Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang
SUI LongLong,1, TIAN JingShan1, YAO HeSheng1, ZHANG PengPeng1, LIANG FuBin1, WANG Jin2, ZHANG WangFeng,1通讯作者:
责任编辑: 杨鑫浩
收稿日期:2018-03-5接受日期:2018-08-30网络出版日期:2018-11-01
基金资助: |
Received:2018-03-5Accepted:2018-08-30Online:2018-11-01
摘要
关键词:
Abstract
Keywords:
PDF (472KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
随龙龙, 田景山, 姚贺盛, 张鹏鹏, 梁福斌, 王进, 张旺锋. 播期温度对新疆膜下滴灌棉花出苗率及苗期生长的影响[J]. 中国农业科学, 2018, 51(21): 4040-4051 doi:10.3864/j.issn.0578-1752.2018.21.004
SUI LongLong, TIAN JingShan, YAO HeSheng, ZHANG PengPeng, LIANG FuBin, WANG Jin, ZHANG WangFeng.
0 引言
【研究意义】新疆属典型大陆性干旱气候,光热资源丰富,是我国最重要的商品棉生产基地。在传统漫灌栽培条件下,随春季解冻土壤疏松,棉花适期早播能确保土壤湿度适宜,有利于棉籽萌发出苗,提早了棉花生育进程;但过早播种易出现降温、霜冻等极端天气,严重影响出苗率,甚至毁苗重播;而晚播虽然温度适合种子萌发,但土壤蒸发量较大易出现播种后土壤缺水影响出苗,晚播也影响棉花生育进程,易出现贪青晚熟[1,2]。随着膜下滴灌植棉技术的形成,与传统漫灌栽培相比,滴水出苗能满足棉花种子萌发出苗对水分的需求,协调了播期与土壤墒情的矛盾[3,4],但有关膜下滴灌棉花播种对温度的要求及播期确定的研究报道较少,这影响了新疆棉花精量播种对保苗率和促壮苗早发技术措施的制定。【前人研究进展】有关棉花适期播种的探讨历来受植棉业界的关注[5,6]。低温是棉花种子萌发和幼苗生长的主要胁迫因子[7];播种出苗阶段出现5℃—12℃低温,导致种子萌发期延长,出苗率降低[8,9]。有研究表明,早播遇到4℃—15℃的土壤温度,出苗时间长且出苗率低,易造成棉田缺苗断垄、棉苗弱小、根系短,易形成僵苗[10,11];但有****认为,在10℃—15℃气温条件下早播能提高对棉花生育期热量利用[12]。晚播温度较高(25℃—30℃)利于棉花营养生长[13];但也有研究认为,晚播棉苗旺长、茎秆细长、叶片大、根系干物质累积较小,后期棉花株型偏高,铃期长,品质相应下降,也不利于机械正常采收[14,15]。【本研究切入点】本文采用棉花滴水出苗技术,研究滴灌条件下棉花不同播期对保全苗和培育壮苗的影响,探讨棉花适宜播期的温度条件。【拟解决的关键问题】针对不同播期条件下气温变化对棉花出苗率和培育壮苗的影响,明确播种出苗期间和苗期的气温、膜下土壤温度变化与出苗率及幼苗生长的关系,探讨膜下滴灌棉花全苗壮苗对温度的要求,为北疆棉区棉花高产高效栽培和全程机械化管理提供科学依据。1 材料与方法
1.1 试验概况
试验于2016—2017年在石河子气象局乌兰乌苏农业气象试验站(44°17′ N,85°49′ E)进行,当地多年平均降水量210.6 mm,平均蒸发量1 664.1 mm,无霜期约170 d,年平均气温7.0℃,年日照时数 2 861.2 h。试验地土壤类型为灰漠土,土壤质地为中壤土,含有机质19.0 g·kg-1、全氮1.25 g·kg-1、全磷2.04 g·kg-1、碱解氮78.0 mg·kg-1、速效磷91.5 mg·kg-1、速效钾315 mg·kg-1。2年供试品种均为当地生产上主栽品种新陆早59号。1.2 试验设计
试验播期处理依据棉花播种对温度的要求,通过观测播前土壤温度变化并收集气象资料确定播种日期。为了便于播期处理的可操作性,使试验结果能为棉花生产提供参考,以播种前3 d膜下5 cm土壤温度的变化确定播期处理,共设置3—4个播期,即(1)膜下5 cm土壤温度3 d平均达到12℃作为适宜播种温度,(2)膜下5 cm土壤温度3 d平均达到9.5℃作为早播的温度条件,(3)膜下5 cm土壤温度3 d平均≥20℃为晚播的温度条件;具体播种日期依据当时天气状况和测定土壤温度确定。试验采用随机区组设计,重复3次,小区面积21 m2。种植模式1膜4行,宽窄行距配置;先覆膜后膜上点播,每穴播2粒种子,采用干播湿出的播种方法,每处理播种当天滴水出苗,待子叶展平后定苗,每穴保留1株,理论株数为1.921× 105株/hm2。播种日期及播前3 d气温、膜下5 cm土壤平均温度等指标见表1,各播期及播后温度因子的变化趋势见图1。结合当地机采棉大田生产实际,各处理棉花生育期内共滴灌8次,滴灌量5 700 m3·hm-2,一水一肥,共施用440 kg N·hm-2、420 kg P2O5·hm-2、270 kg K2O·hm-2。其他田间管理措施(如除草和病虫害防治)按当地高产田进行。图1
新窗口打开|下载原图ZIP|生成PPT图1不同温度播种棉花播前和播后气温及膜下土壤温度的变化
图中从横坐标延伸的虚线代表不同播种日期(分别为2016年4-8、4-16、4-22,2017年4-8、4-12、4-21、4-29)。MST为土壤平均温度,MDT为平均温度,HT为最高温度,LT为最低温度
Fig. 1Changes of air temperature and soil temperature under mulching film before and after different sowing dates
Dot lines in the figure represent the onset time of different sowing dates (4-8, 4-12, 4-21, 4-29 in 2016, 4-8, 4-16, 4-22 in 2017, respectively). MST: Mean soil temperature; MDT: Mean daily temperature; HT: The high temperature; LT: The low temperature
Table 1
表1
表1不同温度播种播前3 d气温指标及膜下土壤温度的变化
Table 1
年份 Year | 播期名称 Sowing date name | 播种日期 Sowing date(M-D) | 平均气温 MDT (℃) | 最高气温 HT (℃) | 最低气温 LT (℃) | 土壤平均温度 MST (℃) |
---|---|---|---|---|---|---|
2016 | 第一播期 First sowing date | 4-08 | 14.1±0.30 | 21.7±2.52 | 6.9±2.83 | 17.6±0.49 |
第二播期 Second sowing date | 4-16 | 13.8±1.87 | 18.7±1.72 | 9.2±3.70 | 18.4±1.53 | |
第三播期 Third sowing period | 4-22 | 17.5±0.67 | 26.2±1.39 | 8.1±1.11 | 22.2±1.22 | |
2017 | 第一播期 First sowing date | 4-08 | 6.7±2.26 | 11.3±1.19 | 1.8±3.04 | 9.5±1.41 |
第二播期 Second sowing date | 4-12 | 10.0±1.89 | 16.2±3.05 | 3.7±2.66 | 12.0±2.36 | |
第三播期 Third sowing period | 4-21 | 15.7±0.68 | 23.9±2.67 | 7.5±2.21 | 18.7±2.30 | |
第四播期 Fourth sowing date | 4-29 | 17.6±1.54 | 18.2±2.43 | 17.0±1.45 | 24.7±3.05 |
新窗口打开|下载CSV
1.3 测定项目及方法
1.3.1 土壤温度 在播种前,用地温计(精度0.1℃)测定膜下土壤5 cm温度,每天北京时间8:00、14:00、18:00、2:00测定土壤温度变化并记录。1.3.2 出苗率 出苗时调查田间各处理出苗时间,在子叶完全展开时调查出苗率,出苗率(%)=苗数/播种的种子数×100%。
