉15变化趋势一致、最敏感时间相近,仅变化幅度相对较小.</p>
GUO L T, XU B, ZHOU Z G, ZHAO W Q, WANG Y H . Key time window of fiber quality formation in response to short-term higher temperature stress
Chinese Journal of Applied Ecology, 2015,26(8):2428-2436. (in Chinese)

URLMagsci [本文引用: 2]
<p>以温度弱敏感性棉花品种(科棉1号)和温度敏感性棉花品种(苏棉15)为材料,在人工气候室模拟自然温周期设置高温(34 ℃\[38/30 ℃\],HT)和对照(26 ℃\[30/22 ℃\],CK)2个温度处理,研究了花铃期不同时段进行高温胁迫后纤维发育重要相关物质的变化及其与纤维品质的关系.结果表明: 在花后不同时间开始高温胁迫持续处理5 d,苏棉15纤维长度、纤维比强度、马克隆值响应高温胁迫的关键时间窗口分别为花后0~18.3 d,花后10.9~26.1 d和花后10.5~34.0 d.因此,花后11~18 d左右是棉花综合纤维品质形成响应高温胁迫的关键时间窗口.在关键时间窗口对棉花进行高温处理5 d后,苏棉15纤维中的蔗糖含量相对常温条件下呈先降低后增加的变化趋势,胼胝质含量上升,纤维素含量下降4.2%,纤维长度变短(最大变幅为23.3%),纤维比强度上升(最大变幅为4.3%),马克隆值下降(最大变幅为10.5%)并偏离最适范围,纤维品质变差.科棉1号的上述纤维发育主要相关物质含量及纤维品质与苏棉15变化趋势一致、最敏感时间相近,仅变化幅度相对较小.</p>

CHEN Y L, WANG H M, HU W, WANG S S, SNIDER J L, ZHOU Z G . Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton
Environmental and Experimental Botany, 2017,135:106-117.

DOI:10.1016/j.envexpbot.2016.12.012URL [本文引用: 1]
Soil waterlogging events and elevated temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber development have received little attention. In this study, combined elevated temperature (34.1/29.002°C) and soil waterlogging (3, 602days) on fiber cellulose synthesis was investigated during flowering and boll development. The coupling of elevated temperature (ET) and soil waterlogging (SW) more negatively impacted final cellulose content (reduced by 9.5–27.5%) than either stress individually, and the effect of SW alone was greater than ET alone (34.1/29.002°C). Treatment of ET alone mainly limited cellulose synthesis by decreasing activities of sucrose degrading enzymes, especially sucrose synthase. The combination of ET and SW disrupted deposition of sucrose and cellulose but increased the callose content of developing fibers. Increased sucrose synthase (SuSy) activity was the dominant factor influencing sucrose degradation in the fiber under the combination of ET and SW. Both sucrose phosphate synthase (SPS) and acid/alkaline Invertase activities were decreased under combined stresses of ET and SW and SPS was the most sensitive to the aforementioned stresses. GhSuSy-A and GhSPS-1 were the key gene isoforms closely associated with fiber sucrose metabolism under combined stresses. Co-occurring elevated temperature and waterlogging stresses highly up-regulated GhCalS-5 and β-1,3-glucanase expression levels, which led to increased fiber callose content. Thus, we concluded that concomitant exposure to elevated temperature and waterlogging limited cellulose synthesis not only by lowering sucrose metabolism enzyme activities but also by favoring the conversion of UDPG to callose rather than cellulose.

贺新颖, 周治国, 戴艳娇, 强志英, 陈兵林, 王友华 . 铃期增温对棉花产量、品质的影响及其生理机制
应用生态学报, 2013,24(12):3501-3507.

