![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/REemail.gif)
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/REemail.gif)
Effects of elevated temperature and CO2 concentration on growth and yield of maize under intercropping with peanut
WANG Fei![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/REemail.gif)
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/REemail.gif)
通讯作者: * 焦念元, E-mail:jiaony1@163.com
收稿日期:2020-03-21接受日期:2021-04-26网络出版日期:2021-06-05
基金资助: |
Corresponding authors: * E-mail:jiaony1@163.com
Received:2020-03-21Accepted:2021-04-26Published online:2021-06-05
Fund supported: |
作者简介 About authors
E-mail:1216677627@qq.com
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/down.png)
摘要
为了明确气候变化对玉米||花生体系中玉米生长发育及产量的影响, 本研究以玉米||花生2∶4模式为研究对象, 采用开顶式气室, 2018年设2个处理, 分别是TC (ambient temperature and ambient CO2 concentration, 环境温度和环境CO2浓度)、+T+C (elevated temperature and elevated CO2 concentration, 增温且增CO2浓度); 2019年设3个处理, 分别是TC、+TC (elevated temperature and ambient CO2 concentration, 增温和环境CO2浓度)、+T+C; 分别在P0 (0 kg P2O5 hm-2)和P180 (180 kg P2O5 hm-2) 2个水平下, 研究增温增CO2浓度对间作玉米生长、干物质积累与分配、光合速率及产量的影响。结果表明: (1) 与环境温度和环境CO2浓度相比, 增温(+TC)处理的间作玉米出苗至吐丝、吐丝至成熟和出苗至成熟的天数分别缩短4、2和6 d; 增温后, 同时升高CO2浓度, 间作玉米出苗至吐丝的天数缩短3 d、而吐丝至成熟和出苗至成熟的天数却分别增加5 d和2 d; 与TC相比, +T+C处理, 间作玉米出苗至吐丝和出苗至成熟的天数分别缩短4~7 d和2~4 d, 吐丝至成熟的天数增加1~4 d。(2) 间作玉米单株叶面积、净光合速率和光合势在吐丝期前表现为+T+C>+TC>TC, 吐丝至乳熟期表现为+T+C>TC>+TC, 乳熟期后表现为TC>+T+C>+TC。与TC相比, +T+C处理的间作玉米穗粒数和百粒重分别提高4.14%~65.70%和1.70%~14.00%。(3) 与TC处理相比, +TC处理, 间作玉米收获期干物质量提高7.39%~21.30%, 产量提高19.18%~28.07%; +T+C处理, 间作玉米收获期干物质量提高10.0%~57.7%, 产量提高4.41%~52.00%; 施磷能提高增温增CO2浓度处理间作玉米产量。这表明增温和增CO2浓度通过提高间作玉米生育前期净光合速率、叶面积指数和光合势, 缩短其营养生长期, 延长籽粒灌浆时间, 增加穗粒数和粒重, 来促进干物质积累和产量的提高; 增温、增CO2浓度对间作玉米吐丝前具有互促效应, 而吐丝后表现为增CO2浓度能弥补增温对间作玉米生长的抑制效应。
关键词:
Abstract
To clarify the effects of climate change on the growth development and yield of maize in the system of maize intercropping peanut, we performed the planting pattern of two rows maize intercropping and four rows peanut. Field experiments were carried out with TC (ambient temperature and ambient CO2 concentration), +T+C (elevated temperature and elevated CO2 concentration) in 2018, and TC, +TC (elevated temperature and ambient CO2 concentration), and +T+C in 2019, with two phosphorus levels of P0 (P2O5 0 kg hm-2) and P180 (P2O5 180 kg hm-2), respectively. The effects of elevated temperature and CO2 concentration on growth, dry matter accumulation and distribution, photosynthesis and yield of intercropping maize were studied. Results were as follows: (1) Compared with TC, the numbers of days from emergence to silking, silking to maturity, and emergence to maturity of intercropping maize under +TC were shortened respective by 4, 2, and 6 days. Compared with +TC, the number of days from emergence to silking of intercropping maize under +T+C was shortened by three days, while the numbers of days from silking to maturity, and emergence to maturity were increased by five days and two days. Compared with TC, the number of days from emergence to silking, and emergence to maturity of intercropping maize under +T+C was shortened by 4-7 days and 2-4 days, respectively; and the number of days from emergence to maturity was extended by 1-4 days. (2) The leaf area, net photosynthetic rate, and leaf area duration of intercropping maize were +T+C>+TC>TC before silking, +T+C>TC>+TC from silking to milk stage, and +T >+T+C>+TC after milk stage. Compared with TC, ear grain number and 100-grain weight of intercropping maize under +T+C were increased by 4.14%-65.70% and 1.70%-14.0%, respectively. (3) Compared with TC, the dry matter of intercropping maize at maturity stage increased by 7.39%-21.30% and the yield increased by 19.18%-28.07% under +TC. The dry matter and yield of intercropping maize increased by 10.0%-57.7% and 4.41%-52.00% under +T+C, respectively. The grain yield of intercropping maize was improved by applying phosphorus after increasing temperature and CO2 concentration. These results indicated that elevated temperature and CO2 concentration could promote dry matter accumulation and grain yield improvement by increasing net photosynthetic rate, leaf area index, and leaf area duration of intercropping maize at early growth stage, shortening vegetative growth period, prolonging grain filling time, and increasing ear grain number and grain weight per panicle. Elevated temperature and CO2 concentration had mutual promoting effect on the growth of intercropping maize before silking stage, while increasing CO2 concentration could make up for the inhibiting effect of increasing temperature on the growth of intercropping maize after silking.
Keywords:
PDF (2184KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响. 作物学报, 2021, 47(11): 2220-2231 DOI:10.3724/SP.J.1006.2021.03018
WANG Fei, GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan, FU Guo-Zhan.