1.3.3 植株形态指标 待子叶完全展开,每个处理随机选取20株长势一致的棉花,待棉苗每长1片真叶,用钢尺(精度为0.1 mm)测定各处理幼苗高度、子叶节高度。
1.3.4 植株干物质积累量 待子叶完全展开,每处理选取长势一致的棉花10株,带回实验室将棉株分为叶片、茎、根,分别装袋置于105℃烘箱中杀青30 min,调至80℃烘至恒重,采用百分之一电子天平称重。
1.3.5 植株根系形态指标 待子叶完全展开,每处理随机选取3个点,每点选取长势基本一致棉花5株,从子叶节处减去植株地上部分,采用面积挖掘法(长、宽、深各 40 cm)拣取根系,用自来水冲洗,去除杂质后带回实验室。将根放在透明的装水盒子里,利用专用扫根仪器(Epson V750)扫描成图像文件,再用图像分析软件处理总根长、比根长等形态指标。
1.4 指标计算
1.4.1 有效积温 采用公式K=N×(T-C)计算[16],式中,K为棉花完成某阶段发育所需要的总有效积温(℃);T为当天发育温度,N为完成某阶段发育所需要的天数(d);C为生长发育的下限温度14℃。1.4.2 每日热效应 温度对棉花发育速率的影响程度用相对热效应(RTE)来衡量[16],其取值范围为0—1。
式中,RTE(T)表示温度为T时的相对热效应值;T0 为棉花苗期发育的最适温度;Tb为棉苗发育的最低温度,低于这一温度,棉花发育速度为零;Tm为发育的上限温度30℃。
1.5 统计方法
采用 Microsoft Excel 2010 软件处理数据和作图,用SPSS 21.0软件进行统计分析,用LSD法检验差异显著性。2 结果
2.1 棉花播种至出苗期温度(热量)指标变化及对出苗率的影响
2.1.1 棉花不同温度播种出苗率和出苗天数的变化 试验表明,在一定土壤温度范围内,随膜下5 cm土壤温度的增加,棉花出苗率显著提高,当播种前3 d土壤平均温度大于22.2℃时出苗率下降(表2)。2年不同温度播种棉花出苗率变化趋势表现一致,在18.4℃—18.7℃条件下播种出苗率最高。2年不同温度播种出苗天数的变化趋势有所不同,2016年22.2℃播种处理下,由于气温呈现下降,播后平均气温低(图1),出苗天数较长,而2017年则是9.5℃播种条件下出苗天数最长,达到15 d。Table 2
表2
表2不同温度播种棉花出苗率和出苗天数的变化
Table 2
指标 Item | 年份 Year | ||||||
---|---|---|---|---|---|---|---|
2016 | 2017 | ||||||
播前3 d膜下5 cm土壤平均温度 Soil mean temperature averaged over three days before sowing date under 5 cm for mulching film (℃) | 17.6 | 18.4 | 22.2 | 9.5 | 12.0 | 18.7 | 24.7 |
出苗率 Emergence rate (%) | 86.0±1.01b | 93.0±1.85a | 91.5±1.04a | 84.0±1.21c | 86.5±0.40b | 94.0±1.15a | 91.0±0.98b |
出苗天数 Emergence days (d) | 9 | 8 | 10 | 15 | 12 | 7 | 8 |
新窗口打开|下载CSV
2.1.2 棉花播种至出苗期温度(热量)指标变化 温度对棉花生长发育的影响程度可以用相对热效应来表示,出苗率受每日热效应的影响明显,膜下土壤每日热效应值越大出苗率越高。试验表明,随播后平均气温升高,膜下5 cm土壤温度增加,≥14℃土壤有效积温呈现先增加后降低的趋势(表 3),以播前3 d膜下5 cm土壤平均温度为播种温度指标,2016年18.4℃播种处理下≥14℃土壤有效积温值最高,2017年9.5℃播种处理下≥14℃土壤有效积温值最高,而2年≥14℃膜下每日热效应值均以播前3 d膜下5 cm土壤平均温度在18.4℃—18.7℃条件下最高,该温度条件播种下出苗率也最高。
Table 3
表3
表3不同温度播种下棉花播种至出苗期间的温度(热量)指标的变化
Table 3
年份 Year | 播前3 d膜下5 cm土壤平均温度 Soil mean temperature averaged over three days before sowing date under 5 cm for mulching film (℃) | 播种至出苗期 Sowing to emergence date | |||
---|---|---|---|---|---|
平均气温 Mean air temperature (℃) | 膜下5 cm土壤平均温度 Soil mean temperature under 5 cm for mulching film (℃) | ≥14℃土壤有效积温 Growing degree days in soil (℃) | ≥14℃膜下每日热效应 Daily heat effect under mulching film | ||
2016 | 17.6 | 13.5 | 19.1 | 45.9 | 0.4636 |
18.4 | 17.7 | 21.9 | 63.2 | 0.7182 | |
22.2 | 16.6 | 21.0 | 59.3 | 0.5391 | |
2017 | 9.5 | 13.9 | 17.3 | 80.4 | 0.4123 |
12.0 | 15.5 | 18.6 | 79.6 | 0.5103 | |
18.7 | 18.1 | 23.3 | 79.2 | 0.8703 | |
24.7 | 16.5 | 21.4 | 75.2 | 0.7231 |
新窗口打开|下载CSV
2.1.3 棉花播种至出苗期间温度指标与出苗率的相关及通径分析 为进一步分析棉花播种至出苗期温度(热量)指标变化对出苗率的影响,选取播种至出苗期间气温(x1)、膜下5 cm土壤平均温度(x2)、膜下5 cm土壤积温(x3)、膜下5 cm土壤每日热效应(x4)作为棉花播种至出苗期间的温度(热量)指标,对棉花播种至出苗期间各温度指标与出苗率(y)进行相关分析,出苗率(y)与播种至出苗期的气温(x1)、膜下5 cm土壤温度(x2)、膜下5 cm每日热效应(x4)的相关系数均达到极显著水平,表明播种至出苗期间温度(热量)因素对出苗率有显著影响。通径系数是表示变量间因果关系程度的一个重要指标,直接通径系数表明影响出苗的各温度因素对出苗的直接影响程度,而间接通径系数表明影响出苗的各单因素通过其他各因素对出苗的影响程度。播种出苗期间,膜下5 cm土壤平均温度和平均气温对出苗率的直接通径系数达到极显著和显著水平,表明膜下5 cm土壤温度可为评价出苗指标的第一选择,而出苗平均气温可作为出苗指标的第二选择(表 4),播种至出苗期土壤有效积温和土壤每日热效应对出苗率则表现间接影响作用较大。
Table 4
表4
表4棉花播种至出苗期间温度指标与出苗率的相关及通径系数
Table 4
因素 Factor | 相关系数 Correlation coefficient | 直接通径系数 Directly path coefficient | 间接通径系数Indirectly path coefficient | |||
---|---|---|---|---|---|---|
x1→y | x2→y | x3→y | x4→y | |||
x1 | 0.9800** | 0.4699 | 0.7090 | -0.0109 | -0.2180 | |
x2 | 0.9500** | 0.7853 | 0.4243 | -0.0007 | -0.2297 | |
x3 | 0.0100 | -0.0411 | 0.1251 | 0.0133 | -0.0647 | |
x4 | 0.8900** | -0.2459 | 0.4167 | 0.7335 | -0.0108 |
新窗口打开|下载CSV
2.2 棉花出苗至3叶期幼苗长势与温度的关系
2.2.1 不同温度播种棉花株高和子叶节高度的变化 株高和子叶节高度是棉花苗期衡量幼苗生长状况最常用的指标。试验表明,棉花出苗至3叶期,不同温度播种处理间幼苗株高和子叶节高度表现为随叶龄增长均呈增加趋势(图2);棉花幼苗长势随播种后温度升高株高生长加快。2016年22.2℃播种处理下棉花植株最高,较17.6℃和18.4℃处理高7.41%、8.64%;子叶节分别高11.67%、20%。2017年24.7℃播种处理下株高最高,较9.5℃、12.0℃和18.7℃播种处理高7.05%、3.52%、4.71%;子叶节高8.82%—20.59%。图2
新窗口打开|下载原图ZIP|生成PPT图2不同温度播种棉花出苗至3叶期株高和子叶节高度的变化
图中温度为播前3 d膜下5 cm土壤平均温度。下同
