删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响

本站小编 Free考研考试/2021-12-26

刘俊华,1,3,**, 吴正锋2,**, 沈浦2, 于天一2, 郑永美2, 孙学武2, 李林1, 陈殿绪2, 王才斌,2,*, 万书波,1,4,*1 湖南农业大学 / 湖南省花生工程技术研究中心, 湖南长沙 410128
2 山东省花生研究所 / 国家花生工程技术研究中心, 山东青岛 266100
3 滨洲学院生物与环境工程学院, 山东滨州 256600
4 山东省农业科学院 / 山东省作物遗传改良与生态生理重点实验室, 山东济南 250100

Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut

LIU Jun-Hua,1,3,**, WU Zheng-Feng2,**, SHEN Pu2, YU Tian-Yi2, ZHENG Yong-Mei2, SUN Xue-Wu2, LI Lin1, CHEN Dian-Xu2, WANG Cai-Bin,2,*, WAN Shu-Bo,1,4,*1 Hunan Agriculture University / Hunan Peanut Engineering Technology Research Center, Changsha 410128, Hunan, China
2 Shandong Peanut Research Institute / National Peanut Engineering Technology Research Center, Qingdao 266100, Shandong, China
3 College of Biology and Environment Engineering, Binzhou University, Binzhou 256600, Shandong, China
4 Shandong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan 250100, Shandong, China

通讯作者: * 万书波, E-mail: wanshubo2016@163.com, Tel: 0531-66658127; 王才斌, E-mail: caibinw@126.com, Tel: 0532-87632130

同等贡献(Contributed equally to this work)
收稿日期:2020-03-4接受日期:2020-06-2网络出版日期:2020-06-30
基金资助:国家重点研发计划项目.2018YFD1000906
山东省自然科学基金项目.ZR2016CM07
国家现代农业产业技术体系建设专项.CARS-13
山东省重大科技创新工程项目.2019JZZY010702


Received:2020-03-4Accepted:2020-06-2Online:2020-06-30
Fund supported: National Key Research and Development Program of China.2018YFD1000906
Natural Science Foundation of Shandong Province.ZR2016CM07
China Agriculture Research System.CARS-13
Major Scientific and Technological Innovation Projects in Shandong Province.2019JZZY010702

作者简介 About authors
刘俊华, E-mail: liujh516@163.com, Tel: 0543-3190096












摘要
为明确花生单粒精播适宜的氮肥水平和种植密度, 本研究于2018年和2019年以‘花育22’为供试花生品种, 设置3个氮肥水平(0 kg hm-2, N0; 60 kg hm-2, N1; 120 kg hm-2, N2), 3个种植密度(7.93万株 hm-2, D1; 15.86万株 hm-2, D2; 23.79万株 hm-2, D3), 采用二因素裂区试验设计, 研究氮肥、密度及其互作对单粒精播花生根系形态、植株性状及产量的影响。氮肥对花生根长、根表面积、根体积、根干重的影响不显著, 而密度的影响显著。单株根长、根表面积、根体积及根系干重随密度的增加而降低, D1显著高于D2和D3, D2、D3处理间差异不显著; 单位面积根长、根表面积、根体积及根系干重随密度的增加而增加, D1显著低于D2和D3, D2、D3处理间差异不显著。氮肥和密度互作对2019年收获期单位面积根长、根表面积的影响显著, 与D1相比, N1处理下D3的增幅显著高于N0和N2处理。氮肥及氮肥与密度互作对植株性状的影响存在年度和时期间的差异, 主茎叶片数、侧枝数和主茎第一节间粗随密度增加有降低趋势。氮肥对荚果产量的影响不显著, 荚果产量随密度的增加呈增加的趋势。产量与根体积、根干重、主茎叶片数、主茎高及侧枝长呈显著正相关。综上所述, 在本试验条件下, 花生单粒精播适宜的氮肥(N)水平为60 kg hm-2, 种植密度为18.8万株 hm-2
关键词: 氮肥;密度;花生;单粒精播;根系形态;植株性状;产量

Abstract
In order to determine the suitable nitrogen level and planting density for single seed precision sowing of peanut, field comparison experiments were conducted using Huayu 22 with three nitrogen levels at 0 (N0), 60 (N1), 120 (N2) kg hm-2 and three planting densities at 79,300 (D1), 158,600 (D2), and 237,900 (D3) plants hm-2 in 2018 and 2019. The effects of nitrogen, density and their interaction on root morphology, plant characteristics and yields of single seed precision sowing peanut were studied by the split plot design for two factors. Nitrogen fertilizer had no significant effect on root length, root surface area, root volume and root dry weight, whereas significant on density. Root length, root surface area, root volume and dry weight per plant decreased with the increase of density, D1 was significantly higher than D2 and D3, but there was no significant difference between D2 and D3 treatments. And root length, root surface area, root volume and dry weight of unit area increased with the increase of density, D1 was significantly lower than D2 and D3, and there was no significant difference between D2 and D3 treatments. The interaction of nitrogen and density had a significant effect on the root length and surface area of unit area in the harvest stage in 2019. Compared with D1, the increase range of D3 in N1 treatment was significantly higher than that of N0 and N2. As to plant characteristics, nitrogen fertilizer and the interaction of nitrogen fertilizer and density were different between years and periods, and with the increase of density, the number of leaves of main stem, the number of lateral branches and the first internode thickness of main stem decreased. The effects of nitrogen fertilizer on pod yield was not significant, whereas pod yield increased with the increase of density. Pod yields were positively correlated with root volume, root dry weight, leaves of main stem, height of main stem and length of lateral branches. In conclusion, considering the yield and benefit comprehensively, the suitable nitrogen fertilizer (N) level is 60 kg hm-2 and the planting density is 188,000 plants hm-2.
Keywords:nitrogen;plant density;peanut;single seed sowing;root morphology;plant characteristic;pod yield


PDF (1279KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616. doi:10.3724/SP.J.1006.2020.04058
LIU Jun-Hua, WU Zheng-Feng, SHEN Pu, YU Tian-Yi, ZHENG Yong-Mei, SUN Xue-Wu, LI Lin, CHEN Dian-Xu, WANG Cai-Bin, WAN Shu-Bo. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut[J]. Acta Agronomica Sinica, 2020, 46(10): 1605-1616. doi:10.3724/SP.J.1006.2020.04058


花生是我国重要的油料作物, 目前生产用种量大、盲目或过量施肥, 导致花生成本高、经济效益低、环境污染风险大, 因此发展绿色节本增效生产具有重要的意义[1]。花生单粒精播是一项行之有效的节本增效栽培技术, 与传统的双粒播种相比, 单粒精播技术在产量不降低或略有增产的情况下, 节种20%左右, 生产成本大幅度降低, 具有广阔的发展前景[2,3]

氮肥和密度是影响作物产量的重要栽培措施[4,5,6]。在一定范围内, 施氮能促进作物光合作用, 提高产量, 但过量施氮导致植株倒伏、肥料利用率降低、环境污染风险加大[7,8,9]。合理密植可以提高群体叶面积指数, 进而提高作物生物量, 但过高的种植密度容易削弱中下层叶片的光照条件, 造成个体发育差、群体光合能力反而降低[10,11,12,13]。适宜的氮肥水平下, 合理密植可改善作物群体质量, 提高作物产量[14,15,16,17]。植物根系既是水分和养分吸收的主要器官, 又是多种激素、有机酸和氨基酸合成的重要场所, 其形态和生理特性与地上部的生长发育、产量和品质形成均有密切的关系[18,19,20,21,22]。氮、磷可促进花生根系生长[23,24,25], 干旱条件下, 氮肥有利于深层根系生长[26,27]。冯烨等[28]研究表明, 单粒精播可保证花生根系相对较强的生长优势, 协调根冠比, 壮个体, 强群体, 实现花生高产。目前氮肥和密度互作对单粒精播花生根系形态、生长发育的研究鲜有报道。本研究于2018年和2019年采用单粒播种方式, 设置不同的氮肥水平和密度, 研究氮肥、密度及其互作对单粒精播花生根系长度、根表面积、根体积、根干重、植株性状及花生产量的影响, 以期筛选出适宜的氮肥水平和种植密度, 为花生绿色节本增效栽培提供理论依据和技术支撑。

1 材料与方法

1.1 试验地概况

山东省花生研究所莱西试验站(36o48'N, 120o 30'E)属于温带季风气候, 土壤为棕壤土。2018年含有机质1.1%、速效氮67.1 mg kg-1、速效磷47.8 mg kg-1、速效钾98.6 mg kg-1、交换性钙8.3 cmol kg-1, pH 5.6; 2019年含有机质1.2%、速效氮76.9 mg kg-1、速效磷38.4 mg kg-1、速效钾128.0 mg kg-1、交换性钙14.5 cmol kg-1, pH 5.6。