由于大量化石能源无限制应用和人类活动的影响, 若人类再不加以限制, 大气中CO2浓度将以每年1.5~2.0 μmol mol-1的速率增加, 预测2100年CO2浓度将超过700 μmol mol-1, 气温将升高2.0℃左右[1]。全球正面临CO2浓度升高及温室效应给农业生产力及粮食和营养安全带来的极大挑战[2]。作为影响作物生长发育的2个关键因子, CO2浓度和温度的升高对作物产量和品质产生哪些影响日益备受人类关注。因此, 研究作物对CO2浓度升高和增温的响应, 为应对未来全球气候变化下, 实现作物高产高效绿色生产提供理论依据。
CO2是作物光合碳同化的基本原料之一, 不仅直接影响光合同化物的合成, 还调节作物生长和气孔开关; 温度与作物代谢酶活性密切相关, 直接影响作物光合和呼吸作用, 进而影响作物生长发育及其性状和产量品质[2,3]。已有大量研究表明, CO2浓度升高, 不仅可以提高作物净同化率和叶面积指数[4], 增加作物生物量和经济产量[5,6,7], 还调控着作物的生殖发育过程[8]。如Castro等[8]认为CO2浓度升高会延迟大豆开花, 延长大豆的生殖发育, 增加籽粒灌浆时间。作物对于温度的响应表现为, 最适温度以下升温能够提高作物净光合速率和生物量, 提高籽粒产量[9,10], 但超过最适温度会造成作物花粉败育、净光合速率降低, 降低产量[11,12]。未来CO2浓度升高必然带来温度的上升, 单一因素不能全面反映未来的气候变化对作物生长的影响。Wheeler等[13]研究发现CO2浓度升高能够提高小麦粒重和籽粒成熟率, 而高温会消除这种效应, Lal等[14]和李广等[15]的研究也得出相似结果。赖上坤等[17]应用FACE系统研究表明, CO2浓度和温度升高明显增加超级杂交籼稻叶片、茎鞘、穗等地上部干物质量, 但增幅小于单独CO2浓度升高处理。苏营等[17]对大豆的研究表明, CO2浓度升高, 促进了大豆株高、茎粗和地上部生物量的增加, 而增温增强了这种促进作用。由此可见, 增温和高CO2浓度对作物生长发育的影响存在争议, 这可能与所处的生态区不同有关。以上研究均为作物单作体系, 而具有种间作用的间套作复合群体面临增温和高CO2浓度时将发生哪些变化?如玉米||花生复合体系中, 地上、地下种间竞争互惠作用明显[18], 其地上部表现为间作玉米处于光竞争优势, 增强玉米对CO2的羧化固定和强光利用, 提高净光合速率[19], 施磷肥有助于增强间作玉米对强光的利用, 延缓叶片衰老, 进一步提高籽粒产量[20]; 而地下部表现为, 玉米能改善花生铁营养和竞争吸收花生根区氮, 促进花生共生固氮, 固定的氮能被间作玉米吸收[21]。增温且增CO2浓度对间作玉米生育前中期叶绿素含量、羧化效率、最大电子传递速率和磷酸丙糖利用率具有正调控效应[22]。那么, 增温和增CO2浓度是否能促进种间互补效应而促进间作玉米生长发育?进一步提高间作玉米产量?施磷对其有哪些调控效应?目前尚不清楚。为探究上述问题, 本研究利用开顶式气室, 以玉米||花生2:4模式为研究对象, 研究了增温和增CO2浓度条件下玉米||花生体系中玉米生育进程、单株叶面积、光合势、净光合速率、干物质积累与分配和产量及其性状的特点, 为应对将来气候变化, 实现玉米||花生绿色高产高效生产提供理论依据和技术指导。
1 材料与方法
1.1 试验地概况
试验于2018—2019年在河南科技大学试验农场(33°35'—35°05'N, 111°8'—112°59'E)进行。该地位于温带, 属于半湿润、半干旱大陆性季风气候, 年平均气温12.1~14.6℃, 年平均降雨量约600 mm, 年平均蒸发量约2114 mm, 年日照时2300~2600 h, 无霜期215~219 d, 年平均辐射量约492 kJ cm-2。试验地土壤为黄潮土, 质地为中壤。0~20 cm土壤理化性质为, 土壤容重1.35 g cm-3、土壤pH 7.66、碱解氮33.96 mg kg-1、速效磷6.84 mg kg-1、速效钾223.82 mg kg-1、有机质10.74 g kg-1。1.2 试验设计
以玉米‘豫单9953’和花生‘花育16’为供试材料, 以玉米‖花生2:4模式为研究对象。设温度、CO2浓度和施磷量三因素不完全随机区组试验, 施磷量设P0 (0 kg P2O5 hm-2)和P180 (180 kg P2O5 hm-2) 2个水平, 2018年设2个处理, TC (ambient temperature and ambient CO2 concentration, 环境CO2浓度约为390 μmol mol-1)、+T+C [elevated temperature [ambient temperature +(2.0±0.5)℃] and elevated CO2 concentration, 环境温度+(2.0±0.5)℃和环境CO2浓度约为(700±50) μmol mol-1]; 2019年设3个处理, TC、+TC [elevated temperature [ambient temperature +(2.0±0.5)℃] and ambient CO2 concentration, 环境温度+(2.0±0.5)℃和环境CO2浓度约为390 μmol mol-1]、+T+C。玉米‖花生2:4 (2行玉米间作4行花生)模式中, 玉米宽窄行种植, 宽行行距160 cm, 窄行行距40 cm, 株距20 cm, 4行花生播种于宽行之中, 行距30 cm, 株距20 cm, 玉米花生之间距离35 cm, 间作带宽2 m。南北向种植, 每个小区宽6 m, 长8 m, 包含3个带宽, 每个处理重复3次。每个小区均基施纯氮肥90 kg hm-2, 于玉米大口期追施纯氮肥90 kg hm-2; 施磷处理小区, 磷肥均基施。生长季增温、增CO2浓度变化如图1。其他管理同大田生产。2018年于6月4日播种, 不施磷条件下, TC处理于9月16日收获, +T+C处理于9月14日收获; 施磷条件下, TC处理于9月22日收获, +T+C处理于9月19日收获。2019年于6月18日播种, 不施磷条件下, TC处理于10月4日收获, +TC处理于9月28日收获, +T+C处理于9月30日收获; 施磷条件下, TC处理于10月8日收获, +TC处理于10月2日收获, +T+C处理于10月5日收获。图1
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_1.png)
图1生长季田间温度和CO2浓度变化(2018年和2019年)
TC: 环境温度和环境CO2浓度; +TC: 增温和环境CO2浓度[环境温度+(2.0±0.5)℃和环境CO2浓度390 μmol mol-1]; +T+C: 增温且增CO2浓度[环境温度+(2.0±0.5)℃和CO2浓度约为(700±50) μmol mol-1]。
Fig. 1Field temperature and CO2 concentration during growing season in 2018 and 2019
TC: ambient temperature + ambient CO2 concentration; +TC: elevated temperature [ambient temperature +(2.0±0.5)℃+ ambient CO2 concentration (390 μmol mol-1) ]; +T+C: elevated temperature [ambient temperature +(2.0±0.5)℃+ elevated CO2 concentration (700±50) μmol mol-1].