Fig. 2Changes of plant height and cotyledon node height from seedling to three-leaf stage at different soil temperatures
The picture temperature of the soil mean temperature averaged over three days before sowing date under 5 cm for mulching film. The same as below
2.2.2 不同温度播种棉花地上部及根系干物质累积量的变化 棉花植株地上部干物质累积量是植株生长快慢的直接反映,是籽棉产量形成的物质基础。试验表明,随棉花叶龄增长,幼苗地上部干物质累积量呈增加趋势;不同温度播种处理以17.6℃—18.7℃条件下播种棉花地上部干物质累积量较高(图3)。2016年17.6℃播种处理的干物质累积量,较18.4℃、22.2℃处理分别高7.33%、16.09%;2017年18.7℃播种处理较9.5℃、12.0℃和24.7℃处理提高27.5%、21.25%和18.75%。
图3
新窗口打开|下载原图ZIP|生成PPT图3不同温度播种棉花出苗至3叶期地上部及根系干物质累积量的变化
Fig. 3Changes of above-ground dry matter and root dry matter from seedling to three-leaf stage at different soil temperatures
棉花根系是苗期植株生长的中心,根系生物量是衡量棉花幼苗生长状况的重要指标。棉花幼苗根系干物质累积量表现为随叶龄增长呈增加趋势;不同温度播种处理间,棉花根系干物质累积量表现为随膜下5 cm土壤温度的增加,根系干物质累积量呈下降趋势。2016年18.4℃播种处理的根系干物质累积量较22.2℃处理提高14.67%,2017年9.5℃播种处理较12.0℃、18.4℃和24.7℃处理提高4.87%、8.46%和20.65%。
2.2.3 不同温度播种对棉花总根长和比根长的影响 棉花苗期根系形态是衡量幼苗生长是否健壮的重要指标。试验表明,棉花幼苗总根长随叶龄增长呈增加趋势;不同温度播种处理,棉花总根长均表现为1—2叶期以18.4℃—18.7℃条件下播种总根长较长,3叶期随温度升高总根长值最大(图4)。2016年22.2℃处理播种总根长较17.6℃、18.4℃处理高16.00%、10.62%,2017年24.7℃播种处理下,总根长较9.5℃、12.0℃、18.7℃播种处理高6.56%、4.47%、1.79%。
图4
新窗口打开|下载原图ZIP|生成PPT图4不同温度播种棉花出苗至3叶期幼苗总根长及比根长的变化
Fig. 4Changes of seedling total root length and special root length from seedling to three-leaf stage at different soil temperatures
比根长是细根单位重量的根长,随叶龄增加,幼苗比根长呈增加趋势。不同温度播种处理间,随播种温度升高,棉花比根长值均表现增大。2016年22.2℃播种处理比根长较17.6℃、18.4℃处理提高24.89%、23.68%,2017年24.7℃播种处理比根长较9.5℃、12.0℃、18.7℃处理提高25.93%、20.39%和14.84%。
2.2.4 不同温度播种棉花地上部单位株高的干物质累积量及根冠比的变化 幼苗地上部单位株高的干物质累积量能反映单位干物质重量的株高变化情况。试验表明,不同温度播种处理随叶龄增加,幼苗单位株高的干物质量呈下降趋势(图5)。2年不同温度播种幼苗单位株高的干物质量表现不一致,2016年17.6℃播种处理的单位干物质量的株高较18.4℃、22.2℃播种处理高6.11%、21.37%;2017年24.7℃播种处理的幼苗单位干物质量的株高较9.5℃、12.0℃、18.7℃播种处理高25.71%、22.27%和22.87%。不同温度播种处理随叶龄增加,幼苗根冠比呈降低趋势。2年随播种温度的升高,根冠比表现出降低趋势,播种温度较低处理的根冠比较大,但2016年18.4℃播种处理的根冠比较17.6℃处理高11.52%。
图5
新窗口打开|下载原图ZIP|生成PPT图5不同温度播种棉花出苗至3叶期地上部单位株高的干物质累积量及根冠比的变化
Fig. 5Changes of dry matter accumulation of plant height in the part of above-ground and root-shoot ratio from seedling to three- leaf stage at different soil temperatures
2.2.5 棉花幼苗形态指标与温度间的相关分析 试验表明,棉花出苗至3叶期随播后气温升高,膜下5 cm土壤平均温度增高,≥14℃气积温增加,≥14℃气温每日热效应值增加。2年不同温度播种处理,3叶期间温度变化表现一致(表 5)。出苗至3叶期,幼苗形态指标与各温度指标均表现出一定的相关关系(表 6),其中,棉花株高与各气象因子指标的相关系数达到显著和极显著水平,根冠比、根干物质累积量与气象因子指标间呈现显著和极显著负相关关系。
Table 5
表5
表5不同温度播种下棉花出苗至3叶期间的温度指标变化
Table 5
年份 Year | 播前3 d膜下5 cm土壤平均温度 Soil mean temperature averaged over three days before sowing date under 5 cm for mulching film (℃) | 平均气温 Mean air temperature (℃) | 膜下5 cm土壤平均温度 Soil mean temperature under 5 cm for mulching film (℃) | ≥14℃土壤有效积温 Growing degree days in soil (℃) | ≥14℃气积温 Growing degree days in air (℃) | ≥14℃气温每日 热效应值 Daily heat effect air |
---|---|---|---|---|---|---|
2016 | 17.6 | 16.5 | 19.9 | 175.6 | 82.2 | 0.17 |
18.4 | 16.1 | 19.3 | 149.4 | 65.9 | 0.15 | |
22.2 | 17.2 | 19.9 | 171.6 | 96.1 | 0.21 | |
2017 | 9.5 | 18.5 | 23.9 | 228.4 | 96.1 | 0.30 |
12.0 | 18.9 | 24.5 | 231.1 | 113.9 | 0.32 | |
18.7 | 19.2 | 24.8 | 227.3 | 115.4 | 0.36 | |
24.7 | 21.7 | 27.6 | 245.5 | 138.9 | 0.52 |
新窗口打开|下载CSV
Table 6
表6
表6不同温度播种棉花出苗至3叶期幼苗形态指标与温度的相关分析
Table 6
项目 Item | 平均气温 Air mean temperature | 膜下5 cm土壤平均温度 Soil mean temperature under 5 cm for mulching film | ≥14℃土壤 有效积温 Growing degree days in soil | ≥14℃气积温 Growing degree days in air | ≥14℃气温 每日热效应 Daily heat effect air |
---|---|---|---|---|---|
株高 Plant height | 0.93** | 0.87** | 0.84** | 0.97* | 0.91** |
子叶节高度 Cotyledon node height | 0.83* | 0.74* | 0.85** | 0.60 | 0.84** |
地上干物质累积 Above-ground dry matter | 0.70 | 0.80* | 0.69 | 0.80* | 0.72* |
根干物质累积 Root dry matter | -0.90** | -0.79* | -0.95** | -0.71* | -0.89** |
总根长 Total root length | 0.73* | 0.65 | 0.77* | 0.60 | 0.72* |