URLMagsci [本文引用: 1]
<div >以泗棉3号棉花品种为材料,于2010和2011年在南京农业大学牌楼试验站设置铃期(7月13日&mdash;8月24日)增温试验,模拟全球增温条件下棉花产量、品质的变化趋势及其生理机制.结果表明: 在铃期增温2~3 ℃(日均温31.1~35.2 ℃)条件下,植株总生物量下降约10%,单株皮棉及籽棉产量降低30%~40%.棉纤维品质变化显著,且不同纤维品质指标对增温的响应程度存在较大差异:马克隆值和断裂比强度显著升高,纤维长度下降,而整齐度指数和伸长率无显著变化.棉株光合能力、干物质累积能力和光合产物输出能力显著下降;可溶性氨基酸、可溶性糖、蔗糖含量及碳氮比均显著下降,而淀粉含量显著上升;增温条件下营养器官干物质分配比例增多,生殖器官干物质分配比例相对减少,经济系数随之降低.棉株下部果枝受增温影响较小,中、上及顶部果枝受增温影响较大.表明在增温2~3 ℃条件下,棉株大部分时间处于热胁迫状态,不仅光合能力下降,而且光合产物向&ldquo;库&rdquo;端的转运能力下降,最终导致其减产.</div><div >&nbsp;</div>
HE X Y, ZHOU Z G, DAI Y J, QIANG Z Y, CHEN B L, WANG Y H . Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism
Chinese Journal of Applied Ecology, 2013,24(12):3501-3507. (in Chinese)

URLMagsci [本文引用: 1]
<div >以泗棉3号棉花品种为材料,于2010和2011年在南京农业大学牌楼试验站设置铃期(7月13日&mdash;8月24日)增温试验,模拟全球增温条件下棉花产量、品质的变化趋势及其生理机制.结果表明: 在铃期增温2~3 ℃(日均温31.1~35.2 ℃)条件下,植株总生物量下降约10%,单株皮棉及籽棉产量降低30%~40%.棉纤维品质变化显著,且不同纤维品质指标对增温的响应程度存在较大差异:马克隆值和断裂比强度显著升高,纤维长度下降,而整齐度指数和伸长率无显著变化.棉株光合能力、干物质累积能力和光合产物输出能力显著下降;可溶性氨基酸、可溶性糖、蔗糖含量及碳氮比均显著下降,而淀粉含量显著上升;增温条件下营养器官干物质分配比例增多,生殖器官干物质分配比例相对减少,经济系数随之降低.棉株下部果枝受增温影响较小,中、上及顶部果枝受增温影响较大.表明在增温2~3 ℃条件下,棉株大部分时间处于热胁迫状态,不仅光合能力下降,而且光合产物向&ldquo;库&rdquo;端的转运能力下降,最终导致其减产.</div><div >&nbsp;</div>

JASDANWALA R T, SING Y D, CHINOY J J . Auxin metabolism in developing cotton hairs
Journal of Experimental Botany, 1977,28(5):1111-1116.

DOI:10.1093/jxb/28.5.1111URL [本文引用: 1]
Growth parameters and auxin metabolism of developing cotton (Gossypium hirsutum L., cv. Sankar 5) fibre were studied in plants grown in the field. Fibre length and dry weight were plotted against boll age and fitted to the best-fit curves by computer curvilinear regression analysis. Based on this analysis, fibre development was divided into four phases : (i) initiation, (ii) elongation, (iii) secondary thickening, and (iv) maturation. Changes in IAA oxidase and peroxidase activity showed that IAA catabolism was low during the elongation phase, while during the phase of secondary thickening it was very high (four-fold increase). It is suggested that the level of IAA may regulate the termination of primary wall extension and the initiation of cellulose deposition in cotton fibre.

GOKANI S J, THAKER V S . Physiological and biochemical changes associated with cotton fiber development Ⅸ. Role of IAA and PAA
Field Crops Research, 2002,77:127-136.