增温和增温增CO2浓度均采用开顶式气室(open-top-chamber, OTC)[4], 加以改造。试验期间以罐装液态CO2为CO2气源, 采用德国LOCKE公司生产的减压阀控制增CO2气室内CO2浓度在(700±50) μmol mol-1, 增温处理依靠气室增温效应, 其日平均温度比外界环境高出(2.0±0.5)℃。OTC为长方体钢架结构, 长8.0 m, 宽6.0 m, 高2.5 m, 面积48 m2, 气室内安装电风扇确保CO2浓度均匀和室外相近风速。室壁采用阳光板, 透光率达90%以上。2018年和2019年均在玉米拔节期至收获期升高CO2浓度。模式图如图2。
图2
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_2.png)
图2增温增CO2浓度气室模式图(2018年和2019年)
Fig. 2Model of elevated temperature and CO2 concentration during growing season in 2018 and 2019
1.3 测定项目与方法
1.3.1 生育期 田间调查并记录各处理的间作玉米出苗(emergence stage, ES)、吐丝(silking stage, R1)和完熟(maturity stage, R6)日期并计算各处理到达各生育时期的天数。1.3.2 干物质积累与分配 2018年在间作玉米苗后20、27、39、58和110 d, 2019年苗后32、50、62和105 d, 各小区选取代表性植株2株, 分为茎、叶、苞叶、籽粒和穗轴5个部分, 105℃条件下杀青30 min, 在75℃条件下烘干至恒重, 测定单株及各器官干物质积量。
1.3.3 单株叶面积 测定干物质同时, 用Yaxin- 1242叶面积仪(北京雅欣理仪科技有限公司)测定2片玉米绿色叶片叶面积S1, 烘干称重为M1, 其他绿叶面积烘干称重为M2, 总绿叶面积为S, 则根据公式 M1/S1=(M1+M2)/S [23], 求得单株叶面积。
1.3.4 净光合速率 在2018年苗后62 d和2019年苗后37、58、68和95 d, 使用LI-6400XT型光合仪(LI-COR, 美国), 选择晴天在9:30—12:00时自然光强下, 测量各处理的玉米穗位叶光合速率, 每个小区重复3次。
1.3.5 光合势 光合势=(L1+L2)×(T2-T1)/2, 式中L1和L2为前后2次所测的叶面积, T2-T1为2个生育时期的间隔天数。
1.3.6 产量与穗部性状 在玉米成熟期, 于各小区选取代表性植株2 m双行的果穗, 调查其穗行数、行粒数、穗长和秃尖长。脱粒风干后称其百粒重和籽粒重量, 并计算产量。
1.4 数据统计分析
采用Microsoft Excel 2016和SPSS 22.0软件对数据进行整理、统计分析与作图, 采用Duncan’s法进行显著性检验及方差分析, 显著水平为0.05。2 结果与分析
2.1 增温和增温增CO2浓度对间作玉米生育进程的影响
如表1所示, 与环境温度和环境CO2浓度(TC)相比, 增温(+TC)处理, 间作玉米出苗至吐丝、吐丝至成熟和出苗至成熟的天数分别缩短4、2和6 d; 与+TC处理相比, +T+C处理间作玉米出苗至吐丝的天数缩短3 d、而吐丝至成熟和出苗至成熟的天数却分别增加5 d和2 d; 与TC相比, +T+C处理的间作玉米出苗至吐丝和出苗至成熟的天数分别缩短4~7 d和2~4 d, 而吐丝至成熟的天数却增加了1~4 d。与不施磷相比, 施磷后TC、+TC和+T+C处理, 出苗至吐丝的天数分别缩短5、5和3~6 d, 吐丝至成熟的天数分别增加了9~11、10和8~9 d, 而出苗至成熟的天数分别增加了4~6、6和5 d。与TC相比, +TC和+T+C处理均能促进间作玉米植株生长和果穗的发育, 二者表现出一定的正协同效应, 施磷对其具有促进效应(图3)。Table 1
表1
表1增温和增温增CO2浓度对间作玉米生育进程的影响
Table 1
年份 Year | 磷水平 P-level | 处理 Treatment | 生育日期 Growth date (month/day) | 生长天数 Growth days (d) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ES | R1 | R6 | ES-R1 | R1-R6 | ES-R6 | ||||||||||||
2018 | P0 | TC | 6/10 | 7/30 | 9/16 | 50 | 48 | 98 | |||||||||
+T+C | 6/10 | 7/24 | 9/14 | 44 | 52 | 96 | |||||||||||
P180 | TC | 6/10 | 7/25 | 9/22 | 45 | 59 | 104 | ||||||||||
+T+C | 6/10 | 7/21 | 9/19 | 41 | 60 | 101 | |||||||||||
年份 Year | 磷水平 P-level | 处理 Treatment | 生育日期 Growth date (month/day) | 生长天数 Growth days (d) | |||||||||||||
ES | R1 | R6 | ES-R1 | R1-R6 | ES-R6 | ||||||||||||
2019 | P0 | TC | 6/24 | 8/15 | 10/4 | 52 | 50 | 102 | |||||||||
+TC | 6/24 | 8/11 | 9/28 | 48 | 48 | 96 | |||||||||||
+T+C | 6/24 | 8/9 | 9/30 | 46 | 52 | 98 | |||||||||||
P180 | TC | 6/24 | 8/10 | 10/8 | 47 | 60 | 107 | ||||||||||
+TC | 6/24 | 8/6 | 10/2 | 43 | 58 | 101 | |||||||||||
+T+C | 6/24 | 8/3 | 10/5 | 40 | 63 | 103 |
新窗口打开|下载CSV
图3
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_3.png)
图3增温增CO2浓度对间作玉米株高及穗发育的影响
处理同
Fig. 3Effects of elevated temperature and CO2 concentration on plant height and panicle development of intercropping maize
Treatments are the same as those given in
2.2 增温和增温增CO2浓度对间作玉米单株叶面积的影响