根冠比 Root-shoot ratio | -0.89** | -0.94** | -0.88** | -0.93** | -0.90** |
比根长 Specific root length | 0.89** | 0.78* | 0.92** | 0.68 | 0.88** |
地上部单位株高的干物质累积量 Dry matter accumulation of plant height in the part of above-ground | 0.57 | 0.70 | 0.71* | 0.56 | 0.60 |
新窗口打开|下载CSV
2.3 不同播期下棉花产量及产量构成因子的变化
试验表明,棉花不同播期处理间,实收获籽棉产量表现为随播期推迟、气温升高呈下降的趋势(表7)。2016年,17.6℃播种处理的籽棉产量较18.4℃、22.2℃处理高13.06%、25.96%;2017年,9.5℃播种处理的籽棉产量较12.0℃、18.7℃、24.7℃高6.81%、21.21%、32.78%。棉花收获株数表现为随播种日期推迟,呈现先上升后下降趋势,2年试验表明,18.4—18.7℃条件下播种收获株数最高。棉花单铃重随播期推迟下降,2016年,17.6℃播种处理的单铃重较18.4℃、22.2℃处理高1.66%、8.69%;2017年,9.5℃播种处理的单铃重较12.0℃、18.70℃、24.7℃处理高2.98%、5.40%、7.64%。单株铃数、总铃数变化与单铃重变化趋势一致。Table 7
表7
表7不同播期下棉花产量与产量构成因子的变化
Table 7
年份 Year | 播前3 d膜下5 cm土壤平均温度 Soil mean temperature averaged over three days before sowing date under 5 cm for mulching film (℃) | 播期 Sowing date (M-D) | 收获株数 Plant No. (×104·hm-2) | 单株铃数 Boll number per plant | 单铃重 Boll weight (g) | 总铃数 Total boll number (×104·hm-2) | 籽棉产量 Seed cotton yield (kg·hm-2) |
---|---|---|---|---|---|---|---|
2016 | 17.6 | 4-08 | 15.69±0.20b | 6.70±0.58a | 5.41±0.11a | 105.12±0.21a | 5978.51±139.9a |
18.4 | 4-16 | 15.79±0.50a | 6.26±0.67b | 5.32±0.14a | 98.85±0.13b | 5197.85±171.1b | |
22.2 | 4-22 | 15.75±0.90a | 6.01±0..50c | 4.94±0.22c | 94.66±0.15c | 4426.26±149.4c | |
2017 | 9.5 | 4-08 | 15.65±0.28c | 7.00±0.44a | 5.37±0.17a | 109.55.±0.21a | 6444.65±205.2a |
12.0 | 4-12 | 15.72±0.15b | 6.83±0.26a | 5.21±0.11a | 107.36±0.35a | 6005.98±159.5b | |
18.7 | 4-21 | 15.87±0.46a | 6.30±0.49b | 5.08±0.13b | 99.98±0.46b | 5078.07±141.1c | |
24.7 | 4-29 | 15.84±0.34a | 5.90±0.24c | 4.96±0.13b | 93.46±0.29c | 4332.08±126.8d |
新窗口打开|下载CSV
3 讨论
3.1 适温早播有利于提高新疆膜下滴灌棉花的出苗质量
新疆棉区无霜期短,传统漫灌条件下,早播土壤墒情好,早出苗能充分利用光热资源,有利于产量的形成[17,18];但早播受低温(5℃—15℃)影响的机率增大[19],如果播种后气温低、土壤积温不足,造成棉籽停留在土壤中的时间较长、养分消耗多,易导致种子霉烂[20],影响出苗率;播种晚,气温高蒸发量大,土壤墒情不足,种子吸水困难,出苗率也较低。本研究表明,膜下滴灌不同温度条件下播种,采用滴水出苗,出苗率表现为随播后平均气温的升高呈增加趋势。以播种前3 d膜下5 cm土壤温度指标作为确定播期的条件,18.4℃—18.7℃出苗率最高,达到90%以上,北疆棉区对应的日期为4月16日至4月21日;而膜下5 cm土壤温度9.5℃—12℃条件下早播(4月8日至4月12日),较低的温度可能使种子质膜结构破坏、通透性增大,种子内可溶性糖、氨基酸等物质外渗,导致代谢紊乱造成种子霉烂[21],与18℃条件下播种处理相比,出苗率仅84%—86%;晚播(4月22日至4月29日)播种前3 d土壤温度22.2℃—24.7℃条件下,出苗率相对较低,这可能与播种至出苗期日均最高温度高于棉苗适宜生长的上限温度有关[16]。另有研究表明,在传统漫灌条件下,棉花出苗期间土壤含水量与出苗时间、出苗率的关系均呈显著的二次函数关系,土壤湿度越大,出苗越快,出苗率越高;温度对出苗率无明显影响,这可能传统漫灌条件下,土壤水分难以人为控制,适宜的土壤水分是棉花出全苗的关键因素[21]。膜下滴灌棉花普遍采用滴水出苗技术,依据播种前气温及土壤温度的变化确定播种日期,进行适期播种是提高出苗率和培育壮苗的有效途径[22]。依据本试验结果,播种前3 d膜下5 cm土壤平均温度稳定达到17.6℃—18.7℃,平均气温在13.8℃—15.7℃,出苗率达到90%以上;根据近10年气象资料统计,出苗率达到90%以上的适宜播种日期在4月7日至4月15日。3.2 适温早播是新疆膜下滴灌棉花培育壮苗的关键
棉花适宜温度条件下播种,种子萌发势强、苗齐、根系发达,是培育壮苗的重要措施之一[23]。本研究表明,膜下滴灌播前3 d膜下5 cm土壤平均温度9.5℃(4月8日)条件下播种,棉花出苗至3叶期株高、地上部干物质累积量较低,但根系生物量却显著增加,而22.2℃—24.7℃晚播(4月22日至4月29日)条件下,出苗至3叶期根系生物量累积最少,这可能由于播种出苗后温度上升较快,引起幼苗地上部旺长,导致棉花根系生长发生适应性变化,根系生长量显著下降。根系是植物吸收水分和养分的重要器官,是苗期植株生长的中心[24]。一般情况下,棉花壮苗长相为茎秆粗壮、出叶速度快、根系健壮[25];早播种低温不利于棉花地上干物质累积,但对根系生长的影响较小[15,17]。本试验结果表明,播前3 d膜下5 cm土壤平均温度达到9.5℃条件下播种,出苗期间膜下5 cm土壤平均温度17.3℃以上,地上干物质累积量虽然较小,但根冠比较大,有利于根系生长[15];随着播期的推迟、气温升高,棉花地上部生长较旺;土壤平均温度24.7℃晚播条件下,单位株高幼苗地上干重较高,有利于幼苗地上部生长,但不利于根系生长[16,26];与早播棉株相比,晚播棉株根冠比、单位株高的干物质重显著降低,植株茎秆细长[15,16]。对不同温度条件下播种棉花产量的调查表明,早播(播种前3 d土壤温度9.5℃播种)虽然出苗率不高,但保苗率相对较高,在较低温度下由于根系生长较快,植株早发[8],单株结铃数增多,生育后期有效积温较高,单铃重提高,籽棉产量增加[27]。因此,适期早播是实现棉花高产的必要条件,是提高单产最重要的措施之一。4 结论
播前3 d平均气温稳定通过13.8℃—15.7℃、膜下5 cm土壤温度在17.6℃—18.7℃播种,播种后1周平均气温在16℃—18℃,出苗率可达90%以上;根据近10年气象数据,4月7—15日播种是保全苗的最适宜时期。播种前3 d土壤温度9.5℃条件下早播,棉花出苗至3叶期平均气温18.5℃—19.5℃,幼苗子叶节高度适中,地上部单位株高的干物质累积量较大,根系粗壮,根冠比较大,利于形成壮苗。因此,适期早播是提高棉花单产最重要的措施之一。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
Magsci [本文引用: 1]
土壤覆盖地膜后增加了温度梯度,综述土壤物理学的研究成果,土壤水分是从热区向冷区运动,通过含水均匀的封闭覆膜系统中水分运动的观测和田间测定,以及覆膜防止返盐的效果分析,认为覆膜有抑制深层水分上行的作用。膜内土壤疏松,当含水不太多时,气相比例大,有利于温度梯度引起的水分运动。近地表温度梯度大,水分的下行显著。地膜覆盖作物播种时应考虑到这种水分运动,要求足墒播种,在水分稍差时可适当加深播种深度,或采用深播浅盖的方法。
Magsci [本文引用: 1]