DOI:10.1007/s11738-999-0027-7URL [本文引用: 1]
The relationship between growth and some enzymes of carbohydrate metabolism in developing cotton fibre were studied. Two respiratory pathways of glucose oxidation i.e. oxidative pentose phosphate pathway (OPPP) and glycolysis operates in the elongating cotton fibres and the extent of their operation varies with the demand for respiratory products. In this respect, hexokinase, G-6-PDH, 6PGDH, and MDH show increased activities during the period of rapid cell elongation and decreased activities when rate slows down. The conversion of PEP to malate and/or via a transhydrogenase system consisting of enzymes PEPC, MDH and NADP-MDH(d) may play a significant role in carbohydrate compartmentation of developing cotton fibre. As the rate of fibre growth slows down, a decline in enzyme activities, points to a shift in metabolic priorities.

田景山, 张旺锋, 王文敏, 徐守振, 勾玲, 罗宏海, 张亚黎 . 田间增温控制装置: 201620093391.0.
2016-06-15[2018-05-14].

[本文引用: 1]

TIAN J S, ZHANG W F, WANG W M, XU S Z, GOU L, LUO H H, ZHANG Y L . A device of elevating temperatures in the field: 201620093391.0.
2016-06-15[2018-05-14]. (in Chinese)

[本文引用: 1]

李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[本文引用: 1]

LI H S. Principles and Techniques of Plant Physiological Experiment. Beijing: Higher Education Press, 2000. ( in Chinese)
[本文引用: 1]

HUWYLER H R, FRANZ G, MERIER H . Changes in the composition of cotton fiber cell walls during development
Planta, 1979,146(5):635-642.

DOI:10.1007/BF00388844URL [本文引用: 1]

TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHANG W F . Growing degree days is the dominant factor associated with cellulose deposition in cotton fiber
Cellulose, 2014,21(1):813-822.

DOI:10.1007/s10570-013-0152-8URL [本文引用: 1]
Two field experiments were conducted to study the effect of temperatures on the cellulose content of cotton fiber at various stages of fiber development. In the first study, cotton was sown on three different dates so that temperatures were different during fiber development. In the second study, cotton was grown in semi-mobile chambers and night-time temperatures were controlled within the chambers. During the period from anthesis until the onset of rapid cellulose deposition, the average cellulose deposition rate was significantly correlated with growing degree days (GDD) and daily minimum temperature. The onset time of rapid cellulose deposition was significantly affected by GDD and daily maximum temperature. During the period of rapid cellulose deposition, the duration of rapid cellulose deposition and the average rate of cellulose deposition were significantly correlated with GDD. Therefore, GDD had the largest effect on cellulose deposition cotton fiber. The requisite number of GDD during cellulose synthesis must be reached during two stages of cotton fiber development in order to maximize cellulose content. The average cellulose deposition rate between anthesis and the onset of rapid cellulose deposition can be increased by warmer daily minimum. Warmer daily maximum temperatures advanced the onset of rapid cellulose deposition. The cellulose content of cotton fiber is also be affected by conditions during the period of rapid cellulose deposition. Cellulose contents are highest when cellulose accumulates at moderate rates during this period and when the duration of rapid cellulose deposition is long as possible.

ZHANG M L, SONG X L, JI H, WANG Z L, SUN X Z . Carbon partitioning in boll plays an important role in fiber quality in colored cotton
Cellulose, 2017,24(2):1087-1097.

DOI:10.1007/s10570-016-1139-zURL [本文引用: 1]
Abstract Assays were conducted to examine the photosynthesis of stem leaves and subtending leaves of cotton bolls, the fiber-quality parameters length, strength and micronaire, and dry matter accumulation in fibers, seeds and burs during fiber development in the colored cotton cultivars ZX-1 and G-7 and the white cotton cultivar LMY28. The results showed that fiber-quality parameters were all lower in ZX-1 and G-7 than in LMY28. The final dry weight of fiber was significantly lower in ZX-1 and G-7 than in LMY28, whereas the final dry weights of the seed and bur were both significantly higher. The seed harvest index was significantly lower in ZX-1 and G-7 than in LMY28 after 35 days post anthesis, when the seed harvest index decreased in colored cotton and increased in white cotton. These results indicated that the differential carbon partitioning in the boll was a key factor that resulted in poor fiber-quality parameters length and strength in colored cotton. Further, the time required for rapid dry matter accumulation (T) and the maximum speed of fiber thickening (Vm) were both significantly lower in ZX-1 and G-7 than in LMY28 for fiber strength, and the maximum speed of dry matter accumulation (Vm) differed significantly for the dry matter accumulation in the fiber, seed and bur between colored cotton and white cotton. These results show that Vm is a key factor for dry matter accumulation in the fiber, seed and bur, as well as for fiber strength.