如图4所示, 与TC处理相比, +TC处理能增加间作玉米苗后52 d前(吐丝期前)的单株叶面积, 却降低了苗后62 d后(灌浆期后)的单株叶面积, 即表现为TC>+TC, 至苗后90 d (蜡熟期)差异达到显著水平(P<0.05); 与+TC处理相比, +T+C处理增加了间作玉米各个生育时期单株叶面积, 施磷条件下差异更明显; 而与TC处理相比, +T+C处理提高了间作玉米苗后62~68 d前(乳熟期前)的单株叶面积, 并且在苗后52~58 d前(吐丝前)差异达到显著水平, 乳熟期以后低于TC处理。与不施磷相比, 施磷显著提高了间作玉米单株叶面积(P<0.05), TC、+TC和+T+C处理叶面积平均增幅分别为27.4%、21.4%和26.0%。双因素分析表明(表2), 磷水平显著提高间作玉米单株叶面积; 增温且增CO2浓度对间作玉米单株叶面积有显著影响; 磷水平和增温增CO2浓度互作对间作玉米单株叶面积没有显著影响。图4
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_4.png)
图4增温和增温增CO2浓度对间作玉米单株叶面积的影响
不同小写字母表示处理在同一苗后天数时0.05水平下差异显著。处理同
Fig. 4Effects of elevated temperature and CO2 concentration on leaf area per plant of intercropping maize
Different lowercase letters indicate significant differences at the 0.05 probability level among different regulator treatments on the same days after seedling. Treatments are the same as those given in
Table 2
表2
表2间作玉米单株叶面积、光合势、净光合速率、干物质和产量的处理间方差分析(F值)
Table 2
单株叶面积 Leaf-area per plant (m2 plant-1) | 光合势 Leaf area duration (m2 m-2 d) | 净光合速率 Pn (μmol CO2 m-2 s-1) | 干物质 Dry matter (g plant-1) | 产量 Yield (kg hm-2) | |
---|---|---|---|---|---|
增温且增CO2浓度 Elevated temperature and CO2 concentration | 18.2** | 4.68 | 42.6** | 74.0** | 180** |
磷肥 P | 48.8** | 60.3** | 78.8** | 53.2** | 524** |
磷肥×增温且增CO2浓度 P × Elevated temperature and CO2 concentration | 0.003 | 0.171 | 50.6** | 0.047 | 0.226 |
新窗口打开|下载CSV
2.3 增温和增温增CO2浓度对间作玉米光合势的影响
如图5所示, 间作玉米功能叶光合势表现为先升高后降低的单峰变化趋势。2018年同一水平下, 与TC处理相比, +T+C处理提高了间作玉米灌浆期以前各生育阶段的光合势, 增幅为21.1%~24.6%, 却降低了乳熟期以后的光合势, 降幅为7.35%~ 15.30%, 与不施磷相比, 施磷显著提高+T+C处理间作玉米各个生育阶段的光合势。2019年同一水平下, 在间作玉米灌浆期以前, 间作玉米的光合势在处理间均表现为+T+C>+TC>TC, 与TC处理相比, +TC和+T+C处理的光合势分别提高了6.78%~ 11.00%和29.5%~36.7%, 乳熟期以后, 平均降低了14.7%~21.2%和7.00%~12.10%。与不施磷相比, 施磷显著提高间作玉米的光合势(P<0.05), +T+C、+TC和TC处理光合势增幅分别为23.8%、24.6%和30.0%。双因素分析表明(表2), 磷水平对间作玉米光合势有显著影响; 增温增CO2浓度、磷水平和增温增CO2浓度互作对间作玉米单株光合势没有显著影响。图5
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_5.png)
图5增温和增温增CO2浓度对间作玉米光合势的影响
处理同
Fig. 5Effects of elevated temperature and CO2 concentration on photosynthetic potential of intercropping maize
Treatments are the same as those given in
2.4 增温和增温增CO2浓度对间作玉米穗位叶净光合速率的影响
由图6可知, 2018年, 与TC处理相比, +T+C处理显著提高了间作玉米灌浆期的穗位叶净光合速率(P<0.05), 且施磷显著高于不施磷。2019年, 间作玉米吐丝前的穗位叶净光合速率均表现为+T+C>+TC >TC, 差异显著(P<0.05), 其中与TC处理相比, +T+C处理增幅分别14.8%~18.8%和18.1%~18.4% (P<0.05); 在灌浆期处理间表现为+T+C>TC>+TC, 而在蜡熟期处理间表现为TC>+T+C>+TC, 与TC处理相比, +T+C处理间作玉米净光合速率降低了6.43%~7.97%。与不施磷相比, 施磷提高了间作玉米各时期穗位叶净光合速率, TC、+TC和+T+C处理增幅分别为8.80%~28.20%、6.83%~28.20%和8.53%~ 26.10%。双因素分析表明(表2), 增温增CO2浓度、磷水平及增温增CO2浓度和磷水平互作对间作玉米净光合速率均有显著或极显著影响。图6
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_6.png)
图6增温和增温增CO2浓度对间作玉米穗位叶净光合速率的影响
SS: 吐丝期; FS: 灌浆期; MS: 乳熟期; DS: 蜡熟期。不同小写字母表示处理在同一生育时期时0.05水平下差异显著。处理同
Fig. 6Effects of elevated temperature and CO2 concentration on net photosynthetic rate of ear leaves of intercropping maize
SS: silking stage; FS: filling stage; MS: milking stage; DS: dough stage. Different lowercase letters indicate significant differences at the 0.05 probability level among different regulator treatments on the same day of growth stage. Treatments are the same as those given in
2.5 增温和增温增CO2浓度对间作玉米干物质积累的影响
如图7所示, 间作玉米各时期单株干物质处理间均表现为+T+C>+TC>TC, 尤其在间作玉米吐丝后, 与TC处理相比, +TC和+T+C处理间作玉米单株干物质提高幅度分别为7.39%~21.30%和10.0%~ 57.7%, 差异达到显著水平(P<0.05)。与不施磷相比, 施磷能显著提高间作玉米单株干物质, +T+C、+TC和TC处理增幅分别为13.5%~48.4%、54.3%和24.9%~74.4%。双因素方差分析结果显示(表2), 增温增CO2浓度、磷水平及增温增CO2浓度和磷水平互作对收获期间作玉米干物质量有显著或极显著影响。图7