1.2 试验设计

采用直径40 cm、高50 cm硬化PVC无底圆桶, 圆桶埋入土中, 上边露出地表5 cm。试验前所有土壤混匀、过筛。采用二因素裂区设计, 氮肥水平为主区, 种植密度为副区。设0 (N0)、60 (N1)、120 (N2) kg hm-2 3个氮肥水平, 7.93 (D1)、15.86 (D2)和23.79 (D3)万株 hm-2 3个种植密度, 即每桶单粒、双粒、三粒。共9个处理, 每个处理3次重复, 每个重复3桶。氮肥为尿素, 各处理除氮肥外均施磷肥90 kg hm-2 (P2O5), 钾肥120 kg hm-2 (K2O), 肥料施入地表0~20 cm土层中, 桶周围保护行施与各处理相同用量的肥料。2018年和2019年分别于5月23日和5月24日催芽足墒播种, 齐苗后间苗, 每桶分别留1、2、3棵长势均匀的花生植株, 按大田花生生产正常管理, 分别于9月18日和9月25日收获。

1.3 测定项目与方法

1.3.1 地上部植株性状的测定 在花针期(flower-pegging stage, FS)、结荚期(pod setting stage, PS)和收获期(harvest stage, HS), 从各处理选取3桶生长一致的植株, 从子叶节部位将植株分为地上部和地下部。地上部植株测定主茎总叶片数、侧枝数、主茎高、侧枝长和第一节间粗等指标, 荚果烘干称重, 将根系从无底圆桶中取出, 并拣出土层内散落的根系, 将根系用流水冲洗干净, 放入封口袋, 冷冻保存, 以备测定根系形态指标。

1.3.2 根系形态的测定 根系解冻后, 用Epson 7500双面光源扫描仪[爱普生(中国)有限公司]扫描根系, 保存图像, 再用WinRHIZO根系分析系统(Regent公司, 加拿大)分析图像。测定根系形态指标后, 80℃烘干至恒重, 称根干重。

1.4 数据处理

采用Microsoft Excel 2010软件计算和处理数据, 采用SAS 10.0软件进行方差分析, 用LSD法比较处理间在P=0.05水平上的差异显著性。

2 结果与分析

2.1 氮肥和密度对花生根系形态及根干重的影响

2.1.1 根长 由表1可知, 氮肥对根长的影响不显著, 密度对根长具有重要的影响。单位面积根长随密度的增加呈增加的趋势, D2和D3分别比D1增加0.6%~106.2%和2.3%~96.2%, D2、D3显著高于D1 (2018年收获期和2019年结荚期除外), 而D2和D3处理间差异不显著; 单株根长随密度的增加呈降低的趋势, D2和D3分别比D1降低-3.1%~50.3%和34.6%~66.0%, 而D2和D3处理间差异不显著。氮肥和密度互作对2019年收获期单位面积根长的影响显著, 中氮(N1)条件下, D3比D1增加134.0%, 无氮(N0)和高氮(N2)条件下, D3分别比D1增加39.6%和12.1%, 中氮处理的增加幅度显著高于无氮(N0)和高氮(N2)处理。

Table 1
表1
表1氮肥和密度互作对花生根长的影响
Table 1Effects of the interaction of nitrogen fertilizer and density on root length in peanut
氮肥水平
Nitrogen level
单位面积根长 Root length of unit area (cm pot-1)单株根长 Root length per plant (cm plant-1)
种植密度
Plant
density
2018201920182019
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
NOD13836.5 b3992.0 abc5570.8 a7138.1 be9868.4 a5652.8 be3836.5 abc3992.0 a5570.8 a7138.1 a9868.4 ab5652.8 a
D25450.9 ab7812.2 a5665.0 a12581.2 a13505.4 a5744.3 be2725.5 be3906.1 ab2832.5 be6290.6 ab6752.7 ab2872.2 be
D37219.2 a6562.6 ab5576.5 a12081.9 a16025.5 a7891.4 ab2406.4 be2187.5 ab1858.8 c4027.3 be5341.8 b2630.5 be
N1D14062.2 b2503.4 c4200.8 a6372.5 be14427.9 a3657.3 c4062.2 ab2503.4 ab4200.8 ab6372.5 ab14427.9 a3657.3 abc
D26106.2 ab4918.5 abc4855.0 a14010.9 a13476.2 a5805.5 be3053.1 be2459.2 ab2427.5 be7005.4 a6738.1 ab2902.8 be
D36304.3 ab5111.1 abc3652.7 a12969.6 a14895.5 a8559.1 ab2101.4 c1703.7 b1443.3 c4323.2 be4965.2 b2853.0 be
N2D15665.7 ab3474.5 be5725.8 a4652.8 c7260.8 a5480.4 be5665.7 a3474.5 ab5725.8 a4652.8 abc7260.8 ab5480.4 a
D25186.6 ab4026.9 abc4877.7 a10869.7 ab11249.2 a9457.4 a2593.3 be2013.5 ab2438.9 be5434.8 abc5624.6 b4728.7 ab
D37871.3 a5422.0 abc5916.2 a10593.1 ab10846.1 a6144.8 abc2623.8 be1807.3 ab1972.1 c3531.0 c3615.4 b2048.3 c
氮肥 Nitrogen (N)nsnsnsnsnsnsnsnsnsnsnsns
密度 Density (D)****ns**ns**************
氮肥x密度NxDnsnsnsnsns*nsnsnsnsnsns
NO: 施氮量为0 kg hm-2; Nl: 施氮量为60 kg hm-2; N2: 施氮量为120 kg hm-2。Dl、D2和D3分别代表种植密度为79,300、158,600和237,900株hm-2。同一列不同小写字母表示在5%水平差异显著。**表示在1%水平差异显著;*表示在5%水平差异显著;ns代表差异不显著。
N0: 施氮量为0 kg hm-2; N1: 施氮量为fertilizer; Nl: 60 kg hm'2 of N fertilizer; N2: 120 kg hm'2 of N fertilizer. Dl, D2, and D3 represent planting densities of 79,3〇〇, 158,600, and 237,900 plants hm'2. FS: flower-pegging stage; PS: pod setting stage; HS: harvest stage. Different lowercase letters in the same column indicate significantly different at the 5% probability level. **: significantly different at the 1% probability level; *: significantly different at the 5% probability level; ns: not significant.

新窗口打开|下载CSV

2.1.2 根表面积 由表2可知, 氮肥对根表面积的影响不显著, 密度对根表面积具有重要的影响, 花生单位面积根表面积随密度的增加而增加, D2单位面积根表面积比D1增加8.6%~94.9%, D3比D1增加11.3%~86.2%, D2、D3显著高于D1 (2018年收获期和2019年结荚期除外), 而D2和D3处理间差异不显著; 单株根表面积随密度的增加呈降低趋势, D2和D3分别比D1降低2.6%~45.7%和37.9%~ 61.1%。氮肥和密度互作对2019年收获期单位面积根表面积的影响显著, 在中氮(N1)条件下, D3比D1增加125.0%, 无氮(N0)和高氮(N2)条件下, D3分别比D1增加35.4%和16.1%, 中氮处理的增幅显著高于无氮(N0)和高氮(N2)处理。