王友华, 陈兵林, 卞海云, 蒋光华, 张文静, 胡宏标, 束红梅, 周治国 . 温度与棉株生理年龄的协同效应对棉纤维发育的影响
作物学报, 2006,32(11):1671-1677.

DOI:10.3321/j.issn:0496-3490.2006.11.012URLMagsci [本文引用: 1]
通过设置播期试验,使位于棉株不同果枝果节部位棉铃的纤维加厚发育期(铃龄25~50 d)处于不同温度条件下,研究温度与棉株生理年龄对棉纤维加厚发育及纤维比强度的影响,结果表明,温度与棉株生理年龄的影响存在互作效应,铃龄25~50 d日均温26℃左右时,棉株中部(7~9果枝)铃纤维蔗糖合成酶活性最高,β-1,3-葡聚糖酶活性最
WANG Y H, CHEN B L, BIAN H Y, JIANG G H, ZHANG W J, HU H B, SHU H M, ZHOU Z G . Synergistic effect of temperature and cotton physiological age on fibre development
Acta Agronomica Sinica, 2006,32(11):1671-1677. (in Chinese)

DOI:10.3321/j.issn:0496-3490.2006.11.012URLMagsci [本文引用: 1]
通过设置播期试验,使位于棉株不同果枝果节部位棉铃的纤维加厚发育期(铃龄25~50 d)处于不同温度条件下,研究温度与棉株生理年龄对棉纤维加厚发育及纤维比强度的影响,结果表明,温度与棉株生理年龄的影响存在互作效应,铃龄25~50 d日均温26℃左右时,棉株中部(7~9果枝)铃纤维蔗糖合成酶活性最高,β-1,3-葡聚糖酶活性最

赵瑞海, 韩春丽, 张旺锋 . 棉纤维超分子结构及与纤维品质的关系
棉花学报, 2005,17(2):112-116.

DOI:10.3969/j.issn.1002-7807.2005.02.010URL [本文引用: 1]
在纤维发育过程中,结晶度和横向晶粒尺寸变化较为明显,随着纤维的发育,晶粒尺寸逐渐增大,结晶度不断提高。不同基因型间,正常成熟纤维的结晶度和横向晶粒尺寸差异很小,与纤维强度相关不显著;而取向参数差异较大,与比强度相关显著。不同开花期棉铃发育的环境温度不同,其纤维结晶度、横向晶粒尺寸和取向参数也不一样。不同的温度条件对α角影响较大,但对φ角和ψ角逐渐降低的变化趋势没有影响。棉纤维超分子结构与纤维品质指标关系密切。正在发育中的纤维细胞结晶度和横向晶粒尺寸均随着纤维细胞的发育逐渐增大,对纤维比强度影响较显著。而成熟纤维,因纤维素沉积已经结束,结晶度和横向晶粒尺寸比较接近,对纤维强度影响较小;取向参数对纤维强力的影响较大,分散角、螺旋角越小,取向度越高,所形成的纤维强度就越高,纤维品质好。今后在育种工作中应结合纤维超分子结构培育高品质棉花品种,有利于提高纤维品质。
ZHAO R H, HAN C L, ZHANG W F . Super-molecular structure and its relation to quality parameters in cotton fiber
Cotton Science, 2005,17(2):112-116. (in Chinese)