![](http://zwxb.chinacrops.org/article/2021/0496-3490/0496-3490-47-11-2220/thumbnail/img_7.png)
图7增温和增温增CO2浓度对间作玉米干物质积累的影响
处理同
Fig. 7Effects of elevated temperature and CO2 concentration on dry matter accumulation of intercropping maize
Treatments are the same as those given in
2.6 增温和增温增CO2浓度对间作玉米收获期干物质积累与分配的影响
如表3所示, 在收获期, 间作玉米各器官干物质积累与分配均表现: 籽粒>茎>叶>穗轴>苞叶。与TC处理相比, +TC处理间作玉米籽粒干物质积累量显著提高了15.1%~30.3% (P<0.05), 其分配比例提高了5.74%~7.15%, 茎干物质积累量提高6.03%~9.00%, 分配比率却降低2.63%~10.10%; +T+C处理提高了间作玉米茎、叶、苞叶和籽粒中的干物质积累量, 尤其在2019年增幅分别为18.8%~36.0%、13.0%~27.4%、33.3%~40.7%和52.4%~ 81.3%, 达到显著水平(P<0.05), 并且提高了干物质在籽粒中的分配比例, 降低了在茎中的分配。与不施磷相比, 施磷提高了间作玉米各个器官干物质积累量, 尤其在2019年均达到显著水平(P<0.05); 施磷还提高了干物质在茎和叶中分配比例, 尤其是在+TC和+T+C处理下, 差异达到显著水平, 但却显著降低了干物质在籽粒中的分配比例(P<0.05)。说明增温和增温增CO2浓度均能提高干物质在茎、叶、苞叶和籽粒的积累, 并促进向籽粒分配, 施磷进一步促进了茎、叶和籽粒干物质积量。Table 3
表3
表3增温和增温增CO2浓度对间作玉米收获期干物质积累与分配的影响
Table 3
年份 Year | 磷水平 P-level | 处理 Treatment | 干物质积累 Dry matter accumulation (g plant-1) | 干物质分配 Dry matter distribution (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
茎 Stem | 叶 Leaf | 苞叶 Husk | 穗轴 Cob | 籽粒 Kernel | 茎 Stem | 叶 Leaf | 苞叶 Husk | 穗轴 Cob | 籽粒 Kernel | |||
2018 | P0 | TC | 48.5 b | 14.8 b | 8.40 a | 14.2 b | 96.8 c | 26.5 bc | 8.10 ab | 4.60 a | 7.77 a | 53.0 a |
+T+C | 50.6 b | 15.7 b | 9.78 a | 16.2 ab | 111.0 ab | 24.9 c | 7.72 b | 4.81 a | 7.97 a | 54.6 a | ||
P180 | TC | 65.5 a | 16.5 b | 11.7 a | 17.1 a | 98.7 bc | 31.3 a | 7.88 ab | 5.58 a | 8.16 a | 47.1 b | |
+T+C | 66.2 a | 21.8 a | 11.9 a | 17.5 a | 116.0 a | 28.4 ab | 9.34 a | 5.10 a | 7.50 a | 49.7 b | ||
2019 | P0 | TC | 30.0 d | 15.4 c | 6.48 d | 9.11 c | 65.1 d | 23.8 ab | 12.2 a | 5.14 a | 7.22 b | 51.6 bc |
+TC | 32.7 cd | 15.3 c | 8.55 bc | 11.6 bc | 84.8 cd | 21.4 ab | 10.0 b | 5.59 a | 7.58 b | 55.4 ab | ||
+T+C | 40.8 c | 17.4 c | 9.12 bc | 14.0 b | 118.0 b | 20.5 b | 8.73 b | 4.58 a | 7.02 b | 59.2 a | ||
P180 | TC | 54.7 b | 27.0 b | 11.4 b | 19.6 a | 104.3 bc | 25.2 a | 12.4 a | 5.25 a | 9.03 a | 48.1 c | |
+TC | 58.0 ab | 28.3 b | 11.0 b | 19.0 a | 120.0 b | 24.5 ab | 12.0 a | 4.66 a | 8.04 b | 50.8 bc | ||
+T+C | 65.0 a | 34.4 a | 15.2 a | 21.4 a | 159.0 a | 22.0 ab | 11.7 a | 5.15 a | 7.25 b | 53.9 b |
新窗口打开|下载CSV
2.7 增温和增温增CO2浓度对间作玉米产量及其构成的影响
由表4可知, 与TC处理相比, 增温和增温增CO2浓度提高了间作玉米穗长、穗行数、行粒数、穗粒数、百粒重和产量。与TC处理相比, +T+C处理增加了间作玉米穗长、穗行数、行粒数、穗粒数、百粒重和产量, 增幅分别为2.74%~29.20%、0.75%~ 4.02%、3.39%~59.30%、4.14%~65.70%、1.70%~ 14.00%和4.41%~52.00%, 尤其在2019年均达到差异显著(P<0.05)。与不施磷相比, 施磷提高了+T+C间作玉米穗长、穗行数、行粒数、穗粒数、百粒重和产量, 增幅分别为9.83%~8.59%、5.30%~ 5.69%、9.89%~14.00%、15.6%~20.5%、8.68%~10.10%和27.5%~38.0%, 秃尖长却降低了47.4%~68.9%, 除2018年穗行数外各指标均达到显著差异(P<0.05)。处理间方差分析结果显示(表2): 增温增CO2浓度和施磷均极显著影响间作玉米产量, 增温增CO2浓度与施磷互作效应对产量影响不显著。这说明, 增温和增温增CO2浓度均能改善间作玉米穗部性状, 提高籽粒产量, 施磷能进一步提高增温增CO2浓度处理下的间作玉米产量。Table 4
表4
表4增温和增温增CO2浓度对间作玉米产量及其构成的影响
Table 4
年份 Year | 磷水平 P-level | 处理 Treatment | 穗部性状Ear traits | 产量及构成Yield and the components | ||||||
---|---|---|---|---|---|---|---|---|---|---|
穗长 Ear length (cm) | 秃尖长 Bare tip length (cm) | 穗行数 Ear row per ear | 行粒数 Grains per row | 产量 Yield (kg hm-2) | 穗粒数 Grains per ear | 百粒重 100-grain weight (g) | 穗数 Spikes per hm2 | |||
