Yield gaps of rice-wheat double cropping and its relationship with resource utilization in Yangtze-Huaihe Rivers region
DU Xiang-Bei,1, XI Min2, KONG Ling-Cong,1,*, WU Wen-Ge,2,*, CHEN Jin-Hua3, XU You-Zun2, ZHOU Yong-Jin2通讯作者:
收稿日期:2020-04-26接受日期:2020-08-19网络出版日期:2020-09-21
基金资助: |
Received:2020-04-26Accepted:2020-08-19Online:2020-09-21
Fund supported: |
作者简介 About authors
E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (436KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杜祥备, 习敏, 孔令聪, 吴文革, 陈金华, 许有尊, 周永进. 江淮地区稻-麦周年产量差及其与资源利用关系[J]. 作物学报, 2021, 47(2): 351-358. doi:10.3724/SP.J.1006.2021.02028
DU Xiang-Bei, XI Min, KONG Ling-Cong, WU Wen-Ge, CHEN Jin-Hua, XU You-Zun, ZHOU Yong-Jin.
在当前全球人口膨胀的背景下, 粮食安全问题日益严峻, 预测到2030年全球每年粮食需求将达到28亿吨。为满足这一需求, 提升粮食总产量是未来农业领域研究的热点问题[1]。我国人口对粮食供给的压力尤为巨大, 在有限的耕地资源背景下, 唯有提高作物单产水平才是确保粮食安全的唯一途径。安徽江淮地区地处我国南北气候过渡带, 是我国粮食的主要生产基地之一。稻-麦两熟种植是区域粮食生产的主要种植制度, 通常水稻于5月10月至20日播种, 小麦收获后移栽, 10月中下旬收获, 生育期140~160 d, 平均单产7135.5 kg hm-2; 小麦10月下旬至11月初播种, 5月底至6月初收获, 生育期200~215 d, 平均单产5365.5 kg hm-2。江淮地区常年稻麦轮作面积120万公顷, 占全国稻麦轮作25%以上, 为保障国家粮食安全做出了重要贡献[2]。
近年来, 安徽粮食生产技术取得长足进步, 连续十六连丰。但受气候变化、自然灾害及栽培管理技术等影响, 安徽稻麦单产水平、稳定性与粮食总产提高面临重大的挑战。现有的生产管理条件下作物生长潜力仍没有得到充分挖掘, 不同生产主体产量差距较大, 甚至同一地区不同农户田块之间作物产量的差距也较大。在当前作物单产潜力提升有限的情况下, 通过提高单位土地上的粮食产量来缩减区域内的产量差变得越来越重要[3]。实际生产中江淮地区稻麦大面积的平均产量还处于较低水平, 单产还有很大的增长潜力。因此, 缩减区域产量差, 是全面提高区域粮食生产的关键[4]。
产量差研究一直是国际作物学研究的热点。产量差的研究能够揭示产量的提升空间, 及区域产量提高的限制因子[1,5-7]。国内外一些****从不同侧面对我国不同区域主要粮食作物产量差及增产潜力进行了研究[5,6,7,8]。但以往研究多是针对单一作物进行, 对周年粮食生产和气候资源利用的研究鲜见报道。同时, 针对江淮地区稻麦周年产量差的研究尚未见报道。本研究结合农户调研和大田试验示范, 定量分析江淮地区稻-麦周年生产的产量差, 明确区域粮食产量提升的主要限制因素, 以期为缩减江淮地区稻-麦周年产量差和粮食总产的持续稳定提高提供科学依据。
1 材料与方法
1.1 区域概况
以安徽省江淮地区稻麦两熟主产区为研究区域, 主要包括凤台、寿县、颍上、怀远、定远、凤阳、天长、霍邱、巢湖、庐江等地区。江淮地区年平均气温在14~17℃之间, 平均日照1800~2500 h, 平均无霜期200~250 d, 平均降水量800~1800 mm。主要种植模式是水稻-小麦一年两熟轮作。1.2 数据来源
产量数据主要来源于“十一五”、“十二五”和“十三五”国家粮食丰产科技工程安徽省代表性地点田间试验、高产攻关示范和农户生产对照的稻-麦周年产量数据。其中, 田间试验和高产攻关示范产量数据水稻季166个、小麦季80个、周年72个, 农户生产对照产量数据水稻季76个、小麦季85个、周年60个。气象数据来源于安徽省气象局, 包括上述研究区域的9个站点2008—2019年逐日的平均温度、辐射量、降水量等气象资料。1.3 产量差的确定