DOI:10.3969/j.issn.1002-7807.2005.02.010URL [本文引用: 1]
在纤维发育过程中,结晶度和横向晶粒尺寸变化较为明显,随着纤维的发育,晶粒尺寸逐渐增大,结晶度不断提高。不同基因型间,正常成熟纤维的结晶度和横向晶粒尺寸差异很小,与纤维强度相关不显著;而取向参数差异较大,与比强度相关显著。不同开花期棉铃发育的环境温度不同,其纤维结晶度、横向晶粒尺寸和取向参数也不一样。不同的温度条件对α角影响较大,但对φ角和ψ角逐渐降低的变化趋势没有影响。棉纤维超分子结构与纤维品质指标关系密切。正在发育中的纤维细胞结晶度和横向晶粒尺寸均随着纤维细胞的发育逐渐增大,对纤维比强度影响较显著。而成熟纤维,因纤维素沉积已经结束,结晶度和横向晶粒尺寸比较接近,对纤维强度影响较小;取向参数对纤维强力的影响较大,分散角、螺旋角越小,取向度越高,所形成的纤维强度就越高,纤维品质好。今后在育种工作中应结合纤维超分子结构培育高品质棉花品种,有利于提高纤维品质。

刘继华, 尹承佾, 于凤英, 孙清荣, 王永民, 贾景农, 边栋材 . 棉花纤维强度的形成机理与改良途径
中国农业科学, 1994,27(5):10-16.

URLMagsci [本文引用: 1]
本文对棉花纤维强度(力)的形成机理与改良途径进行了综合分析,指出种间、品种间成熟纤维的强度差异主要取决于:(1)纤维发育过程中,纤维素沉积与超分子结构变化的配合性;(2)纤维加厚发育初期,晶区取向分布角ψ和螺旋角φ的初始差异而导致的成熟纤维晶区取向参数差异,并有T#-0=T#-KCOSψ的理论关系;(3)纤维加厚发育初期,取向分散角α的初始差异与变化规律。二倍体栽培棉种螺旋角φ特别小,对提高陆地棉与海岛棉纤维强度有重要作用。纤维强度的遗传改良主要应依赖晶区取向参数,特别是螺旋角的优化。通过外界因素调控,可影响纤维素沉积与超分子结构变化的配合性,提高陆地棉纤维强度。
LIU J H, YIN C Y, YU F Y, SUN Q R, WANG Y M, JIA J N, BIAN D C . Formation mechanism and improvement approach of cotton (Gossypium) fiber strength.
Scientia Agricultura Sinica, 1994,27(5):10-16. (in Chinese)

URLMagsci [本文引用: 1]
本文对棉花纤维强度(力)的形成机理与改良途径进行了综合分析,指出种间、品种间成熟纤维的强度差异主要取决于:(1)纤维发育过程中,纤维素沉积与超分子结构变化的配合性;(2)纤维加厚发育初期,晶区取向分布角ψ和螺旋角φ的初始差异而导致的成熟纤维晶区取向参数差异,并有T#-0=T#-KCOSψ的理论关系;(3)纤维加厚发育初期,取向分散角α的初始差异与变化规律。二倍体栽培棉种螺旋角φ特别小,对提高陆地棉与海岛棉纤维强度有重要作用。纤维强度的遗传改良主要应依赖晶区取向参数,特别是螺旋角的优化。通过外界因素调控,可影响纤维素沉积与超分子结构变化的配合性,提高陆地棉纤维强度。

CATHEY G W, LUCKETT K E, RAYBURN JR S T . Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals
Field Crops Research, 1982,5:113-120.

DOI:10.1016/0378-4290(82)90011-9URL [本文引用: 2]
Cotton ( Gossypium hirsutum L.) plants that had approximately 65% open bolls were sprayed with DEF (S,S,S-tributyl phosphorotrithioate), ethephon [(2-chloroethyl)phosphonic acid], arsenic acid, and paraquat (1,1 -dimethyl-4,4 -bipyridinium ion) to determine the effects of the chemicals on boll dehiscence, seedcotton yield, and quality of seed and fiber. All chemicals except DEF increased boll dehiscence rate and first harvest percentage. The greatest effect on these two parameters occurred in the ethephon-treated plots. Total seedcotton yield was not affected by either DEF or ethophon, but was reduced significantly by treatments with either arsenic acid or paraquat. In addition, the fiber micronaire readings of the lint gathered at first harvest was reduced by arsenic acid and paraquat treatments. All chemical treatments had an adverse effect on one or more of the components of bolls that were unopened at treatment time. Boll size and fiber micronaire were reduced by treatments with ethephon. DEF caused a reduction in boll size only, whereas arsenic acid and paraquat caused reduction in boll size, seed index, lint index, fiber micronaire, and seed germination. These results indicate that growth regulator chemicals can be used to accelerate boll dehiscence and increase firsth harvest percentage, though the quality of the harvested product may be lowered if treatments are made when many immature bolls are present.