土壤覆盖地膜后增加了温度梯度,综述土壤物理学的研究成果,土壤水分是从热区向冷区运动,通过含水均匀的封闭覆膜系统中水分运动的观测和田间测定,以及覆膜防止返盐的效果分析,认为覆膜有抑制深层水分上行的作用。膜内土壤疏松,当含水不太多时,气相比例大,有利于温度梯度引起的水分运动。近地表温度梯度大,水分的下行显著。地膜覆盖作物播种时应考虑到这种水分运动,要求足墒播种,在水分稍差时可适当加深播种深度,或采用深播浅盖的方法。
,
URL [本文引用: 1]
通过对播前不同底墒与棉花生育,生理及产量绵研究,提出了旱地棉花应根据播前2m土壤含水量 决择当年棉花栽培体系,播前2m土壤含水量平均在13%以上,则采取覆盖争早体系,如果播前2m含水旺在11%以上、则采取晚发栽培。同时研究了底墒与覆 盖,品种,播期,密度,化控等配套技术。
URL [本文引用: 1]
通过对播前不同底墒与棉花生育,生理及产量绵研究,提出了旱地棉花应根据播前2m土壤含水量 决择当年棉花栽培体系,播前2m土壤含水量平均在13%以上,则采取覆盖争早体系,如果播前2m含水旺在11%以上、则采取晚发栽培。同时研究了底墒与覆 盖,品种,播期,密度,化控等配套技术。
,
Magsci [本文引用: 1]
棉花膜下滴灌技术是将滴灌技术与覆膜植棉技术的集成,覆膜减少水分蒸发而滴灌控制灌溉可减少深层渗漏。该文重点对膜下滴灌技术的形成与发展及其在新疆棉花能够迅速推广应用的原因进行了详细探讨,最后提出了膜下滴灌在其它地区推广时应注意的问题,切不可生搬硬套新疆棉花膜下滴灌模式。为中国膜下滴灌技术的发展提供参考。
Magsci [本文引用: 1]
棉花膜下滴灌技术是将滴灌技术与覆膜植棉技术的集成,覆膜减少水分蒸发而滴灌控制灌溉可减少深层渗漏。该文重点对膜下滴灌技术的形成与发展及其在新疆棉花能够迅速推广应用的原因进行了详细探讨,最后提出了膜下滴灌在其它地区推广时应注意的问题,切不可生搬硬套新疆棉花膜下滴灌模式。为中国膜下滴灌技术的发展提供参考。
, 2013(
URL [本文引用: 1]
在新疆南疆灌区棉花干播湿出种植方式下,通过田间试验研究土壤温度、水分变化及其对出苗率的影响。研究表明:各处理不同深度土壤温度在一天中表现为低-高-低的变化规律;表层5cm内土壤温度变幅最大,平均增幅63.5%~70%;随着深度增加土壤温度变化逐渐趋于平缓。各处理不同深度处下层土壤温度达到峰值的时间滞后于上层土壤,上层土壤降温速度高于下层土壤;土壤含水率越大地温变幅越小;600m3/hm2的干播湿出灌水定额可为棉花种子发育创造较好的湿热环境,利于棉花出苗。
.
URL [本文引用: 1]
在新疆南疆灌区棉花干播湿出种植方式下,通过田间试验研究土壤温度、水分变化及其对出苗率的影响。研究表明:各处理不同深度土壤温度在一天中表现为低-高-低的变化规律;表层5cm内土壤温度变幅最大,平均增幅63.5%~70%;随着深度增加土壤温度变化逐渐趋于平缓。各处理不同深度处下层土壤温度达到峰值的时间滞后于上层土壤,上层土壤降温速度高于下层土壤;土壤含水率越大地温变幅越小;600m3/hm2的干播湿出灌水定额可为棉花种子发育创造较好的湿热环境,利于棉花出苗。
,
[本文引用: 1]
,
DOI:10.1007/s00484-014-0904-7URLPMID:25240389 [本文引用: 1]
Understanding the effects of climatic change on phenological phases of cotton (L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.1602days during the period of 1981–2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.1902days, respectively. The other growth period lengths were prolonged by 2–9.7102days. The whole growth period length was prolonged by 22.2602days. The stop-growing date was delayed by 2.49–3.4602days for every 102°C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17–4.7602days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.
,
DOI:10.1146/annurev.pp.24.060173.002305URL [本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
,
DOI:10.1016/S1002-0160(07)60102-7URL [本文引用: 1]
,
DOI:10.2478/s11535-014-0291-4URL [本文引用: 1]
Rhamnus alaternus and R. ludovici-salvatoris, two Mediterranean shrubs with different geographic distributions, have shown important differences in seedling recruitment capacity. The objectives of this work were to determine the ability of these species to germinate seeds under different temperature ranges, as well as the capacity of seedlings to emerge from different burial depths, in order to better understand their regeneration processes. Two different experiments were performed. In the first one, seed germination was studied in Petri dishes and in the dark at different temperature regimes: a) 5–15°C, b) 10–20°C and c) 15–25°C (12h/12h). In the second experiment, seedling emergence capacity from different burial depths (0.5, 2 and 5 cm) was tested. R. ludovici-salvatoris showed a significantly higher final germination rates, a lower dormancy period, and average time response at 10–20°C than at other temperature ranges, although differences were much greater when seeds were subjected to the 5–15°C temperature regime. By contrast, R. alaternus did not show significant differences between treatments (5–15°C and 10–20°C) in germination behavior. Seedling emergence of both species was lower and slower when seeds were buried at 5 cm. However, R. ludovici-salvatoris always showed a lower seedling emergence capacity than R. alaternus at any burial depth. The low ability of R. ludovici-salvatoris to germinate seeds and emerge between 5–15°C, even from shallow depths, is discussed in relation to its low regeneration capacity and declining geographic distribution.