为比较不同的产量水平, 根据Lobell等[1]的分类方法, 从数据集中选取田间试验和高产攻关示范产量前5%的均值作为高产纪录, 中间80%的均值作为试验水平, 农户产量中间80%的均值作为农户水平。确定3个不同产量水平: 高产纪录、试验水平和农户水平。其中水稻高产纪录、试验水平和农户水平数据分别为8、133和61个, 小麦分别为4、64和68个, 周年分别为4、58和48个。根据产量的不同标准水平定义了2个产量差距: 以高产纪录为基础的产量差(YG1)和基于试验水平为基础的产量差(YG2)。YG1 = 高产纪录-农户水平, YG2 = 试验水平-农户水平。
1.4 数据处理
采用Microsoft Excel 2019对数据进行统计与整理, 用Origin 2018进行分析及作图, SPSS 20.0软件进行方差分析, Duncan’s法检验显著性。2 结果与分析
2.1 江淮地区稻-麦周年产量水平
江淮地区稻-麦两熟种植模式下, 水稻、小麦和周年农户水平分别为6205.5~9390.0、4177.5~7098.0和11,145.2~16,335.6 kg hm-2, 变幅分别为7.8%、11.7%和10.8%; 水稻、小麦和周年试验水平分别为9306.4~12,603.0、6000.5~7731.8和15,120.0~19,631.4 kg hm-2, 变幅分别为8.7%、7.9%和6.3%; 水稻、小麦和周年高产纪录分别为14,379.0~15,307.5、8904.0~9501.3和21,562.5~22,896.0 kg hm-2, 变幅分别为2.7%、1.4%和2.5% (图1)。3个不同产量层次中, 高产纪录变幅较小, 农户水平变异较大。图1
新窗口打开|下载原图ZIP|生成PPT图1江淮地区稻-麦周年产量分析
不同小写字母表示在5%水平差异显著。
Fig. 1Descriptive statistics of the rice-wheat annual yield in Yangtze-Huaihe rivers region
Values marked with different lowercase letters indicate significant differences at P < 0.05.
2.2 江淮地区稻-麦周年产量差
江淮地区稻-麦两熟种植高产纪录、试验水平与农户水平之间均存在显著差距(表1)。其中, 水稻、小麦和周年产量农户水平分别为7175.4、5168.2和12,463.3 kg hm-2, 相比试验水平的产量差(YG2)分别为33,315.9、1537.5和4645.6 kg hm-2, 相当于试验水平的68.4%、77.1%和72.8%, 还有46.2%、29.7%和37.3%的增产潜力; 相比高产纪录的产量差(YG1)分别为7498.6、3977.9和9840.9 kg hm-2, 相当于高产纪录的48.9%、56.5%和55.9%, 还有104.5%、77.0%和79.0%的增产潜力。Table 1
表1
表1江淮地区稻-麦周年产量、产量差和增产潜力
Table 1
项目 Item | 产量水平 Different yield level | 水稻 Rice | 小麦 Wheat | 周年 Annual |
---|---|---|---|---|
产量 Yield (kg hm-2) | 高产纪录Highest recorded yield | 14,674.1 a | 9146.1 a | 22,304.3 a |
试验水平Experimental yield | 10,491.3 b | 6705.8 b | 17,108.9 b | |
农户水平Farmer yield | 7175.4 c | 5168.2 c | 12,463.3 c | |
产量差 Yield gap (kg hm-2) | 高产纪录-农户水平 Highest recorded yield-Farmer yield (YG1) | 7498.6 | 3977.9 | 9840.9 |
试验水平-农户水平 Experimental yield-Farmer yield (YG2) | 3315.9 | 1537.5 | 4645.6 | |
增产潜力 Increase potential (%) | 农户水平-高产纪录 Farmer yield-Highest recorded yield | 104.5 | 77.0 | 79.0 |