Table 2
表2
表2氮肥和密度互作对花生根表面积的影响
Table 2Effects of the interaction of nitrogen fertilizer and density on root surface area in peanut
氮肥水平
Nitrogen level
单位面积根表面积 Root surface area of unit area (cm2 pot-1)单株根表面积 Root surface area per plant (cm2 plant-1)
种植密度
Plant
density
2018201920182019
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
NOD1491.2 c666.8 be734.2 a1008.4 bed1227.3 a739.7 be491.2 abc666.8 a734.2 a1008.4 a1227.3 ab739.7 a
D2733.9 abc1288.6 a787.5 a1671.6 ab1861.8 a783.3 be366.9 be644.3 a393.8 b835.8 abc930.9 b391.7 be
D31008.4 a1062.2 ab818.2 a1691.9 ab2183.7 a1001.2 ab336.1 be354.1 ab272.7 b564.0 c727.9 b333.7 c
N1D1558.2 be476.3 c607.5 a946.5 cd1960.0 a524.6 c558.2 ab476.3 ab607.5 a946.5 ab1960.0 a524.6 abc
D2835.4 ab839.2 abc741.0 a2043.9 a1888.9 a786.5 be417.7 abc419.6 ab370.5 b1021.9 a944.5 b393.3 be
D3844.0 ab838.2 abc629.9 a1793.9 a2069.3 a1180.4 a281.3 c279.4 b248.0 b598.0 be689.8 b393.5 be
N2D1631.1 be581.4 be776.9 a729.9 d1103.4 a759.5 be631.1 a581.4 ab776.9 a729.9 abc1103.4 ab759.5 a
D2634.8 be656.6 be772.1 a1517.0 abc1597.7 a1185.6 a317.4 c328.3 ab386.1 b758.5 abc798.9 b592.8 ab
D3996.9 a857.1 abc911.0a1512.6 abc1584.3 a882.1 abc332.3 be285.7 b303.7 b504.2 c528.1 b294.0 c
氮肥 Nitrogen (N)nsnsnsnsnsnsnsnsnsnsnsns
密度 Density (D)****ns**ns**************
氮肥x密度NxDnsnsnsnsns*nsnsnsnsnsns
同一列不同小写字母表示在5%水平差异显著。**表示在1%水平差异显著;*表示在5%水平差异显著;ns代表差异不显著。缩写同表1
Different lowercase letters in the same column indicate significantly different at the 5% probability level. **: significantly different at the 1% probability level; *: significantly different at the 5% probability level; ns: not significant. Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

2.1.3 根体积 由表3可知, 氮肥对单位面积根体积的影响不显著, 对单株根体积的影响不显著(2019年收获期除外)。密度对单位面积根体积具有重要的影响, D2单位面积根体积比D1增加16.7%~92.7%, D3比D1增加18.7%~134.8%, D2、D3显著高于D1 (2018年收获期和2019年结荚期除外), D2和D3处理间差异不显著; 单株根体积随密度的增加呈降低的趋势, D2和D3分别比D1降低5.1%~41.6%和21.7%~58.1%, D2和D3处理间差异不显著。氮肥与密度互作对2018年结荚期单位面积根系体积的影响显著, 无氮(N0)条件下, D2、D3比D1的增幅显著高于低氮(N1)和高氮(N2)处理, 氮肥与密度互作对单株根体积的影响不显著。

Table 3
表3
表3氮肥和密度互作对花生根体积的影响
Table 3Effects of the interaction of nitrogen and density on root volume in peanut
氮肥水平 Nitrogen level种植密度
Plant density
单位面积根体积Root volume of unit area (cm3 pot-1)单株根体积Root volume per plant (cm3 plant-1)
2018201920182019
花针期
FS
结荚期
PS
收获期HS花针期
FS
结荚期
PS
收获期HS花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
N0D112.3 c30.6 b36.5 ab23.3 b24.8 b17.6 cd12.3 ab30.6 a36.5 a23.3 ab24.8 bc17.6 a
D225.6 b54.9 a37.4 ab34.4 ab45.0 ab20.7 bcd12.8 ab27.4 ab18.7 c17.2 ab22.5 bc10.4 c
D338.3 a55.6 a42.0 ab37.0 ab50.9 a23.8 abc12.8 ab18.5 abc14.0 c12.3 b17.0 bc7.9 c
N1D117.4 bc26.5 b28.4 b20.9 b40.9 ab15.4 d17.4 a26.5 ab28.4 b20.9 ab40.9 a15.4 ab
D226.4 b44.1 ab41.3 ab52.8 a44.7 ab21.2 bcd13.2 ab22.0 abc20.6 c26.4 a22.3 bc10.6 c
D326.3 b38.5 ab34.9 ab40.5 ab47.2 ab28.6 a8.8 b12.8 c14.0 c13.5 b15.7 c9.5 c
N2D110.1 c31.1 b35.5 ab19.2 b30.6 ab17.8 cd10.1 b31.1 a35.5 ab19.2 ab30.6 ab17.8 a
D219.0 bc33.5 b38.4 ab33.2 ab40.0 ab27.5 ab9.5 b16.7 bc19.2 c16.6 ab20.0 bc13.8 b
D328.6 ab44.9 ab42.2 a37.1 ab41.8 ab24.1 abc9.5 b15.0 bc14.1 c12.4 b13.9 c8.0 c
氮肥
Nitrogen (N)
nsnsnsnsnsnsnsnsnsnsns*
密度
Density (D)
****ns**ns**ns**********
氮肥×密度
N×D
ns*nsnsnsnsnsnsnsnsnsns
同一列不同小写字母表示在5%水平上差异显著。**表示在1%水平差异显著; *表示在5%水平差异显著; ns代表差异不显著。缩写同表1
Different lowercase letters in the same column indicate significantly different at the 5% probability level. **: significantly different at the 1% probability level; *: significantly different at the 5% probability level; ns: not significant. Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

2.1.4 根干重 由表4可知, 氮肥对单位面积和单株根干重的影响不显著, 而密度对根干重的影响显著, 随密度的增加单位面积根干重呈增加的趋势, D2和D3的单位面积根干重分别比D1增加-1.5%~66.0%和0.1%~92.8%, D2、D3显著高于D1 (除2018年收获期外); 单株根干重随密度的增加呈降低的趋势, D2和D3分别比D1降低17.0%~50.8%和35.7%~66.6%, D2和D3处理间差异不显著; 氮肥与密度互作对单位面积及单株根干重的影响不显著。

Table 4
表4
表4氮肥和密度互作对花生根干重的影响
Table 4Effects of the interaction of nitrogen and density on root dry weight in peanut
氮肥水平
Nitrogen level
种植密度
Plant density
单位面积根干重Root dry weight of unit area (g pot-1)单株根干重Root dry weight per plant (g plant-1)
2018201920182019
花针期
FS
结荚期
PS
收获期HS花针期
FS
结荚期
PS
收获期HS花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
N0D12.09 c6.03 ab5.69 a4.17 c3.62 b3.45 bc2.09 ab6.03 a5.69 a4.17 a3.62 bc3.45 a
D23.24 abc8.63 ab5.88 a5.92 b6.78 ab4.39 abc1.62 bc4.32 ab2.94 b2.96 bcd3.39 bc2.19 bc
D34.54 a8.71 ab6.19 a6.81 ab7.33 a4.59 ab1.51 bc2.90 b2.06 b2.27 d2.44 c1.53 c
N1D12.50 bc5.60 ab6.26 a3.54 c5.88 ab2.72 c2.50 a5.60 a6.26 a3.54 ab5.88 a2.72 ab
D23.40 abc8.95 a5.83 a6.62 ab6.96 a4.39 abc1.70 bc4.48 ab2.92 b3.31 bc3.48 bc2.20 bc
D33.50 ab8.12 ab5.11 a7.73 a7.32 a5.89 a1.17 c2.71 b1.70 b2.58 cd2.44 c1.96 bc
N2D12.57 bc4.99 b6.29 a3.43 c5.06 ab3.08 bc2.57 a4.99 ab6.29 a3.43 ab5.06 ab3.08 ab
D22.52 bc6.71 ab6.25 a5.96 b6.56 ab5.38 a1.26 c3.35 ab3.13 b2.98 bcd3.28 bc2.69 ab
D33.55 ab8.70 ab6.96 a6.94 ab6.35 ab4.47 abc1.18 c2.90 b2.32 b2.31 d2.12 c1.49 c
氮肥
Nitrogen (N)
nsnsnsnsnsnsnsnsnsnsnsns
密度
Density (D)
****ns*****************
氮肥×密度
N×D
nsnsnsnsnsnsnsnsnsnsnsns
同一列不同小写字母表示在5%水平差异显著。**表示在1%水平差异显著; *表示在5%水平差异显著; ns代表差异不显著。缩写同表1
Different lowercase letters in the same column indicate significantly different at the 5% probability level. **: significantly different at the 1% probability level; *: significantly different at the 5% probability level; ns: not significant. Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

2.2 氮肥和密度对花生植株性状的影响

表5可知, 氮肥对主茎叶片数的影响不显著, 对侧枝数、主茎高、侧枝长和第一节间粗的影响存在年度和时期间的差异。密度对主茎高、侧枝长(2019年花针期除外)的影响不显著, 对主茎叶片数、侧枝数和第一节间粗具有重要影响, 且存在年际间差异。随密度的增加, 主茎叶片数、侧枝数和第一节间粗呈逐步降低的趋势, 与D1相比, D2和D3主茎叶片数减少0~14.0%和4.9%~15.6%、侧枝数减少16.4%~28.2%和37.3%~44.4%、第一节间粗减少-1.8%~34.5%和4.0%~39.8%; 不同年度比较, 2018年的降幅大于2019年。氮肥与密度互作对2018年花针期主茎高、结荚期的侧枝数和侧枝长及成熟期主茎叶片数的影响显著, 对2019年花针期的侧枝长、收获期的主茎高、侧枝长的影响显著, 2018年成熟期主茎叶片数无氮(N0)条件下, D2、D3比D1的降幅小于低氮(N1)和高氮(N2)处理, 主茎高、侧枝长和侧枝数随氮肥和密度的变化趋势不明显。