2018 | P0 | TC | 15.1 b | 1.82 a | 16.8 a | 27.5 c | 4725 c | 463 b | 21.7 c | 49,128 |
+T+C | 15.5 b | 1.73 a | 17.0 a | 28.5 bc | 4933 c | 484 b | 22.1 c | 49,118 | ||
P180 | TC | 16.3 a | 1.04 b | 17.7 a | 30.3 ab | 5867 b | 537 a | 23.1 b | 49,297 | |
+T+C | 16.8 a | 1.00 b | 17.9 a | 31.3 a | 6292 a | 559 a | 24.3 a | 49,320 | ||
2019 | P0 | TC | 11.1 d | 2.03 a | 15.8 c | 19.3 d | 3910 f | 305 d | 24.0 e | 49,341 |
+TC | 12.9 c | 1.91 a | 16.5 abc | 25.5 c | 5008 e | 421 c | 25.5 d | 49,649 | ||
+T+C | 14.4 b | 1.43 b | 16.4 bc | 30.8 b | 5943 d | 505 b | 27.4 bc | 49,950 | ||
P180 | TC | 14.4 b | 0.86 c | 16.7 ab | 31.2 b | 6539 c | 522 b | 26.3 cd | 49,630 | |
+TC | 15.4 a | 0.47 c | 17.3 a | 32.0 ab | 7793 b | 555 ab | 28.4 ab | 49,642 | ||
+T+C | 15.8 a | 0.46 c | 17.3 a | 35.1 a | 8203 a | 609 a | 29.8 a | 49,670 |
新窗口打开|下载CSV
3 讨论
3.1 增温增CO2浓度能促进间作玉米生育进程, 增加籽粒灌浆天数
生育期作为作物的重要性状之一, 与作物的产量潜力呈正相关关系[24], 环境CO2浓度、温度和养分都是影响作物生长发育的关键因子。Fang等[25]研究表明, 温度升高1.5~2.0℃使得冬小麦抽穗期或者成熟期提前10~13 d, 而Dong等[26]研究认为, 温度升高1.1~2.0℃使得水稻抽穗期提前3.3 d, 抽穗期后的生育期不变。然而, CO2浓度升高对作物生育进程影响研究存在一些争议, Madan等[27]研究表明, CO2浓度升高会延迟水稻抽穗开花期, 而Crafurd等[28]认为水稻抽穗开花期会提前。CO2浓度和温度同时升高会使冬小麦和水稻抽穗期提前, 对抽穗期到成熟期天数没有影响[29]。本研究发现, 温度升高使间作玉米生育期提前6 d, 这主要是出苗至吐丝的天数缩短, 而吐丝到成熟天数仅缩短1 d。增温的同时再升高CO2浓度还能进一步促进间作玉米吐丝前的生长发育, 使吐丝期提前3 d, 却延长了吐丝至成熟的天数, 增加了玉米籽粒灌浆时间。而且, CO2浓度和温度的升高均对间作玉米生育期具有明显的调控效应, 在生育前期表现均促进间作玉米生长发育, 升高CO2浓度能延长其籽粒灌浆时间, 升温促进其衰老。这与蔡创[29]认为增温增CO2浓度对小麦和水稻抽穗到成熟的天数没有影响有所差别, 这可能与研究作物和所在生态条件不同有关。汤晓昀等[30]认为施用磷肥可提前玉米的抽雄期或者乳熟期1~3 d, 而本研究发现, 施磷延长了间作玉米吐丝至成熟的天数, 增加了灌浆时间。3.2 增温增CO2浓度能增大间作玉米乳熟期前叶面积、光合势和净光合速率
一般来讲, CO2浓度升高以及施磷能够提高叶面积指数[27,31]。也有研究认为CO2浓度升高会降低作物的叶面积指数[32]。温度升高对作物叶面积指数的研究结果也不一致[26,33], Kim等[34]研究发现, CO2浓度和温度升高对叶片伸长速率和叶面积没有影响, 但降低了玉米产量。然而, 本研究发现, 增温、增温增CO2浓度以及施磷或三者同时升高, 均能提高间作玉米吐丝前单株叶面积和光合势, 提高间作玉米叶源的光合能力, 促进了玉米前期光合物质的积累, 为后期向籽粒转运奠定了物质基础, 且CO2浓度和温度同时升高, 对其具有明显的正协同效应; 生育后期则表现为, CO2浓度的升高能抵消因温度升高对其的负向调控效应。蔡创[29]认为, CO2浓度和温度同时升高对作物叶面积指数的影响与冠层的N含量密切关系。因此, 这是否与玉米||花生种间根际作用增加间作玉米的N源, 提高间作玉米N含量有关, 还需要进一步研究。Clifford等[35]研究发现, CO2浓度和温度同时升高能够提高花生单叶净光合速率。本研究发现了相似的结果, 温度升高能提高间作玉米吐丝期之前的穗位叶净光合速率, 却降低了灌浆期以后的净光合速率, 这可能与温度增加降低了玉米生育后期叶片磷酸烯醇式丙酮酸羧化酶和核酮糖二磷酸羧化酶活性[36]以及CO2浓度升高能增加RuBP羧化酶活性或CO2肥料效应有关[17,37]。CO2浓度与温度同时升高能维持间作玉米的光合速率到乳熟期时还高于TC处理, 直到蜡熟后期才低于TC处理, 这说明CO2浓度升高能在一定程度弥补高温对间作米生育后期光合速率降低的程度, 表现出CO2浓度与温度对间作玉米后期光合作用的负交互效应。此外, 有研究[38]表明施磷可提高玉米穗位叶的叶绿素含量以及净光合速率。本研究通过2因素方差分析表明, 增温增CO2浓度和磷肥互作对玉米叶片净光合速率也有显著影响。3.3 增温增CO2浓度能促进间作玉米干物质积累, 改善了其穗部性状
Long等[39]对前人研究进行了分析, 发现CO2浓度提高到550 μmol mol-1可使冬小麦和水稻的地上部干物质量分别提高10%和13%。Cure等[40]对近十种农作物进行了统计分析发现, CO2浓度升高使高粱、棉花和马铃薯生物量分别提高了5%、46%和8%。然而, 温度升高会减弱或消除CO2浓度升高所带来的肥效效应[17]。李兆君等[41]研究认为施磷可促进玉米地上部干物质的积累, 且氮磷配施可显著促进干物质向籽粒分配运输。本研究发现, 增温能提高间作玉米的干物质量, 增温后升高CO2浓度间作玉米干物质积累更加显著, 表现出明显的正向互作效应, Baker等[37]在水稻上也得到了同样的结果。Ottman等[42]发现, 在缺水条件下, CO2浓度升高使C4作物高粱的生物量提高了16%, 这可能与CO2具有肥料效应有关。这一效应是否与本研究中, 在缺磷条件下, 增温增CO2浓度显著提高间作玉米生物量的机理相一致, 还有待进一步研究。CO2浓度和温度同时升高, 不仅影响光合产物合成, 还能改变干物质在各个器官中的分配。本研究发现, CO2浓度、温度以及磷肥用量同时升高, 降低了干物质在间作玉米茎和叶中的分配比例, 提高了籽粒的分配比例, 促进光合物质向籽粒的运输, 有利于产量的提高。Lu等[43]认为, 温度升高会降低营养物质向籽粒的转运, 增加茎叶的分配比例, 这与本研究结果相反, 这可能与其过高的温度导致高温胁迫有关。