农户水平-试验水平 Farmer yield-Experimental yield | 46.2 | 29.7 | 37.3 |
新窗口打开|下载CSV
江淮地区稻-麦两熟种植季节间产量差、增产潜力和增产绝对量均以水稻最高, 小麦相对较小。同时, 高产记录、试验水平与农户水平下水稻产量占周年产量比重分别为65.8%、61.3%和57.6%, 显著高于小麦的34.2%、38.7%和42.4%。周年总产量越高, 水稻产量所占比重也越高。因此, 提升水稻季产量是进一步提高周年产量的关键所在。
2.3 稻-麦产量与其构成因子间的关系
将不同产量群体稻麦产量与其构成因子进行相关分析(图2)发现, 水稻产量与每穗粒数呈极显著正相关, 而与穗数和千粒重呈弱的负相关关系。小麦产量与穗数呈极显著正相关, 与每穗粒数呈显著正相关, 而与千粒重呈弱的正相关关系。进一步分析与不同产量群体稻麦显著相关的产量构成因子发现, 水稻高产纪录和试验水平均具有显著高的每穗粒数, 较农户水平分别增加116.1%和30.4% (表2)。小麦高产纪录和试验水平具有显著高的穗数和每穗粒数, 较农户水平分别增加70.0%、40.9%和19.6%、21.8%。图2
新窗口打开|下载原图ZIP|生成PPT图2稻-麦产量与其构成因子间相关性分析
A、B、C为水稻, D、E、F为小麦。
Fig. 2Relationship between grain yield and its components for different yield levels in Yangtze-Huaihe rivers region
A, B, C are responsible for rice; D, E, F are responsible for wheat.
Table 2
表2
表2江淮地区稻麦不同产量群体主要产量构成因子差异
Table 2
项目 Item | 水稻Rice | 小麦Wheat | ||||
---|---|---|---|---|---|---|
每穗粒数 Grain number per spike | 相对比例 Relative ratio (%) | 穗数 Spike number (×104 hm-2) | 相对比例 Relative ratio (%) | 每穗粒数 Grain number per spike | 相对比例 Relative ratio (%) | |
高产纪录Highest recorded yield | 276.8 a | 216.1 | 43.7 a | 170.0 | 34.1 a | 119.6 |
试验水平Experimental yield | 167.1 b | 130.4 | 36.2 b | 140.9 | 34.7 a | 121.8 |
农户水平Farmer yield | 128.1 c | 100.0 | 25.7 c | 100.0 | 28.5 b | 100.0 |
新窗口打开|下载CSV
2.4 江淮地区稻-麦生育期气候资源截获
水稻生育期的总辐射和积温与产量间的变化趋势明显(图3-A, C)。相关分析表明, 不同产量群体之间水稻季总辐射和积温差异显著, 表现为高产纪录>试验水平>农户水平。说明辐射和积温的高低对水稻产量起正相关作用。高产记录、试验水平和农户水平水稻生育期总辐射和积温平均分别为2791、2562、2443 MJ m-2和4295、4114、3971℃ d。不同产量群体水稻生长季的降水无显著变化, 说明水稻产量与降水相关性不大。图3
新窗口打开|下载原图ZIP|生成PPT图3江淮地区不同稻-麦产量群体生育期气候资源截获
A、C、E为水稻, B、D、F为小麦。不同小写字母表示在0.05水平差异显著。
Fig. 3Accumulated radiation, growth degree-days and precipitation in rice and wheat seasons under different yield levels in Yangtze-Huaihe rivers region
A, C, E are responsible for rice; B, D, F are responsible for wheat. Values marked with different lowercase letters indicate significant differences at P < 0.05.