Table 5
表5
表5氮肥和密度互作对花生植株性状的影响
Table 5Effects of the interatcion of nitrogen fertilizer and density on plant characteristics in peanut
年份
Year
氮肥水平
Nitrogen
level
种植密度 Plant
density
主茎叶片数
Leaves of main stem
侧枝数
Number of lateral branches
主莲尚
Main stem height (cm)
侧枝长
Lateral branch length (cm)
第一节间粗
First internode thickness (mm)
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
花针期
FS
结荚期
PS
收获期
HS
2018NOD112.0 a25.0 ab26.3 be21.7 a42.5 a35.3 a19.3 abc43.5 a53.6 a21.9b53.1 b57.9 ab7.8 a13.7 a
D211.3 a24.3 ab23.7 c15.7 b22.3 cd19.0 cd18.6 be54.5 a52.6 a20.2 b67.6 a54.1 ab7.0 abc9.9 b
D311.0a22.0 b26.3 be9.8 c18.3 cd18.7 cd23.0 a48.3 a51.1 a24.6 a50.1 b57.1 a5.9 be8.8 b
N1D111.7a25.3 ab30.0 a24.7 a25.3 cd26.0 abc18.3 c46.1 a50.7 a19.9 b54.9 ab69.0 a7.9 a13.4 a
D211.2a25.3 ab24.7 c16.8 b39.0 ab23.3 bed20.5 abc48.8 a56.0 a21.4 b55.2 ab59.4 ab6.5 abc9.1 b
D310.7 a22.3 b23.0 c14.3 b16.7 d20.0 bed17.7 c47.0 a50.6 a19.3 b51.2 b53.3 ab5.6 c8.0 b
N2D110.5 a27.0 a29.3 ab17.5 b29.0 be31.0 ab22.5 ab45.6 a54.0 a21.6 b58.4 ab60.7 a7.4 ab14.8 a
D211.2a24.0 ab25.3 c15.2 b19.7 cd24.0 abed18.7 be42.1 a52.1 a19.3 b49.4 b57.9 ab5.7 c8.4 b
D310.8 a22.7 ab23.0 c13.2 be23.3 cd12.7 d20.4 abc50.3 a45.9 a21.8b59.9 ab47.8 b7.3 ab8.4 b
氮肥 Nitrogen (N)nsnsns**nsnsnsnsnsnsnsnsnsns
密度 Density (D)ns*********nsnsnsnsnsnsns**
氮肥X密度NxDnsns*ns**ns**nsnsns**nsnsns
2019NOD115.0 a19.0 a21.7 ab18.3 ab18.0 bed19.3 ab21.3 a33.5 ab39.6 a26.7 a34.8 be42.8 a7.3 a6.6 cd6.8 ab
D213.7 a19.0 a19.0 b11.7b14.0 cd16.3 ab22.5 a34.1 ab31.7 be23.7 ab36.4 b34.4 c6.5 ab7.1 abed6.5 abc
D312.3 a16.7 b20.0 ab10.3 b11.3 d13.3 b19.6 a31.0b38.0 ab22.1 b32.3 c40.0 ab5.5 b6.0 d5.8 c
N1D114.0 a18.5 ab22.7 a21.0 a28.5 a26.0 a21.4 a35.1 ab36.3 abc23.2 ab37.5 b41.1 ab6.4 ab8.0 ab6.5 abc
D213.7 a18.7 ab19.7 ab16.7 ab21.0 abc18.7 ab23.1 a35.1 ab35.5 abc26.2 a37.4 b36.3 be7.2 a7.0 abed6.5 abc
D313.0 a17.3 ab19.7 ab16.3 ab12.7 cd14.7 b20.7 a34.5 ab32.8 be21.5 b37.5 b36.5 be7.2 a6.8 cd6.5 abc
N2D114.7 a19.5 a20.0 ab22.7 a24.5 ab22.7 ab21.8 a33.6 ab30.7 c24.0 ab41.3 a34.6 c6.4 ab8.2 a7.3 a
D213.7 a19.3 a20.0 ab20.0 a19.0 bed18.7 ab22.0 a38.1 a37.0 abc23.1 ab40.7 a42.0 a6.7 ab7.3 abc6.4 abc
D314.7 a19.5 a19.3 b11.7b17.5 bed14.7 b21.0 a36.6 ab37.4 ab24.1 ab41.1 a39.5 abc6.6 ab6.8 bed6.2 be
氮肥 Nitrogen (N)nsnsnsnsnsnsns*nsns**ns**ns
密度 Density (D)nsnsns*****nsnsns*nsnsns*ns
氮肥X密度NxDnsnsnsnsnsnsnsns**ns*nsnsns
同一列不同小写字母表tk在5%水平差异显著。**表7K在1%水平差异显著;*表7K在5%水平差异显著;ns代表差异不显著。缩写同表1
Different lowercase letters in the same column indicate significantly different at the 5% probability level. **: significantly different at the 1% probability level; *: significantly different at the 5% probability level; ns: not significant. Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

2.3 氮肥和密度对花生荚果产量的影响

图1可知, 氮肥和种植密度对花生产量具有重要的影响。荚果产量随氮肥水平增加的变化趋势因年份的不同而不同, 2018年随氮肥水平的增加呈逐步降低的趋势, 2019年不同氮肥处理间差异不显著。同一施氮水平, 不同种植密度间比较, 荚果产量随密度的增加呈增加的趋势, 2018年D2和D3分别比D1增产16.5%~47.7%和24.6%~ 41.5%, 2019年D2和D3分别比D1增产41.8%~ 99.9%和29.2%~49.0%。方差分析表明, 种植密度显著影响花生荚果产量, 氮肥、氮肥与密度互作的影响不显著。

图1

新窗口打开|下载原图ZIP|生成PPT
图1氮肥与密度互作对花生荚果产量的影响

标以不同小写字母表示在5%水平差异显著。处理同表1。
Fig. 1Effects of the interaction of nitrogen fertilizer and density on pod yield in peanut

Different lowercase letters indicate significantly different at the 5% probability level. Treatments are the same as those given in Table 1.


相对荚果产量定义为每年度各处理荚果产量与最大荚果产量的比值。由图2可知, 氮肥与相对荚果产量的关系可用y = -0.00001x2 + 0.0012x + 0.681二次方程模拟, 最佳施氮量为60.0 kg hm-2; 密度与相对荚果产量的关系可用y = -0.0021x2 + 0.0788x + 0.0361二次方程模拟, 最佳种植密度为18.8万株 hm-2

图2

新窗口打开|下载原图ZIP|生成PPT
图2氮肥与密度互作对花生相对荚果产量的影响

**表示在1%水平显著相关。
Fig. 2Effects of the interaction of nitrogen fertilizer and density on relative pod yield in peanut

** indicate significant correlation at the 1% probability level.


2.4 荚果产量与根系性状、植株性状的相关性分析

图3可知, 荚果产量与根干重、根体积呈极显著正相关, 根干重每增加1 g, 荚果产量增加16.2 g, 根体积每增加1 cm3, 荚果产量增加3.56 g; 荚果产量与根长、根表面积无显著相关关系。荚果产量与主茎叶片数呈显著正相关, 与主茎高、侧枝长呈极显著相关, 主茎叶片数每增加1片, 荚果产量增加4.9 g, 主茎高和侧枝长每增加1 cm, 荚果产量每桶分别增加2.6 g和2.1 g; 荚果产量与侧枝数和第一节间粗相关性不大。

图3

新窗口打开|下载原图ZIP|生成PPT
图3荚果产量与根系性状、植株性状的相关关系

圆圈和三角形分别表示根系性状、地上部植株性状与荚果产量的关系。*, **分别表示在5%和1%水平上显著相关。
Fig. 3Correlation coefficient between pod yield and root traits and plant characteristics

Circle and triangle mean the relationship between root, traits, plant characteristics of overground and pod yield, respectively. *, ** indicate significant correlation at the 5% and 1% probability levels, respectively.