SNIPES C E, WILLS G D . Influence of temperature and adjuvants on thidiazuron activity in cotton leaves
Weed Science, 1994,42(1):13-17.

DOI:10.1007/BF02358358URL [本文引用: 1]
A laboratory study was conducted to determine the effects of two adjuvants and temperatures at time of treatment on efficacy, absorption, and translocation of thidiazuron defoliant on cotton. Five days after treatment at 30/21 C day/night temperatures, leaf drop was 17% with no adjuvant, 37% with addition of crop oil concentrate, 40% with ammonium sulfate, and 75% with two adjuvants combined. At 21/13 C day/night temperatures, there was less than 10% leaf drop with all treatments. At 10 d after treatment, leaf drop drop was not different among treatments at the high or low temperatures. Shoot regrowth at high and low temperature was reduced 55 to 60% with addition of both adjuvants and 44 to 50% with each adjuvant or with no adjuvant when compared to plants defoliated by hand. Absorption of -thidiazuron was not affected by variations in temperature during the time of treatment but was affected by adjuvants. With no adjuvants, absorption was 7 to 10%. With 1.25% by vol crop oil concentrate, absorption was 33 to 46%. Addition of ammonium sulfate resulted in 18 to 19% absorption, and the combination of ammonium sulfate and crop oil concentrate increased absorption to 65 to 68%. There was no movement of radiolabel away from treated leaves as determined by autoradiographs of treated plants.

SNIPES C E, BASKIN C C . Influence of early defoliation on cotton yield, seed quality, and fiber properties
Field Crops Research, 1994,37:137-143.

DOI:10.1016/0378-4290(94)90042-6URL [本文引用: 1]
In general, defoliant treatments should not be applied prior to 60% open bolls in order to safeguard against potential losses in yield and undesirable changes in fiber quality. Yield losses and quality reductions occurred due to improper timing, irrespective of defoliant used.

BEDNARZ C W, SHURLEY W D, ANTHONY W S . Losses in yield, quality, and profitability of cotton from improper harvest timing
Agronomy Journal, 2002,94(5):1004-1011.

DOI:10.2134/agronj2002.1004URL [本文引用: 1]
Excessive weathering may diminish cotton lint yield and fiber quality to the extent that economic losses occur for the producer. The objective of this investigation was to determine the effects of systematic delayed harvest on cotton lint yield, fiber quality and profitability. Experiments were conducted from 1998 to 2000 at the Coastal Plain Experiment Station in Tifton, GA. The treatments consisted of a standard harvest-aid combination applied at weekly intervals over a thirteen-week period beginning at first open boll. Harvest aids were applied to each plot according to its week after first open boll designation and machine harvested two weeks thereafter. After ginning, fiber quality was determined on lint samples from each plot. High volume instrument (HVI) fiber length uniformity was greatest in 1999 and 2000 when harvest aids were applied between 58 and 88% open boll while the Advanced Fiber Information System (AFIS) short fiber content were lowest when harvest aids were applied from 40.1 to 46.8% open boll. The HVI upper half mean fiber length and the AFIS mean fiber length by number were greatest when harvest aids were applied between 39.1 and 56.7% open boll. In 1999 and 2000 lint yield and adjusted gross income were greatest when harvest aids were applied from 76.5 to 89.0% open boll. Thus, results from this study indicate optimum fiber quality is established earlier during boll opening than lint yield and profitability.