研究表明CO2浓度提高到550 μmol mol-1, C4作物(玉米和高粱)平均产量提高约18%, 而且CO2浓度和降水同时增加, 在提高籽粒产量上表现出协同作用[36], 这与本研究中CO2浓度和温度同时升高、施磷肥增加间作玉米产量的效应相一致。穗粒数和百粒重是决定玉米产量的2个重要因素。本研究表明, CO2浓度和温度同时升高, 增加了穗粒数和百粒重, 这可能是两者互作促进了间作玉米穗的发育及干物质向籽粒转运的结果。但是, CO2浓度和温度同时升高, 对穗行数影响不显著。因此, 本研究认为, 行粒数和百粒重的提高是产量最终增加的主要因素。然而, 也有研究发现, CO2浓度和温度同时升高会降低冬小麦粒重[29], 这可能与冬小麦在生育后期大气温度升高, 再增温会超过其适宜温度, 抑制茎、叶干物质向籽粒运输有关。在本研究中, 间作玉米生育后期大气温度呈下降趋势, 增温有助于茎、叶干物质向籽粒运输。2019年增温增CO2浓度对间作玉米干物质积累、叶面积指数、百粒重和产量的提高幅度大于2018年, 这可能是由于2018年生长季平均温度高于2019年, 高温对间作玉米产生了一定的负面影响的结果。这表明, 增温增CO2浓度提高了间作玉米产量, 未来气候变化有利于玉米花生间作体系中玉米产量的提高。
4 结论
综上所述, 增温且增CO2浓度提高了间作玉米的干物质积累量与产量, 这主要是通过缩短间作玉米的营养生长期, 提高生育前期单株叶面积、光合势和净光合速率, 延长籽粒灌浆期, 促进干物质向籽粒分配来实现的。增温抑制了间作玉米生育中后期单株叶面积、光合势和净光合速率, 在增温的基础上增CO2浓度能在一定程度上缓解增温对其带来的抑制效应。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
PMID [本文引用: 1]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.
DOIURL [本文引用: 1]
DOI [本文引用: 1]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
全球大气二氧化碳(CO<sub>2</sub>)浓度不断升高对农业生产带来巨大影响。二氧化碳是作物光合作用的底物, 其浓度的升高理论上有利于作物光合作用能力的提高, 从而促进作物生物量和产量的形成。但已有研究表明, 大气CO<sub>2</sub>浓度升高对作物产量的促进作用小于预期, 同时还存在使作物营养品质变劣的风险, 相关机制尚不清楚。为此, 本文从植物(作物)叶片对CO<sub>2</sub>的吸收和固定生理基础入手, 综述了不同类型作物关键光合生理指标如: 净光合速率、叶片胞间CO<sub>2</sub>浓度、Rubisco酶最大羧化速率及Rubp再生速率等对大气CO<sub>2</sub>浓度的响应差异。以作物整株水平碳-氮代谢平衡为基础, 总结了解释光合适应现象的2种主要假说,即“源-库”调节机制和N素抑制机制。综述了大气CO<sub>2</sub>浓度升高对不同作物籽粒蛋白质、脂肪、矿质元素和维生素等关键营养指标浓度的影响。分析了未来大气CO<sub>2</sub>浓度和温度升高的交互作用对作物生产所带来的潜在影响。展望了本领域未来需要关注的主要研究方向。该综述可以为准确评估未来气候条件下作物产量和品质变化, 最大发挥大气CO<sub>2</sub>浓度升高所带来的“肥料效应”, 减缓气候变化对作物生产带来的不利影响提供理论参考。
[本文引用: 1]
DOIURL [本文引用: 2]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
[本文引用: 1]
DOIPMID [本文引用: 1]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
Elevated [CO] (e[CO]) environments have been predicted to improve rice yields under future climate. However, a concomitant rise in temperature could negate e[CO] impact on plants, presenting a serious challenge for crop improvement. High temperature (HT) stress tolerant NL-44 and high yielding basmati Pusa 1121 rice cultivars, were exposed to e[CO] (from panicle initiation to maturity) and a combination of e[CO]?+?HT (from heading to maturity) using field based open top chambers. Elevated [CO] significantly increased photosynthesis, seed-set, panicle weight and grain weight across both cultivars, more prominently with Pusa 1121. Conversely, e[CO]?+?HT during flowering and early grain filling significantly reduced seed-set and 1000 grain weight, respectively. Averaged across both the cultivars, grain yield was reduced by 18 to 29%. Despite highly positive response with e[CO], Pusa 1121 exposure to e[CO]?+?HT led to significant reduction in seed-set and sink starch metabolism enzymatic activity. Interestingly, NL-44 maintained higher seed-set and resilience with starch metabolism enzymes under e[CO]?+?HT exposure. Developing rice cultivars with higher [CO] responsiveness incorporated with increased tolerance to high temperatures during flowering and grain filling using donors such as NL-44, will minimize the negative impact of heat stress and increase global food productivity, benefiting from [CO] rich environments.