3 讨论

根系是固定植株并从土壤中吸收和运输水分养分的重要器官, 遗传因素、施肥、种植密度等均可影响根系的形态建成[29,30,31]。研究表明, 增施氮肥, 根质量、根表面积、根长、根体积均显著增加[32,33]。Wu等[30]研究表明, 增施氮肥, 玉米根干重降低, 但根长增加。茄子总根长、总根干质量和产量随施氮量的增加先上升后下降[34]。本研究结果表明, 与对照相比, 增施氮肥对花生根干重、根表面积、根长、根体积的影响不显著。这可能由于土壤供氮水平较高, 增施的肥料氮不足以引起根系性状的显著变化, 今后将在此试验基础上开展长期定位氮肥试验, 进一步明确花生根系生长发育对氮肥的响应特征。密度对作物根系结构和生长发育具有重要的影响, 石德扬等[35]研究表明, 单株根系生物量、根长、根系表面积、根系活性吸收面积均随种植密度的增加而降低。梁慧敏等[36]研究表明, 单株根风干重与密度呈直线负相关, 群体根风干重与其呈曲线回归。本研究发现, 单株根长、根表面积、根体积及根系干重随密度的增加而降低, D1显著高于D2和D3, D2、D3处理间差异不显著; 单位面积根长、根表面积、根体积及根系干重随密度的增加而增加, D1显著低于D2和D3; 氮肥和密度互作对2019年收获期单位面积根长、根表面积的影响显著, 随密度增加, N1处理根长、根表面积的增加幅度显著高于N0和N2处理。

作物的根部特征与地上部分性状具有显著的相关性[37], 氮肥和密度对作物植株性状和生长发育具有重要的影响。研究表明, 增加密度, 作物单株分蘖数和地上部干重降低, 而单位面积分蘖数、叶片数和叶面积增加[38,39]。左青松等[17]研究表明, 根颈粗和冠层高度随密度的增加而降低。赵长星等[12]研究表明, 在一定的范围内, 随密度的增加, 花生主茎高、侧枝长呈增加的趋势。本研究表明, 氮肥对主茎叶片数的影响不显著, 对侧枝数、主茎高、侧枝长和第一节间粗的影响存在年度和时期间的差异。密度对主茎高、侧枝长(2019年花针期除外)的影响不显著, 对主茎叶片数、侧枝数和第一节间粗具有重要的影响, 且存在年际间差异。主茎叶片数、侧枝数和第一节间粗随密度的增加呈逐步降低的趋势, 合理密植有利于减少无效分枝, 增加有效枝数。修俊杰[40]也证实, 花生分枝数、叶片数随密度的增加呈减少趋势。

本研究表明, 氮肥对花生荚果产量的影响不显著, 在一定范围内, 减施氮肥, 荚果产量不会降低, 这可能与土壤肥力水平较高能够充分满足花生生长发育需求有关, 今后将进一步从花生的氮素需求、土壤氮的供应做深入的研究, 可为花生氮肥减施提供理论依据; 荚果产量随密度的增加呈增加的趋势, 但D2和D3差异不显著, 通过一元二次方程模拟得出, 适宜的单粒精播种植密度为18.8万株 hm-2, 而王才斌等[41]研究表明, 花生单粒精播适宜的密度为21~24万株 hm-2, 原因可能是本研究采用催芽足墒播种和间苗措施, 提高了花生的出苗和齐苗率。本研究中荚果产量与根体积、根干重呈极显著正相关, 与主茎叶片数呈显著正相关, 与主茎高、侧枝长呈极显著相关。因此, 在一定范围内, 增加单位面积根干重和根体积、促进地上植株的生长发育是花生增产的重要途径。

4 结论

氮肥对花生根系性状、根干重及产量的影响不显著, 对植株性状的影响存在年度和时期间的差异, 而密度对花生根系性状、根干重、植株性状及产量的影响显著。单位面积根长、根表面积、根体积、根干重和荚果产量随密度的增加而增加, 但增加到一定程度后不再增加; 而单株根长、根表面积、根体积、根干重、主茎叶片数、侧枝数、第一节间粗随密度的增加而降低。综合考虑产量和效益, 花生单粒精播适宜的氮肥(N)水平为60 kg hm-2, 种植密度为18.8万株 hm-2

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

万书波, 张佳蕾. 中国花生产业降本增效新途径探讨
中国油料作物学报, 2019,41:657-662.

[本文引用: 1]

Wan S B, Zhang J L. Discussion on new ways to reduce cost and increase efficiency of peanut industry in China
Chin J Oil Crop Sci, 2019,41:657-662 (in Chinese with English abstract).

[本文引用: 1]

邵长亮. 花生单粒精播节种高产理论与技术研究
莱阳农学院硕士学位论文, 山东烟台, 2005.

[本文引用: 1]

Shao C L. Study on Theory and Technology of Single-seed Precision Sowing for Saving Seed and High Yield in Peanut
MS Thesis of Laiyang Agricultural College, Yantai, Shandong, China, 2005 (in Chinese with English abstract).

[本文引用: 1]

张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响
中国农业科学, 2015,48:3757-3766.

DOI:10.3864/j.issn.0578-1752.2015.18.019URL [本文引用: 1]
【目的】在超高产地力条件下,研究单粒精播对花生个体发育与群体结构的影响,探讨超高产花生理想株型和合理群体构建,进一步挖掘花生的高产潜力。【方法】以普通大花生品种花育22号(HY22)为试验材料,分别在平度古岘镇、莒南板泉镇、冠县梁堂乡和宁阳葛石镇设置4块春花生超高产试验点,每个试验点安排单粒精播(SS)和双粒穴播(DS)2种种植方式。分别于开花期、结荚期、饱果期和成熟期对各试验点不同播种方式的花生进行植株性状考察,于成熟期对单株结果数、幼果数、秕果数、饱果数、双仁果数和经济系数等进行考察,收获时组织专家进行实收测产。【结果】(1)各试验点单粒精播花生的荚果平均产量比双粒穴播高13.92%,单株结果数显著增加是增产的原因,其中单粒精播每公顷果数(幼果除外)最高达到592.5万个。(2)生育前期单粒精播花生的主茎高、侧枝长、主茎节数、主茎绿叶数、分枝数、根冠比和叶面积系数均显著高于双粒穴播,有利于提早封垄,能有效增加光合面积。(3)成熟期单粒精播花生主茎绿叶数显著高于双粒穴播,有效光合时间得到了延长。(4)单粒精播条件下各试验点花生饱果期的单株果重与主茎高和侧枝长成负相关,与分枝数和叶面积系数呈显著正相关。(5)单产水平最高的莒南试验点,其单粒精播花生成熟期的单株果重与叶面积系数和经济系数极显著正相关。【结论】超高产条件下花生存在地上部冗余现象,单粒精播方式对合理优化超高产花生群体结构效果显著,分枝数是影响单粒精播花生单株果重的重要因素,而增加结果数提高经济系数则是其进一步增产的关键。
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation
Sci Agric Sin, 2015,48:3757-3766 (in Chinese with English abstract).

[本文引用: 1]

Xu C L, Huang S B, Tian B J, Ren J H, Meng Q F, Wang P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production
Front Plant Sci, 2017,8:1234.

DOI:10.3389/fpls.2017.01234URLPMID:28747925 [本文引用: 1]
Relatively low nitrogen (N) efficiency and heavy environmental costs caused by excessive N fertilizer applications with outdated fertilization techniques are current cultivation production problems with maize among smallholders in North China Plain. Although many studies have examined agronomical strategies for improving yields and N use, the integrated effects of these measures and the associated environmental costs are not well understood. We conducted a 2-year field study with two densities (67,500 plants ha(-1), which was similar to local farmers' practices, and 90,000 plants ha(-1)) and three N rates (0, 180, and 360 kg ha(-1), the rate local farmers' commonly apply) to test the integrated effects for maize production at Wuqiao experimental station in North China Plain. The higher planting density produced significant increases in grain yield (GY), N use efficiency (NUE), agronomic N efficiency (AEN), and N partial productivity (PFPN) by 6.6, 3.9, 24.7, and 8.8%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 7.3 and 4.3%, respectively. With a lower N application rate, from 360 to 180 kg ha(-1), GY was unchanged, and NUE, AEN, and PFPN all significantly increased by 6.2, 96.0, and 98.7%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 61.5 and 46.2%, respectively. The optimized N rate (180 kg N ha(-1)) for the 90,000 plants ha(-1) treatment achieved the highest yield with only 50% of the N fertilizer input commonly employed by local farmers' (360 kg N ha(-1)), which contributed to the increased N-uptake and N-transfer capacity. Therefore, our study demonstrated that agronomical methods such as increasing planting density with reasonable N application could be useful to obtain higher GY along with efficient N management to help lower environmental costs of maize production.