,
DOI:10.3969/j.issn.1002-7807.2010.06.011URLMagsci [本文引用: 1]
通过设置不同播期来营造不同的温度环境,研究不同温度条件下棉铃及纤维发育特点,以及温度对纤维比强度的影响机制。结果表明:随着播期的推迟,铃期日均温的降低,棉铃的体积增大幅度依次降低。棉铃干物质达到最大积累速率的时间提前,且快增期持续的时间缩短。纤维干物质达到最大积累速率的时间推迟,最大积累速率逐渐减小。随着铃期日均温的降低,吲哚乙酸氧化酶(IAAO)活性峰值大小表现出下降趋势。铃期影响纤维比强度的主要温度因子为日均温和日最高温。
DOI:10.3969/j.issn.1002-7807.2010.06.011URLMagsci [本文引用: 1]
通过设置不同播期来营造不同的温度环境,研究不同温度条件下棉铃及纤维发育特点,以及温度对纤维比强度的影响机制。结果表明:随着播期的推迟,铃期日均温的降低,棉铃的体积增大幅度依次降低。棉铃干物质达到最大积累速率的时间提前,且快增期持续的时间缩短。纤维干物质达到最大积累速率的时间推迟,最大积累速率逐渐减小。随着铃期日均温的降低,吲哚乙酸氧化酶(IAAO)活性峰值大小表现出下降趋势。铃期影响纤维比强度的主要温度因子为日均温和日最高温。
,
DOI:10.2134/agronj2002.0997URL [本文引用: 1]
ABSTRACT Mid-South cotton (Gossypium hirsutum L.) has reached a yield plateau in recent years. Shifting the growing season earlier in the year by planting earlier may allow the crop to develop under more favorable weather patterns and escape late season insects. The objectives were to determine the effect of early planting on growth and development, lint yield, and fiber quality of cotton. Early season dry matter partitioning, early season light interception, weekly bloom counts, lint yield, yield components, and fiber quality data were collected on genotypes planted during the first week of April (early planting) and the first week of May (normal planting). The data were collected from two experiments conducted over the years 1996 to 2000. Early June leaf area index of the early planted plants was 172% greater than plants in the normal planting, which contributed to a 55% greater canopy light interception for the early planting at that time. Early planting shifted the blooming period earlier in the growing season every year but 1997. Four out of 5 yr, the early planted cotton demonstrated a 10% yield improvement over the normal planted crop. In 1997, the early planted crop was stunted by an early season cold period, and yet its yields were equivalent to the normal planted crop. Planting earlier than normal has the potential to provide for increased lint yields for Mississippi Delta cotton producers. Techniques to mitigate early cold temperature stress could help make the yield improvements found with this early planting production system more consistent.
,
DOI:10.1080/09064710510029178URL [本文引用: 1]
A field study has been conducted to evaluate the importance of planting dates on earliness and second crop seed cotton yield in two cotton cultivars (Gossypium hirsutum L.). The experiment was designed as a split-plot with three replications in which planting dates were the main plots and cotton cultivars were subplots. Five planting dates were established at about 15-day intervals from mid-April to mid-June (15 April, 1 May, 15 May, 1 June, and 15 June). Data collected in both years indicated that planting on 15 April increased the seed cotton yield by 15%. 1 June planting resulted in lower yield (28%), micronaire (15%) and strength (10%) compared to 1 May. Short fibre content was 35% higher for the 15 June planting than for 1 May planting. Cultivar responses differed with planting date. The existence of cultivar planting date interaction on yield highlights the importance of selecting the right cultivar for the specified planting date. An early planting production system for cotton has the potential to increase yield and quality. Planting cotton as a second crop after cereals could also be feasible for the regions which have an expanding textile industry, although yield and quality are not as high as in crops grown at optimum planting date.
,
DOI:10.2134/agronj2009.0071URL [本文引用: 4]
New cultivars, changes in technology and production practices, and climate change may have altered the optimal planting time for (L.) in the midsouthern United States. A field experiment was conducted from 2002 through 2005 on Gigger silt loam to define planting date (PD) effects on selected cultivars. Six cultivars in 2002 (Deltapine DP555BR and Pearl, Phytogen PHY355, SureGrow SG215BR and SG821, and Stoneville ST4892BR) and eight cultivars in 2003 through 2005 (DP555BR, DeltaPearl, PSC355, DP444BR, Fibermax FM960BR, PHY410RR, ST4892BR, and ST5599BR) were planted on or near eight PDs (25 March; 5, 15, and 25 April; 5, 15, and 25 May; and 5 June). Data were collected on seedling emergence, plant height, main stem node number, nodes above white flower, lint percentage, lint yield, fiber properties, soil and air temperature, rainfall, and photosynthetically active radiation (PAR). Planting date and cultivar affected most measured variables, and although there were some significant PD x Cultivar interactions, these were very small in relation to the main effects. Low soil temperature, few heat units, and rainfall combined to reduce seedling survival at early PD to <15%. For lint yield, the optimal PD was earlier than in previous studies and the highest average yield (1700 kg ha-1) was produced from a PD between 15 April and 5 May. planted at a PD later than 5 May did not benefit from recent changes and improvements in technology and, therefore, incurred yield declines similar to those reported in the 1970s.
,
[本文引用: 5]
[本文引用: 5]
,
DOI:10.2134/agronj2005.0360URL [本文引用: 2]
ABSTRACT Management decisions and common misapplication of glyphosate may impact fruiting of glyphosate-resistant (GR) cotton (Gossypium hirsutum L.). Experiments were conducted to determine if planting date affected the ability of GR cotton to compensate for fruit loss after misapplication of glyphosate and to evaluate mepiquat chloride's (MC) contribution to fruiting. Field studies were conducted in Rocky Mount, North Carolina, from 2001 to 2003. Treatments included optimum and late planting and a series of five glyphosate, 0.84 kg a.e. (acid equivalent) ha-1, treatments representing recommended and common misapplication timings including a control. The 10 planting date and glyphosate combinations were factored across treatments of MC and no-MC as needed according to growing conditions in 2001 and 2002. All plots were treated with MC in 2003. Optimal-planted cotton produced more than late-planted cotton. Yield was reduced in optimal-planted cotton in 2001 and late-planted cotton in 2001 and 2002 when glyphosate contacted plants after the four-leaf stage. Misapplication of gyphosate did not affect yield in 2003. Yield was improved with MC by 11% in 2001. Bolls were at higher nodes in late-planted cotton and cotton not treated with MC. Glyphosate contact after the four-leaf stage in 2001 and 2002 shifted the fruitload above Node 10. Late planting of cotton decreases opportunities for fruiting compensation when glyphosate reduced early boll retention. Results support previous research showing application methods that allow glyphosate contact to GR cotton plants after the four-leaf stage increase risk of yield reduction regardless of planting date.
,
[本文引用: 1]
, 2014(
DOI:10.3969/j.issn.1000-6966.2014.21.003URL [本文引用: 1]
研究了不同低温持续时间对棉花种子活力及发芽率的影响、低温强度 与持续期对棉花种子发芽的互作效应。结果表明,低温持续时间越长,种子活力越小,发芽率越低,说明棉花种子低温处理后,种子生命力下降是影响其发芽出苗的 生理学原因。低温强度和低温持续期对棉花种子的发芽率的互作影响中,低温持续时间占主导因素。不同低温强度下,低温持续期在3d以内,棉花种子的发芽率均 能达80%以上;低温持续期在4~8 d以内,棉花种子的发芽率达60%~80%;低温持续期在8~11 d,棉花种子的发芽率只能达50%左右。
.