FAIRCLOTH J C, EDMISTEN K L, WELLS R, STEWART A M . The influence of defoliation timing on yields and quality of two cotton cultivars
Crop Science, 2004,44(1):165-172.

DOI:10.2135/cropsci2004.0165URL [本文引用: 1]
ABSTRACT The timing of certain cotton (Gossypium hirsutum L.) management practices varies according to the yield potential and quality characteristics associated with a variety. A defoliation timing study was performed to (i) determine if certain cultivars respond differently to defoliation timings and (ii) compare the use of the open boll percentage at defoliation (OBPD), nodes above cracked boll (NACB), and micronaire readings at defoliation for their effectiveness in timing defoliation. The study was conducted in 1999, 2000, and 2001. Treatments consisted of two proprietary cultivars (ST 474 and DP 5409), each defoliated on the basis of OBPD measurements. At the time of defoliation, NACB was recorded and lint samples were retained for later high volume instrumentation (HVI) analysis. Neither variety produced consistently higher yields than the other in this study. In 2000, delaying defoliation from 40 to 60 OBPD would have resulted in a significant addition of approximately 75 kg lint ha 1 for either variety. Stoneville 474 micronaire was highest in all years suggesting that timely defoliation is more critical to ST 474 cotton compared with DP 5409 in years when overall conditions are favorable for high micronaire. DP 5409 fiber length (UHM) values were consistently higher than ST 474 and UHM was unaffected by changes in OBPD values regardless of variety. Stoneville 474 had higher uniformity index (UI) values in all three years and delaying defoliation produced mixed results. The data demonstrate that proper defoliation timing strategies aimed at optimizing quality can vary across varieties. Proper defoliation timing in the two varieties examined in this study varied little with respect to yields. Both NACB and micronaire readings taken at defoliation were more effective for timing defoliation to optimize micronaire readings than OBPD.

BANGER M P, LONG R T, CONSTABLE G A, GORDON S G . Minimizing immature fiber and neps in upland cotton
Agronomy Journal, 2010,102(2):781-789.

DOI:10.2134/agronj2009.0454URL [本文引用: 2]
Immature cotton (Gossypium hirsutum L.) fibers and neps in ginned cotton will affect textile quality and thus can affect overall industry reputations. This study conducted three field studies that systematically varied the timing of harvest aid application to generate differences in the amount of immature fiber and levels of neps in crops at harvest. The aim was to ascertain what crop conditions (percent open bolls, number of immature bolls, percent immature bolls, and percent immature lint mass) at the time of application contribute to these differences, and assess whether these outcomes are influenced by 0, 1, 2 lint cleaning passes. Earlier harvest aid treatments increased neps and the level of neps was best related to fiber linear density (r2 = 0.78). All measurements of crop condition at harvest aid application explained changes in yield and fiber properties well, although the percent immature bolls (r2 > 0.67) can be applied when crops are nonuniform in their maturity, and when they contain fruiting gaps. Relationships between lint cleaning passes and crop condition at harvest aid application showed an interaction between earlier harvest treatments and lint cleaning passes. One lint cleaning pass contributed between 95 and 141 count g 1 more neps, while a second pass added between 101 and 181 count g 1 more neps. This information will be valuable in refining strategies that aim to optimize both yield and fiber quality (including less neps). This study also supported the current recommendation of applying harvest aids at 60% open bolls.

张煦怡, 田景山, 随龙龙, 张鹏鹏, 张旺锋 . 新疆棉区脱叶催熟剂喷施时间对棉铃发育的影响
中国棉花, 2018,45(6):15-20, 35.

URL [本文引用: 1]

ZHANG X Y, TIAN J S, SUI L L, ZHANG P P, ZHANG W F . The impact of defoliation timing on cotton boll development in Xinjiang Region
China Cotton, 2018,45(6):15-20, 35. (in Chinese)

URL [本文引用: 1]

相关话题/棉花 物质 新疆 生理 纤维素