DOIURL [本文引用: 1]
DOIURL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 4]
[本文引用: 4]
URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
DOIURL [本文引用: 2]
[本文引用: 2]
DOIPMID [本文引用: 1]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO(2)] often advance the time of flowering by a few days, but measurements in FACE (free air CO(2) enrichment) field-based experiments suggest that elevated [CO(2)] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in +1 degree C steps) and temperature variability (0% and +50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a higher apparent optimum temperature and less variability in the time of tassel initiation. Given the importance of changes in plant development for crop yield under climate change, the effects of photoperiod and temperature on development rates above the optimum temperature clearly merit further research, and some of the knowledge gaps are identified herein.
[本文引用: 4]
[本文引用: 4]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
PMID [本文引用: 1]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
Increasing our understanding of the factors regulating seasonal changes in rice canopy carbon gain (C(gain): daily net photosynthesis -- night respiration) under elevated CO(2) concentrations ([CO(2)]) will reduce our uncertainty in predicting future rice yields and assist in the development of adaptation strategies. In this study we measured CO(2) exchange from rice (Oryza sativa) canopies grown at c. 360 and 690 micromol mol(-1)[CO(2)] in growth chambers continuously over three growing seasons. Stimulation of C(gain) by elevated [CO(2)] was 22-79% during vegetative growth, but decreased to between -12 and 5% after the grain-filling stage, resulting in a 7-22% net enhancement for the whole season. The decreased stimulation of C(gain) resulted mainly from decreased canopy net photosynthesis and partially from increased respiration. A decrease in canopy photosynthetic capacity was noted where leaf nitrogen (N) decreased. The effect of elevated [CO(2)] on leaf area was generally small, but most dramatic under ample N conditions; this increased the stimulation of whole-season C(gain). These results suggest that a decrease in C(gain) enhancement following elevated CO(2) levels is difficult to avoid, but that careful management of nitrogen levels can alter the whole-season C(gain) enhancement.
DOIURL [本文引用: 1]
DOIURL [本文引用: 1]
DOIURL [本文引用: 1]
DOI [本文引用: 2]
![](http://zwxb.chinacrops.org/richhtml/0496-3490/richHtml_jats1_1/images/more.jpg)
关于[CO<sub>2</sub>]升高和降水变化等多因子共同作用对植物的影响报道较少, 制约着人们对植物对全球气候变化响应的认识和预测。玉米(Zea mays)作为重要的C<sub>4</sub>植物, 受[CO<sub>2</sub>]和降水影响显著, 但鲜有[CO<sub>2</sub>]升高和降水增加协同作用对其产量及生长发育影响的报道。该研究利用开顶式生长箱模拟[CO<sub>2</sub>]升高(390 (环境)、450和550 μmol·mol<sup>-1</sup>), 降水增加量设置为增加自然降水量的15% (以试验地锦州1981-2010年6至8月月平均降水量为基准), 从而形成6个处理: C<sub>550</sub>W<sub>+15%</sub>、C<sub>550</sub>W<sub>0</sub>、C<sub>450</sub>W<sub>+15%</sub>、C<sub>450</sub>W<sub>0</sub>、C<sub>390</sub>W<sub>+15%</sub>和C<sub>390</sub>W<sub>0</sub>。试验材料选用玉米品种‘丹玉39’。结果表明: [CO<sub>2</sub>]升高和降水增加的协同作用在玉米的籽粒产量和生物产量上均达到了显著水平(p< 0.05), 二因子均起正作用, 使籽粒产量和生物产量均升高。籽粒产量在[CO<sub>2</sub>] 390、450和550 μmol·mol<sup>-1</sup>水平下的降水增加处理较自然降水处理分别增加15.94%、9.95%和9.45%, 而生物产量分别增加13.06%、8.13%和6.49%。因为籽粒产量的增幅略大于生物产量的增幅, 所以促进了经济系数的升高。穗部性状变化显著, 其中, 穗粒数、穗粒重、穗长和穗粗等性状值均随[CO<sub>2</sub>]升高而升高, 且各[CO<sub>2</sub>]水平下均表现为降水增加处理>自然降水处理, 而瘪粒数相反。但是, [CO<sub>2</sub>]升高和降水增加的协同作用也促进了轴粗的升高, 对玉米产量的增加起着限制作用。二因子协同作用在净光合速率(P<sub>n</sub>)和叶面积上达到了极显著水平(p< 0.01), 而在株高和干物质积累量上达到了显著水平(p< 0.05)。二因子协同作用使玉米叶片的P<sub>n</sub>升高, 植株高度升高, 穗位高升高, 茎粗增加, 叶面积变大, 从而促进了干物质积累量的升高, 为玉米增产打下了良好的基础。这表明: 在未来[CO<sub>2</sub>]升高条件下, 一定程度的降水增加对玉米的产量具有正向促进作用。
[本文引用: 2]
DOIURL [本文引用: 2]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
DOIURL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOIURL [本文引用: 1]
DOIURL [本文引用: 1]