小麦生育期的总辐射与产量间的变化趋势明显(图3-B), 不同产量群体之间差异显著, 表现为高产纪录>试验水平>农户水平。高产纪录、试验水平和农户水平小麦生育期总辐射平均分别为3064、2851、2759 MJ m-2, 说明辐射的高低对小麦产量起到正效应作用。不同产量群体小麦生育期的总积温与产量间的变化趋势表现为农户水平>试验水平>高产纪录(图3-D), 降水则表现为农户水平>高产纪录>试验水平(图3-F), 总积温和降水均与产量呈负相关关系。
对不同产量群体稻麦生育期进一步分析发现,高产纪录和试验水平水稻和小麦均具有显著长的生育期, 水稻季较农户水平分别增加了8.0 d和5.9 d, 小麦季分别增加了6.4 d和3.3 d (表3)。
Table 3
表3
表3江淮地区不同稻-麦产量群体生育期
Table 3
项目Item | 水稻Rice | 小麦Wheat |
---|---|---|
高产纪录Highest recorded yield | 150.3 a | 212.6 a |
试验水平Experimental yield | 148.2 a | 209.5 ab |
农户水平Farmer yield | 142.3 b | 206.2 b |
新窗口打开|下载CSV
3 讨论
3.1 江淮地区稻-麦产量差及增产潜力
分析研究作物产量差与形成特征, 对制定针对性提高作物产量措施、保障国家粮食安全具有重要意义[7]。本研究通过对安徽江淮地区粮食主产区多年稻麦生产分析, 定量化了农户水平周年产量相对于试验水平和高产纪录有4645.6 kg hm-2和9840.9 kg hm-2的增产空间。本研究结果证明了在当前农户生产条件下, 稻麦产量仍然具有较大的增产空间。试验水平产量是多年粮丰项目进行试验示范, 是可以复制, 完全能够达到的产量, 通过进一步缩小农户水平与试验水平之间的产量差对于整体提高地区粮食产量有重要的现实意义。本研究结果发现, 农户水平水稻产量相对于试验水平仍有46.2%的增产潜力, 而小麦仅有29.7%的增产潜力。与小麦比, 水稻具有较高的产量差、增产潜力和增产绝对量。同时, 水稻产量占周年产量比重显著高于小麦。因此, 提高稻麦周年产量应首先提高水稻产量, “强稻稳麦”是进一步提高江淮地区稻麦周年粮食生产的主要途径。3.2 江淮地区稻-麦产量差的构成因子分析
稻麦产量是由穗数、每穗粒数和千粒重3个构成因子共同作用的结果。其中单位面积穗数和每穗粒数被认为是产量形成最重要的决定因素[9,10,11,12]。本研究中, 不同产量水平稻麦产量构成因子差异较大。与前人研究有所不同的是, 本研究发现每穗粒数是造成水稻产量差异的主要因子。水稻穗数和千粒重对产量的增加效应较小, 甚至呈负效应, 而每穗粒数的贡献比较大。这主要是因为在当前生产条件下, 水稻栽培技术不断优化与改进, 水稻育秧及机插水平和种植方式的不断提高, 实际生产中已基本能够保障基本苗, 改变了以往因穗数不足限制产量提高的根本因素。同时, 科学合理的肥水管理利于优化群体质量, 成穗率较高, 穗数已不是限制产量提高的主要因子[11,13-14]。本研究中农民水平已达到7175.4 kg hm-2较高水平, 穗数与试验水平无显著差异, 但每穗粒数显著低于试验水平。通过合理的水肥管理, 提高水稻群体颖花量和结实率, 即每穗粒数成为高产的关键[15,16]。我们前期研究同样发现, 甬优1540实现高产到超高产是保障足够有效穗数的基础上, 通过增加每穗粒数来实现[17]。江淮地区小麦产量差异的主要原因是穗数和每穗粒数的不同, 其中穗数与产量间相关系数高于每穗粒数, 说明穗数对产量的增加效应要高于每穗粒数。千粒重受品种影响较大, 且与总粒数相互制约, 其对产量的贡献较弱。这与前人研究发现在英国、阿根廷、墨西哥、澳大利亚等地区, 小麦产量增加主要归于每穗粒数的提高结果不同[18,19]。主要是江淮地区稻茬小麦生产水平较低, 常常因为播种期降雨过多, 播期推迟影响出苗质量, 导致冬前有效分蘖少, 造成群体穗数较小, 大穗数少, 产量低下。通常增加1个或多个产量构成因子可以增产[20,21]。当前江淮地区不同产量水平水稻增产途径均依靠增加每穗粒数, 在足穗的基础上壮大穗, 提高每穗粒数是产量提高的有效途径。小麦增加穗数和每穗粒数均能增加产量, 但穗数具有优先性。
3.3 气候条件对江淮地区稻-麦生产潜在产量的影响
农业生产中光、温、水等气候资源对作物产量形成有非常重要的作用。前人研究发现, 辐射降低是华北地区冬小麦夏玉米潜在产量下降的主要因素[22]; 东北地区春玉米在年降水量小于500 mm的地区, 水分是限制玉米产量的主要限制因子[23]。本研究表明辐射和积温是影响江淮地区水稻产量的重要气象因素, 降雨不是造成江淮地区水稻产量差异的原因。水稻只有在最适宜温度下生长才能发挥出最大的潜在产量, 其产量与生育期累积截获辐射量呈显著正相关[24]。我们前期研究发现, 江淮地区水稻季辐射大于2387.0 MJ m-2, 累积积温达4003.4~4317.8℃ d, 总降水量在466.4~1588.9 mm范围内可获得10,000 kg hm-2以上的产量[25]。本研究中农户生产条件下, 降水平均为767 mm已满足需求, 辐射平均为2443 MJ m-2、积温平均为3919℃ d, 均处于比较低的范围内。可见, 水稻生育期累积辐射和积温较低是限制其产量进一步提高的关键因子。我们前期研究发现, 小麦季辐射在2685.0~3235.2 MJ m-2、积温在1925.0~ 2522.6℃ d、降水在245.5~439.5 mm范围内, 可获得8000 kg hm-2以上的产量[25]。本研究中农户生产条件下, 小麦季辐射和积温均已满足高产需求, 但降水达474.4 mm超过最适范围, 可见降水量过大、渍害严重是江淮地区稻茬小麦产量较低的主要原因。3.4 江淮地区缩小稻-麦产量差的实现途径