DOI:10.3969/j.issn.1000-6966.2014.21.003URL [本文引用: 1]
研究了不同低温持续时间对棉花种子活力及发芽率的影响、低温强度 与持续期对棉花种子发芽的互作效应。结果表明,低温持续时间越长,种子活力越小,发芽率越低,说明棉花种子低温处理后,种子生命力下降是影响其发芽出苗的 生理学原因。低温强度和低温持续期对棉花种子的发芽率的互作影响中,低温持续时间占主导因素。不同低温强度下,低温持续期在3d以内,棉花种子的发芽率均 能达80%以上;低温持续期在4~8 d以内,棉花种子的发芽率达60%~80%;低温持续期在8~11 d,棉花种子的发芽率只能达50%左右。
,
DOI:10.3969/j.issn.1002-7807.2003.02.009URL [本文引用: 1]
研究了棉子的物理性状及化学营养成分对发芽率和出苗率的影响,结果表明:发芽率与子指存在极 显著的正相关(r=0.843**),与可溶性糖含量显著相关(r=0.523*),与其它因素的相关性均不显著.出苗率与子指存在极显著的正相关 (r=0.772**),与仁子比显著正相关(r=0.594*),与其它成分间相关不显著.蛋白质百分含量与发芽率和出苗率均为负相关.
DOI:10.3969/j.issn.1002-7807.2003.02.009URL [本文引用: 1]
研究了棉子的物理性状及化学营养成分对发芽率和出苗率的影响,结果表明:发芽率与子指存在极 显著的正相关(r=0.843**),与可溶性糖含量显著相关(r=0.523*),与其它因素的相关性均不显著.出苗率与子指存在极显著的正相关 (r=0.772**),与仁子比显著正相关(r=0.594*),与其它成分间相关不显著.蛋白质百分含量与发芽率和出苗率均为负相关.
,
[本文引用: 2]
,
URLMagsci [本文引用: 1]
<div >2010—2011年,开展了田间水分胁迫和分期播种双因子组合试验,以揭示土壤水分和气温对东北地区春玉米(<em>Zea mays</em>)出苗速度的影响,建立基于土壤水分和气温的玉米出苗期评估指标和模式。结果表明:玉米出苗速度与土壤水分和气温的关系密切,在土壤水分较充足和气温偏高条件下,玉米出苗快,干旱和低温均推迟出苗期;播种出苗期间0~20 cm厚度的土壤湿度为(<em>S</em>)21%~25%、土壤有效水量为(<em>H</em>)50~70 mm、平均气温为(<em>T</em>)18~20℃玉米出苗快,播种后10 d左右出苗;0~20 cm厚度的土壤湿度为18%~21%、土壤有效水量为30~50 mm、平均气温为16.5~18 ℃,出苗速度下降,播种后18 d左右出苗;0~20 cm厚度的土壤湿度<18%、土壤有效水量<30 mm、平均气温 <16.5 ℃出苗缓慢,播种后25 d左右出苗,甚至不出苗;玉米播种至出苗间隔日数(<em>D</em>)与<em>S</em>/<em>H</em>和<em>T</em>的关系方程为<em>D</em>=78.017-1.746<em>S</em>-1.642<em>T</em>或<em>D</em>=60.776-0.288<em>H</em>-1.937<em>T</em>。这些上指标和模式可评估和预测出苗期,指导抗旱生产活动和气象服务。</div><div > </div>
URLMagsci [本文引用: 1]
<div >2010—2011年,开展了田间水分胁迫和分期播种双因子组合试验,以揭示土壤水分和气温对东北地区春玉米(<em>Zea mays</em>)出苗速度的影响,建立基于土壤水分和气温的玉米出苗期评估指标和模式。结果表明:玉米出苗速度与土壤水分和气温的关系密切,在土壤水分较充足和气温偏高条件下,玉米出苗快,干旱和低温均推迟出苗期;播种出苗期间0~20 cm厚度的土壤湿度为(<em>S</em>)21%~25%、土壤有效水量为(<em>H</em>)50~70 mm、平均气温为(<em>T</em>)18~20℃玉米出苗快,播种后10 d左右出苗;0~20 cm厚度的土壤湿度为18%~21%、土壤有效水量为30~50 mm、平均气温为16.5~18 ℃,出苗速度下降,播种后18 d左右出苗;0~20 cm厚度的土壤湿度<18%、土壤有效水量<30 mm、平均气温 <16.5 ℃出苗缓慢,播种后25 d左右出苗,甚至不出苗;玉米播种至出苗间隔日数(<em>D</em>)与<em>S</em>/<em>H</em>和<em>T</em>的关系方程为<em>D</em>=78.017-1.746<em>S</em>-1.642<em>T</em>或<em>D</em>=60.776-0.288<em>H</em>-1.937<em>T</em>。这些上指标和模式可评估和预测出苗期,指导抗旱生产活动和气象服务。</div><div > </div>
,
DOI:10.1093/aob/mcn165URLPMID:27123881653 [本文引用: 1]
61 Background and Aims The optimal period for seedling emergence depends on factors such as habitat preference, life cycle and geographical distribution. This research was performed to clarify the role of temperature in regulating processes leading to seedling emergence of the European continental Scilla bifolia and the Atlantic Narcissus pseu donarcissus and Hyacinthoides non-scripta. 61 Methods Experiments in natural conditions were performed to examine the phenology of embryo growth, seed germination in the soil and seedling emergence. Effects of temperature conditions on embryo growth, seed germination, seedling growth and leaf formation were studied in temperature-controlled incubators. 61 Key Results In nature, embryo growth of all three species was initiated from the moment the seeds were dispersed in spring and continued during summer. A sequence of high temperature followed by a lower temperature was required to complete embryo growth and initiate germination. Seeds of H. non-scripta and N. pseudonarcissus germinated in autumn once they attained the critical E:S ratio, while seeds of S. bifolia started germinating when temperatures were low in winter. Seedlings developed normally, but slowly, only when placed in low temperature conditions (5 or 10 °C), resulting in a time lag between the moment of radicle protrusion and seedling emergence in the field. 61 Conclusions A continuous development of the embryo and seedlings of the three species was observed from the moment the seeds were dispersed until seedlings emerged. A sequence of high summer temperatures followed by decreasing autumn and winter temperatures was required for all developmental processes to be completed. Although a time lag occurs between radicle protrusion and seedling emergence, the term 'epicotyl dormancy' does not apply here, due to the absence of a period of developmental arrest. Timing of first seedling emergence differed between the three species and could be related to differences in geographical distribution.