Pasley H R, Camberato J J, Cairns J E, Zaman Allah M, Das B, Vyn T J. Nitrogen rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern and southern Africa
Nutr Cycl Agroecosyst, 2020,116:397-408.

DOI:10.1007/s10705-020-10049-xURLPMID:32765186 [本文引用: 1]

Ciampitti I A, Vyn T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review
Field Crops Res, 2012,133:48-67.

DOI:10.1016/j.fcr.2012.03.008URL [本文引用: 1]

Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X U, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N
J Integr Agric, 2016,15:432-439.

DOI:10.1016/S2095-3119(15)61079-6URL [本文引用: 1]

吴正锋. 花生高产高效氮素养分调控研究
中国农业大学博士学位论文, 北京, 2014.

[本文引用: 1]

Wu Z F. Nitrogen Management for High Yield and High Efficiency of Peanut
PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).

[本文引用: 1]

Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain
Environ Pollut, 2006,143:117-125.

DOI:10.1016/j.envpol.2005.11.005URLPMID:16364521 [本文引用: 1]

Hecht V L, Temperton V M, Nagel K A, Rascher U, Pude R, Postma J A. Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number
Plant Soil, 2019,439:179-200.

DOI:10.1007/s11104-018-3764-9URL [本文引用: 1]

Farshbaf Jafari S, Pirzad A, Tajbakhsh M, Ghassemi Golezani K. Effects of water supply and plant density on leaf characteristics of Amaranth (Amaranthus caudatus L.). 2nd International Conference on Sustainable Environment and Agriculture IPCBEE. Singapore: LACSIT Press, 2014. pp 17-20.
[本文引用: 1]

赵长星, 邵长亮, 王月福, 宋传雪, 王铭伦. 单粒精播模式下种植密度对花生群体生态特征及产量的影响
农学学报, 2013,3(2):1-5.

URL [本文引用: 2]
为了阐明单粒精播花生高产栽培原理,以普通型花生品种“鲁花11号”为研究材料,采用穴播单粒,系统研究了不同种植密度下花生群体生态特征的变化及产量效益,确定了适宜的精播密度。结果表明,花生植株的主茎高度、侧茎长度均呈低密度范围内(13.5-19.5万株?hm-2)随密度增加而增加的变化趋势,但主、侧茎节数呈减少趋势。同时,适宜密度单粒精播可增加穴数,改善单株生长环境,植株间相互影响小,有利于塑造丰产株型,提高光能利用效率。在本试验条件下,花生单粒精播适宜的种植密度为20万粒(穴)?hm-2左右。研究认为,在一定密度范围内,花生单粒精播一方面有节种作用,另一方面又有增产效果,二者结合会带来更大效益,是取得花生高产高效的一项可行技术。
Zhao C X, Shao C L, Wang Y F, Song C X, Wang M L. Effects of different planting densities on population ecological characteristic and yield of peanut under the mode of single-seed precision sowing
J Agric, 2013,3(2):1-5 (in Chinese with English abstract).

[本文引用: 2]

张俊, 王铭伦, 于旸, 王月福, 赵长星. 不同种植密度对花生群体透光率的影响
山东农业科学, 2010, (10):52-54.

URL [本文引用: 1]
以青花7号花生品种为材料,在田间地膜覆盖栽培条件下,系统研究了不同种植密度对花生群体透光率的影响.结果表明:随种植密度的增加,垄上行间和垄间上、中、下部的透光率均呈递减趋势.通过垄上行间和垄间中后期透光率的变幅大小分析,认为本试验种植密度以15万穴/hm2群体内光照分布较为合理.
Zhang J, Wang M L, Yu Y, Wang Y F, Zhao C X. Effect of different planting density on light transmittance of peanut population
Shandong Agric Sci, 2010, (10):52-54 (in Chinese with English abstract).

[本文引用: 1]

Leskovsek R, Datta A, Simoncic A, Knezevic S Z. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.)
J Pest Sci, 2012,85:527-539.

DOI:10.1007/s10340-012-0433-2URL [本文引用: 1]
Common ragweed is an important annual weed in crop production, and is also considered to be a serious public health problem. Determination of common ragweed growth under various nitrogen (N) rate and plant density could aid the development of an integrated control program. Greenhouse and field experiments were conducted to determine the effects of N fertilizer and density on common ragweed growth and seed production. In the greenhouse study, the greatest shoot dry matter (SDM) plant(-1) was obtained with the 50 and 100 kg N ha(-1). In the field experiment, SDM plant(-1) in the low density plots responded favorably to the addition of medium and high levels of N compared to the field level of N. With increasing density, ragweed in higher density plots responded only with the highest N rate. The intensity of intraspecific competition increased with increasing density, thus total SDM plant(-1) was significantly reduced, regardless of N rate. Intraspecific competition also reduced the reproductive production of common ragweed where seed production decreased as plant density increased. Plants grown at higher density produced less seeds per plant basis; however, they produced a considerable number of seed on a per area land basis, which is important for the survival of the species and further expansion in agricultural land and non-crop areas. Common ragweed is a fast-growing species, capable of producing considerable biomass and seed at various pure stand densities and N rates. It also justifies the need for early season control to prevent seed production.

王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响
作物学报, 2020,46:395-407.

[本文引用: 1]

Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton
Acta Agron Sin, 2020,46:395-407 (in Chinese with English abstract).

[本文引用: 1]

张含笑, 林参, 左青松, 杨光, 冯倩南, 冯云艳, 冷锁虎. 种植密度和施肥量对油菜毯状苗生长的影响
作物学报, 2019,45:1691-1698.

DOI:10.3724/SP.J.1006.2019.94029URL [本文引用: 1]
-1的基础上喷施3 g L -1尿素溶液是培育毯状苗壮苗的合理组合。]]>
Zhang H X, Lin S, Zuo Q S, Yang G, Feng Q N, Feng Y Y, Leng S H. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings
Acta Agron Sin, 2019,45:1691-1698 (in Chinese with English abstract).

[本文引用: 1]

左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响
作物学报, 2015,41:758-765.

DOI:10.3724/SP.J.1006.2015.00758URL [本文引用: 2]
以华油杂62为材料,10月5日机械直播,在中氮(180 kg N hm–2)和高氮(270 kg N hm–2) 2个水平下设置5个密度(15×104、30×104、45×104、60×104和75×104株 hm–2)处理的裂区试验,研究产量、冠层结构、农艺和光合特征等指标。结果表明,2个氮水平下,分枝起点高度和冠层倒伏角度均随密度增加而增加,根颈粗和冠层高度均随密度增加而降低。在45×104株 hm–2密度范围内,低效分枝比例随密度增加而减少。中氮水平下,45×104和60×104株 hm–2处理产量较高,在2921.2~3109.8 kg hm–2之间。高氮水平下,30×104和45×104株 hm–2处理产量较高,在3607.2~3772.4 kg hm–2之间,与其对应的初花期叶面积指数和结实期角果皮面积指数分别为3.72~3.94和4.21~4.34;初花期和结实期的透光率分别为6.1%~7.4%和16.4%~18.1%;群体有效角果数为65.5×106~68.7×106 hm–2。与传统的移栽油菜相比,直播油菜通过“减氮增密”栽培措施,在纯氮用量270 kg hm–2条件下,2种密度(30×104和45×104株 hm–2)均可获得3600 kg hm–2以上产量,且适度密植可降低根颈粗,冠层相对集中,利于机械收获。]]>
Zuo Q S, Kuai J, Yang S F, Cao S, Yang Y, Wu L R, Sun Y Y, Zhou G S, Wu J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment
Acta Agron Sin, 2015,41:758-765 (in Chinese with English abstract).

[本文引用: 2]

Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
Ann Bot, 2013,112:347-357.

DOI:10.1093/aob/mcs293URLPMID:23328767 [本文引用: 1]
BACKGROUND: A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. * THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

White P J, George T S, Gregory P J, Bengough A G, Hallett P D, McKenzie B M. Matching roots to their environment
Ann Bot, 2013,112:207-222.

DOI:10.1093/aob/mct123URLPMID:23821619 [本文引用: 1]
BACKGROUND: Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. SCOPE: This article provides the context for a Special Issue of Annals of Botany on 'Matching Roots to Their Environment'. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.

Kanbar A, Toorchi M, Shashidhar H E. Relationship between root and yield morphological characters in rainfed low land rice (Oryza sativa L.)
Cereal Res Commun, 2009,37:261-268.

DOI:10.1556/CRC.37.2009.2.14URL [本文引用: 1]

杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系
中国农业科学, 2011,44:36-46.