大量的研究表明, 农户水平相对于试验水平有较大的产量差主要是由于农户在生产中缺乏理论指导和调控的针对性, 导致了较差的栽培管理水平和实际生产的盲目性, 这大大限制了作物产量的提高[26,27]。虽然过去栽培管理措施和技术进步对提高作物产量贡献巨大, 目前栽培管理措施改善的增产空间依然巨大[5,28]。本研究结果同样证明了江淮地区稻麦的产量潜力仍有较大的增长空间。因此, 如何进一步缩小产量差, 应作为当前粮食增产的主要途径[4]。根据本研究结果, 缩小水稻产量差主要依赖于增加每穗粒数, 解决小麦产量差靠穗数和每穗粒数的协同提高。合理高效的水肥管理、不同种植方式均能调控资源能促进作物群体结构优化, 增加花后物质生产, 提高收获指数和每穗粒数, 最终实现增产[29,30]。采用优化的种植模式、耕作和播种技术改进、适宜的播期和播量、抗逆栽培模式能有效提高小麦出苗质量, 提高最终穗数[31,32,33,34]。在周年生产条件下合理调配季节间的资源优化配置组合, 从而使温光资源利用最大化, 也是提升潜在产量的途径之一[2,35]。根据本研究结果, “强稻稳麦”是进一步提高江淮地区稻麦周年粮食生产的最有效途径, 如何发挥水稻季的高光效和高增产潜力成为关键[2]。通过选用生育期较长的水稻品种, 提高光温资源截获量[24], 采用周年适宜的稻麦品种搭配组合[36]、尤其是生育期长的晚熟高产水稻品种与耐迟播早熟高产小麦品种搭配, 均可优化周年光温水资源配置, 实现温光资源高效利用。同时水稻和小麦农耗期立足“抢收”、“抢种”, 保证茬口顺利衔接与温光资源“满负荷”利用, 实现稻麦产量和资源利用效率双提升。
4 结论
江淮地区稻-麦周年生产存在显著的产量差, 稻麦的产量潜力仍有较大的增长空间, 其中水稻的增产潜力大于小麦, 明确了“强稻稳麦”是提升地区粮食生产的有效途径。缩小水稻产量差主要依赖于增加穗粒数, 缩小小麦产量差靠穗数和穗粒数的协同提高。生育期累积辐射和积温较低是影响水稻产量差异的主要气候因素, 而生育期降水过多是影响小麦产量差异的主要气候因素。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 3]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 3]
,
[本文引用: 1]
,
URLPMID:30979872 [本文引用: 3]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1038/nature11420URLPMID:22932270 [本文引用: 1]
In the coming decades, a crucial challenge for humanity will be meeting future food demands without undermining further the integrity of the Earth's environmental systems. Agricultural systems are already major forces of global environmental degradation, but population growth and increasing consumption of calorie- and meat-intensive diets are expected to roughly double human food demand by 2050 (ref. 3). Responding to these pressures, there is increasing focus on 'sustainable intensification' as a means to increase yields on underperforming landscapes while simultaneously decreasing the environmental impacts of agricultural systems. However, it is unclear what such efforts might entail for the future of global agricultural landscapes. Here we present a global-scale assessment of intensification prospects from closing 'yield gaps' (differences between observed yields and those attainable in a given region), the spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields. We find that global yield variability is heavily controlled by fertilizer use, irrigation and climate. Large production increases (45% to 70% for most crops) are possible from closing yield gaps to 100% of attainable yields, and the changes to management practices that are needed to close yield gaps vary considerably by region and current intensity. Furthermore, we find that there are large opportunities to reduce the environmental impact of agriculture by eliminating nutrient overuse, while still allowing an approximately 30% increase in production of major cereals (maize, wheat and rice). Meeting the food security and sustainability challenges of the coming decades is possible, but will require considerable changes in nutrient and water management.
,
DOI:10.1016/j.jcs.2013.12.001URLPMID:24882935 [本文引用: 1]
All crops require nitrogen (N) for the production of a photosynthetically active canopy, whose functionality will strongly influence yield. Cereal crops also require N for storage proteins in the grain, an important quality attribute. Optimal efficiency is achieved by the controlled remobilization of canopy-N to the developing grain during crop maturation. Whilst N will always be required for crop production, targeting efficient capture and use will optimise consumption of this valuable macronutrient. Efficient management of N through agronomic practice and use of appropriate germplasm are essential for sustainability of agricultural production. Both the economic demands of agriculture and the need to avoid negative environmental impacts of N-pollutants, such as nitrate in water courses or release of N-containing greenhouse gases, are important drivers to seek the most efficient use of this critical agronomic input. New cultivars optimised for traits relating to N-use efficiency rather than yield alone will be required. Targets for genetic improvement involve maximising capture, partitioning and remobilization in the canopy and to the grain, and yield per se. Whilst there is existing genetic diversity amongst modern cultivars, substantial improvements may require exploitation of a wider germplasm pool, utilizing land races and ancestral germplasm.
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]