,
Magsci [本文引用: 1]
雨涝和高温是长江中下游地区限制棉花生长的2种主要气象灾害,且夏季伴随发生概率大,目前尚不清楚高温胁迫下棉花苗期对涝害的响应特征。2013年利用桶栽试验,在棉花苗期设置不同涝害(受涝0、3、6、9 d)和高温(高温0、3 d)水平,分析棉株关键形态生长特征、倒4叶叶绿素荧光特性及膜脂保护性酶活性。结果表明,受涝天数不超过3 d进行连续高温处理对棉花形态生长特征无显著影响;受涝时间>3 d遭遇高温胁迫,进一步限制了棉花株高和叶面积生长,干物质量减少,根/冠比降低,且这些参数在高温胁迫下低于不受涝处理的时间普遍比自然温度条件下提早3 d。受涝过程伴随高温加剧降低了根系活力,进一步减少了叶绿素a、叶绿素b含量及PS II最大光化学量子产量和潜在光化学转换效率,而对叶绿素a/叶绿素b影响普遍不明显。在自然温度条件下,叶片和根系超氧物歧化酶、过氧化物酶活性随受涝天数的延长而降低,丙二醛含量则变化相反。涝害和高温复合胁迫下,叶片超氧物歧化酶和过氧化物酶活性先升高后降低,在受涝3 d最高,受涝9 d最低;叶片和根系丙二醛含量急剧增加,表明受涝过程中遭遇高温天气加剧了棉株细胞膜的受损程度。从对棉花生长的影响程度来看,涝害居首位,高温胁迫次之,且二者交互作用在叶绿素、PS II潜在光化学转换效率及叶片超氧物歧化酶、过氧化物酶和丙二醛上表现显著。研究可为长江中下游平原湖区棉苗抗逆栽培及棉田排水管理提供科学参考。
Magsci [本文引用: 1]
雨涝和高温是长江中下游地区限制棉花生长的2种主要气象灾害,且夏季伴随发生概率大,目前尚不清楚高温胁迫下棉花苗期对涝害的响应特征。2013年利用桶栽试验,在棉花苗期设置不同涝害(受涝0、3、6、9 d)和高温(高温0、3 d)水平,分析棉株关键形态生长特征、倒4叶叶绿素荧光特性及膜脂保护性酶活性。结果表明,受涝天数不超过3 d进行连续高温处理对棉花形态生长特征无显著影响;受涝时间>3 d遭遇高温胁迫,进一步限制了棉花株高和叶面积生长,干物质量减少,根/冠比降低,且这些参数在高温胁迫下低于不受涝处理的时间普遍比自然温度条件下提早3 d。受涝过程伴随高温加剧降低了根系活力,进一步减少了叶绿素a、叶绿素b含量及PS II最大光化学量子产量和潜在光化学转换效率,而对叶绿素a/叶绿素b影响普遍不明显。在自然温度条件下,叶片和根系超氧物歧化酶、过氧化物酶活性随受涝天数的延长而降低,丙二醛含量则变化相反。涝害和高温复合胁迫下,叶片超氧物歧化酶和过氧化物酶活性先升高后降低,在受涝3 d最高,受涝9 d最低;叶片和根系丙二醛含量急剧增加,表明受涝过程中遭遇高温天气加剧了棉株细胞膜的受损程度。从对棉花生长的影响程度来看,涝害居首位,高温胁迫次之,且二者交互作用在叶绿素、PS II潜在光化学转换效率及叶片超氧物歧化酶、过氧化物酶和丙二醛上表现显著。研究可为长江中下游平原湖区棉苗抗逆栽培及棉田排水管理提供科学参考。
,
URL [本文引用: 1]
【目的】黄河流域棉花一般采用播后覆盖地膜、齐苗后人工放苗的传统播种方式,但人工放苗费工费时;膜上播种可以减免放苗环节,在少雨的西北内陆棉区已经广泛应用,但能否应用于黄河流域棉区取决于出苗时遇雨是否会影响棉花出苗。研究明确降雨对不同播种方式棉花出苗及产量的影响,为黄河流域棉区选择简便适用的播种方式,促进棉花轻简化生产提供参考。【方法】2014—2015年以陆地棉(Gossypium hirsutium L.)品种K836为试验材料,采用裂区设计,以人工模拟降雨(0和10 mm)为主区,以露地直播(SWM)、播后覆膜(SBM)、膜上播种(SAM)和双膜覆盖(SDM)4种播种方式为裂区,在山东省临清市研究了降雨和播种方式对棉花出苗率、产量及产量构成的影响。【结果】降雨和播种方式对棉花出苗、群体干物质、叶面积指数、单位面积铃数和产量均有显著的互作效应。未遭雨时,膜上播种和双膜覆盖的出苗率、群体干物质、叶面积指数、单位面积铃数和产量与传统播后覆膜相当,露地直播则分别降低了13.6%、19.0%、13.3%、24.7%和27.7%;遭遇降雨时,膜上播种的出苗率、群体干物质、叶面积指数、单位面积铃数和产量分别降低了32.2%、43.1%、26.3%、25.8%和29.2%,露地直播分别降低了42.8%、55.8%、47.2%、35.0%和40.1%,而双膜覆盖的相关指标与传统播后覆膜相当或略好。【结论】出苗期遭遇降雨显著影响膜上播种棉花的出苗和生长,导致减产;双膜覆盖无论是否遭遇降雨都能达到播后覆膜的效果。根据当地生态条件,特别是播种期降雨概率选择适宜的播种方式是保证一播全苗、夺取高产的重要措施。
URL [本文引用: 1]
【目的】黄河流域棉花一般采用播后覆盖地膜、齐苗后人工放苗的传统播种方式,但人工放苗费工费时;膜上播种可以减免放苗环节,在少雨的西北内陆棉区已经广泛应用,但能否应用于黄河流域棉区取决于出苗时遇雨是否会影响棉花出苗。研究明确降雨对不同播种方式棉花出苗及产量的影响,为黄河流域棉区选择简便适用的播种方式,促进棉花轻简化生产提供参考。【方法】2014—2015年以陆地棉(Gossypium hirsutium L.)品种K836为试验材料,采用裂区设计,以人工模拟降雨(0和10 mm)为主区,以露地直播(SWM)、播后覆膜(SBM)、膜上播种(SAM)和双膜覆盖(SDM)4种播种方式为裂区,在山东省临清市研究了降雨和播种方式对棉花出苗率、产量及产量构成的影响。【结果】降雨和播种方式对棉花出苗、群体干物质、叶面积指数、单位面积铃数和产量均有显著的互作效应。未遭雨时,膜上播种和双膜覆盖的出苗率、群体干物质、叶面积指数、单位面积铃数和产量与传统播后覆膜相当,露地直播则分别降低了13.6%、19.0%、13.3%、24.7%和27.7%;遭遇降雨时,膜上播种的出苗率、群体干物质、叶面积指数、单位面积铃数和产量分别降低了32.2%、43.1%、26.3%、25.8%和29.2%,露地直播分别降低了42.8%、55.8%、47.2%、35.0%和40.1%,而双膜覆盖的相关指标与传统播后覆膜相当或略好。【结论】出苗期遭遇降雨显著影响膜上播种棉花的出苗和生长,导致减产;双膜覆盖无论是否遭遇降雨都能达到播后覆膜的效果。根据当地生态条件,特别是播种期降雨概率选择适宜的播种方式是保证一播全苗、夺取高产的重要措施。
, 2007(
DOI:10.3969/j.issn.1001-361X.2007.03.004URL [本文引用: 1]
正2006年,兵团超高产理论研究项目组继续在南北疆进行了棉花超高产的试验研究工作,在超高产理论与苗情诊断技术等方面取得了重大进展。
DOI:10.3969/j.issn.1001-361X.2007.03.004URL [本文引用: 1]
正2006年,兵团超高产理论研究项目组继续在南北疆进行了棉花超高产的试验研究工作,在超高产理论与苗情诊断技术等方面取得了重大进展。
,
URL [本文引用: 1]
ABSTRACT Cotton producers in the Mississippi Delta plant in the early spring, but wet, cold weather often develops that may reduce plant population directly or indirectly. Producers must occasionally decide if replanting is necessary. The objective of these studies was to determine the effects of planting dates and plant populations on cotton yield, lint quality, and crop maturity in the Mississippi Delta. Three separate field experiments were conducted during 2001-2005. For the planting date by plant population experiment, seed cotton yields for the late April plantings were significantly greater than for other planting dates, and seed cotton yields for 33 976, 67 952, and 135 904 plants ha-1 were significantly greater than for 16 988 plants ha-1. Yield for late April planted cotton at 16 988 plants ha-1 was significantly greater than or equal to yields for mid-May planted cotton at all plant populations. For the planting date experiment, lint yields and percentage lint were significantly greater for early than late plantings three of five years, and micronaire was significantly greater for early than late plantings each year. For the plant population experiment, lint yields were significantly greater for 33 976 to 135 904 plants ha-1 than 23 782 plants ha-1 in two of four years. There were no plant population effects on lint quality. In all experiments, crop maturity was delayed for late planting dates and low plant populations. Producers in the Mississippi Delta should not replant cotton after mid-May, if the plant population from a late April planting is 16 988 or more plants ha-1.