URL [本文引用: 1]
植物根系既是水分和养分吸收的主要器官,又是多种激素、有机酸和氨基酸合成的重要场所,其形态和生理特性与地上部的生长发育有密切联系。本文综述了水稻根系形态生理与产量形成及水分养分吸收利用的关系,介绍了根系化学信号(激素、有机酸等)对稻米品质形成的作用及根尖细胞超微结构与地上部生长发育关系的最新研究进展,讨论了水稻根系研究存在的问题和今后研究的重点。]]>
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization
Sci Agric Sin, 2011,44:36-46 (in Chinese with English abstract).

[本文引用: 1]

Chen X C, Zhang J, Chen Y L, Li Q, Chen F J, Yuan L X, Mi G H. Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China
Plant Soil, 2014,374:121-130.

DOI:10.1007/s11104-013-1872-0URL [本文引用: 1]
Root growth, nitrogen uptake, dry matter accumulation and yield formation of six maize hybrids released from 1973 to 2000 in China were compared. Experiments were conducted under low and high nitrogen supply in a black soil in Northeast China in 2010 and 2011.While nitrogen accumulation, dry matter production and yield formation have been increased, modern maize breeding in China since 1990 has reduced root length density in the topsoil without much effect on root growth in the deeper soil. The efficiency of roots in acquiring N has increased so as to match the requirement of N accumulation for plant growth and yield formation. The responses of root growth, nitrogen and dry matter accumulation, and grain yield to low-N stress were similar in the more modern hybrids as in the older ones.Modern maize breeding has constitutively changed root and shoot growth and plant productivity without producing any specific enhancement in root responsiveness to soil N availability.]]>

Hill J O, Simpson R J, Moore1 A D, Chapman D F. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition
Plant Soil, 2006,286:7-19.

DOI:10.1007/s11104-006-0014-3URL [本文引用: 1]
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.]]>

郑亚萍, 王春晓, 郑祖林, 王鹏, 冯昊, 郑永美, 于天一, 王才斌. 磷对花生根系形态特征的影响
中国油料作物学报, 2019,41:622-628.

[本文引用: 1]

Zheng Y P, Wang C X, Zheng Z L, Wang P, Feng H, Zheng Y M, Yu T Y, Wang C B. Effect of phosphorus (P) on root morphology characteristics of peanut
Chin J Oil Crop Sci, 2019,41:622-628 (in Chinese with English abstract).

[本文引用: 1]

郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应
核农学报, 2017,31:2418-2425.

[本文引用: 1]

Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut
J Nucl Agric Sci, 2017,31:2418-2425 (in Chinese with English abstract).

[本文引用: 1]

Elazab A, Serret M D, Araus J L. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes
Planta, 2016,244:125-144.

DOI:10.1007/s00425-016-2500-zURLPMID:26992389 [本文引用: 1]
MAIN CONCLUSIONS: The selection of the ideal root drought adaptive traits should take into account the production and maintenance of root tissues alongside the capacity to capture soil resources. Ten old and modern Spanish durum wheat (Triticum turgidum L. var durum) genotypes were grown in lysimeters under two contrasting water and nitrogen regimes to study the effect of such growth conditions on: (1) the aerial biomass, (2) the growth and structure of the roots and (3) the relationships of the root structure with aerial biomass, photosynthetic and transpirative characteristics and water use efficiency. Both high water and nitrogen regimes significantly increased aerial biomass. Root dry biomass and root length increased and decreased in response to improved water supply and nitrogen regimes, respectively. No significant correlations were detected between aerial biomass and any root trait under well-watered conditions. Under water stress aerial biomass was negatively correlated with root dry biomass, root length and root weight density and positively correlated with the specific root length, particularly for the subset of old genotypes. The high nitrogen regime significantly enriched the carbon isotope composition of the flag leaf (delta (13)CFL) and hindered the effect of the high water regime on decreasing delta (13)CFL enrichment. Thus, positive correlations of aerial biomass with delta (13)CFL were detected regardless of the water regime. The study revealed: (1) the importance of root traits for higher aerial biomass under the low water regime; (2) that the interaction between nitrogen and the water regime may affect the predictive nature of the delta (13)C in drought breeding programs; and (3) the selection of the ideal root system structure should take into account the metabolic costs of the production and maintenance of root tissues alongside the capacity of capturing resources.

丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响
中国农业科学, 2015,48:872-881.

DOI:10.3864/j.issn.0578-1752.2015.05.05URL [本文引用: 1]
×hm-2)、N2(高氮,180 kg×hm-2) 3个施氮水平,研究抗旱型品种花育22号和干旱敏感型品种花育23号2个不同抗旱性花生品种根系生物量、根长、根系表面积、根系伤流量及产量变化。分别采集0—20 cm、20—40 cm和40 cm以下土层根系样品,采用WinRhizo Pro Vision 5.0a分析程序对扫描根系图像进行分析。【结果】不同抗旱性花生品种根系发育在不同水分条件下对施用氮肥的响应不同。对于抗旱型花生品种花育22号,与不施氮肥相比,干旱胁迫处理下施用氮肥降低其总根长、总根系表面积和0—20 cm土层内根长和根系表面积,增加了40 cm以下土层内根系生物量、根长和根系表面积;正常供水处理下施用氮肥处理降低其0—20 cm土层内根系生物量、根长和根系表面积,但增加40 cm以下土层内根系性状。干旱敏感型品种花育23号的根系对水分和氮肥的响应与抗旱型品种花育22号不同:干旱胁迫处理下,施用氮肥增加其总根系生物量和总根长和40 cm以下土层内根系生物量、根长和根系表面积;正常供水处理下,施用氮肥降低其40 cm以下土层内根长和根系表面积。不同抗旱性花生品种根系伤流强度对水氮互作的响应一致,与正常供水处理相比,两品种干旱胁迫下根系伤流强度均降低,干旱敏感型品种花育23号的降低幅度大于抗旱型品种花育22号。施用氮肥增加两品种干旱胁迫处理下的根系伤流强度,提高其干旱胁迫下产量;正常供水处理下中氮处理增加抗旱型品种花育22号的产量,对干旱敏感型品种花育23号的产量无显著影响。两年试验条件下水分和氮肥处理对产量的互作效应均达显著差异水平。相关性分析表明,干旱胁迫处理下40 cm以下土层内根长、根系表面积与产量间的相关性达显著或极显著水平;正常供水处理下20—40 cm土层内根系表面积与产量达显著相关;两种水分条件下根系伤流量均与产量达显著相关水平。【结论】干旱胁迫处理下增施氮肥能提高花生产量,改善花生根系的生长,增加40 cm以下土层内的根系生物量、根长和根系表面积,提高花生根系伤流强度。]]>
Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qin F F, Song W W, Wan S B. Effects of water and nitrogen interaction on peanut root growth and yield
Sci Agric Sin, 2015,48:872-881 (in Chinese with English abstract).

[本文引用: 1]

冯烨, 郭峰, 李宝龙, 孟静静, 李新国, 万书波. 单粒精播对花生根系生长、根冠比和产量的影响
作物学报, 2013,39:2228-2237.

DOI:10.3724/SP.J.1006.2013.02228URL [本文引用: 1]
以大粒型花生品种花育22为试验材料,设每公顷19.5万穴(S1)和22.5万穴(S2) 2个单粒播处理,双粒穴播每公顷15万穴处理为对照进行大田试验,对比单粒精播与双粒穴播对花生耕层根系生长动态、根冠比和产量的影响差异。与对照相比,单粒精播S1处理在开花后50~70 d的根系形态指标和干物质积累动态明显改善,耕层根系长度、体积和吸收面积在0.05水平上显著增加,根系干物质积累量(DMA)和积累速率(DMAR)也明显提高;S1和S2处理开花后40~70 d根冠比明显提高,并保证冠层和荚果较高的DMA和DMAR,通过提高单株生产力,实现群体增产,其中S1处理为佳,可在节种35%的前提下,增产7.98%~8.38%,增产效果显著。本研究说明单粒精播可保证花生根系相对较强的生长优势,协调根冠比,壮个体,强群体,充分发挥单株生产潜力,实现花生高产。]]>
Feng Y, Guo F, Li B L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing on root growth, root-shoot ratio, and yield in peanut (Arachis hypogaca L.)
Acta Agron Sin, 2013,39:2228-2237 (in Chinese with English abstract).

[本文引用: 1]

Li H B, Wang X, Brooker R W, Rengel Z, Zhang F S, Davies W J, Shen J B. Root competition resulting from spatial variation in nutrient distribution elicits decreasing maize yield at high planting density
Plant Soil, 2019,439:219-232.

DOI:10.1007/s11104-018-3812-5URL [本文引用: 1]

Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009
Sci China Life Sci, 2011,54:642-650.

DOI:10.1007/s11427-011-4186-6URLPMID:21748587 [本文引用: 2]
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modern breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L(-1), HN) and low N (0.04 mmol L(-1), LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGR(root)), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.

张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响
中国农业科学, 2019,52:34-44.

DOI:10.3864/j.issn.0578-1752.2019.01.004URL [本文引用: 1]
-1土)和高氮(N2,0.24 g N·kg -1土)。【结果】 水分、氮素均显著影响玉米苗期的植株生长、根系发育、氮素吸收与利用,且两因素对植株干重、根系形态、吸氮量和氮肥利用率交互作用显著。土壤水分亏缺或过量均抑制了植株生长、干物质累积、根系发育和氮素吸收。W0处理的负面影响最为严重,其地上部干重、根系干重和植株吸氮量与W2处理相比分别降低55.5%、60.1%和47.4%,氮肥利用率下降6.4个百分点,根长和根表面积分别减少58.2%和59.5%。施氮显著促进玉米苗期植株生长与氮素吸收,降低根冠比,且不同水分条件下氮肥效应及对根系发育的影响存在明显差异。水分适宜条件下施氮促进根系生长,显著增加根长、根表面积和根体积,植株干重和吸氮量增幅最高。干旱胁迫条件下施氮抑制了根系发育,显著降低根长和根表面积,氮肥效应偏低。水分过量条件下施氮改善根系生长,但施氮效应仍低于W2处理。各水分条件下,N1处理的根长和根表面积均高于N2处理,而体积接近或更小,说明低氮增加了细根的比例。水分、氮素不仅显著影响根系形态,也导致根系空间分布出现明显差异。干旱胁迫促进根系下扎,增加深层土壤的根长分布,W0和W1处理0—12 cm土层根长比例相比W2处理分别下降11.0和8.3个百分点,而24—36 cm土层分别提高9.5和6.9个百分点。与干旱胁迫相反,水分过量趋向于增加根系在表层土壤的聚集。施氮显著促进表层土壤的根系分布,N1和N2处理0—12 cm土层根长比例相比N0处理分别增加16.3和13.7个百分点,而24—36 cm土层分别下降11.5和12.5个百分点。所有水-氮处理中,W1N1处理根系的空间分布最为均衡。【结论】 水分、氮素对玉米苗期生长和根系发育有显著的耦合效应,适宜的水、氮措施可优化根系形态与空间分布,增加植株干重和氮素吸收利用。春玉米生产中建议降低氮肥基施用量以发挥水氮耦合效应,促进根系下扎和细根增殖,提高植株耐旱性和氮肥利用率。]]>
Zhang X Y, Wang Y, Chen J, Chen A J, Wang L Y, Guo X Y, Niu Y L, Zhang X Y, Chen L D, Gao Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage
Sci Agric Sin, 2019,52:34-44 (in Chinese with English abstract).

[本文引用: 1]

杨明, 陈历儒, 王继玥, 宋海星, 欧中甜. 氮素对油菜根系生长和产量形成的影响
西北农业学报, 2010,19(4):66-69.

[本文引用: 1]

Yang M, Chen L R, Wang J Y, Song H X, Ou Z T. Effect of nitrogen on root growth and yield formation of rape
Acta Agric Boreali-Occident Sin, 2010,19(4):66-69 (in Chinese with English abstract).

[本文引用: 1]

林国林, 赵坤, 蒋春姬, 韩晓日, 金兰淑. 种植密度和施氮水平对花生根系生长及产量的影响
土壤通报, 2012,43:1183-1186.

[本文引用: 1]

Lin G L, Zhao K, Jiang C J, Han X R, Jin L S. Effect of densities and nitrogen application levels on root growth and yield of peanut
Chin J Soil Sci, 2012,43:1183-1186 (in Chinese with English abstract).

[本文引用: 1]

杨振宇, 张富仓, 邹志荣. 不同生育期水分亏缺和施氮量对茄子根系生长、产量及水分利用效率的影响
西北农林科技大学学报(自然科学版), 2010,38(7):141-148.

[本文引用: 1]

Yang Z Y, Zhang F C, Zou Z R. Coupling effects of deficit irrigation in different growth stages and different nitrogen applications on the root growth, yield, WUE of eggplant
J Nor A&F Univ, 2010,38(7):141-148 (in Chinese with English abstract).

[本文引用: 1]

石德杨, 李艳红, 夏德军, 张吉旺, 刘鹏, 赵斌, 董树亭. 种植密度对夏玉米根系特性及氮肥吸收的影响
中国农业科学, 2017,50:2006-2017.

DOI:10.3864/j.issn.0578-1752.2017.11.006URL [本文引用: 1]
玉米是中国第一大粮食作物,在国家粮食安全中具有举足轻重的作用。选用耐密型品种,增加种植密度是现在玉米获得高产的主要措施之一。然而,高密度种植加剧了玉米生长空间的压力,导致单株生长受到抑制,单株产量降低。根系作为吸收土壤水分与养分的主要器官,其生长受密植条件抑制。研究夏玉米品种根系特性对密度响应的基因型差异,探明密植条件下耐密型夏玉米根系特性与氮素吸收、利用的关系,为耐密型夏玉米品种的根系改良及密植条件下养分与水分管理提供依据。【方法】试验于2014—2015年在山东农业大学黄淮海区域玉米技术创新中心进行,以耐密型品种郑单958(ZD958)和不耐密型品种鲁单981(LD981)为试验材料,采用土柱栽培与15N标记技术相结合的技术手段,研究不同种植密度下(D1,52 500 plants/hm2与D2,82 500 plants/hm2),不同耐密型品种根系性状及氮素吸收利用情况对种植密度的响应。【结果】增加种植密度可显著提高夏玉米籽粒产量,但两品种单株籽粒产量均显著降低。两品种根系生物量、根长、根系表面积、根系活性吸收面积均随种植密度的增加而降低;D1条件下,LD981根系各项指标生育前期高于ZD958,乳熟期后均低于或显著低于ZD958。D2条件下,两品种根系各项指标生育前期差异不显著,而生育后期LD981显著低于ZD958;地上部单株绿叶面积与穗位叶净光合速率受基因型及密度影响,变化趋势与根系一致。两品种根冠质量比受密度增加影响差异不显著,但根冠活性面积比显著降低;增加种植密度两品种单株氮素积累量及氮利用效率显著降低,肥料氮回收率、氮肥偏生产力均显著提高,但肥料氮所占植株氮素积累量的比例不受密度变化影响;D2下ZD958植株肥料氮含量、肥料氮所占比例、肥料氮回收率及氮肥偏生产力显著高于LD981。【结论】耐密型品种ZD958根系受密度影响较小,高密度下,能够维持相对较高的根量、根长、根系吸收面积及根系活力,且高值持续期长,生育后期衰老缓慢,保证了植株对氮素吸收,有利于地上部进行光合生产、获得较高籽粒产量;高密度下ZD958籽粒库容较高、库调节能力较强,是其氮利用效率及氮肥偏生产力显著高于LD981的主要原因。]]>
Shi D Y, Li Y H, Xia D J, Zhang J W, Liu P, Zhao B, Dong S T. Effects of planting density on root characteristics and nitrogen uptake in summer maize
Sci Agric Sin, 2017,50:2006-2017 (in Chinese with English abstract).

[本文引用: 1]

梁慧敏, 曹致中. 密度对根蘖型苜蓿根系的影响
草业学报, 1996,5(4):30-34.

[本文引用: 1]

Liang H M, Cao Z Z. Effects of plant density on root system of creeping-rooted alfalfa
Acta Pratac Sin, 1996,5(4):30-34 (in Chinese with English abstract).

[本文引用: 1]

洪彦彬, 周桂元, 李少雄, 刘海燕, 陈小平, 温世杰, 梁炫强. 花生根部特征与地上部分性状的相关性分析
热带作物学报, 2009,30:657-660.

URL [本文引用: 1]
通过田间试验分析12个广东省区试花生品种根系特征与地上部分性状的相关性。结果表明:根质量在各生育期均与地上部质量、总质量呈显著或极显著正相关关系;开花期根系活力与地上部分多数性状呈极显著正相关关系,不同时期的根系活力均与成熟期产量呈显著正相关关系;成熟期根冠比与产量呈显著负相关关系。说明花生根系特征与地上部分性状关系密切,花生生长后期保持根系活力对产量的形成具有重要作用。
Hong Y B, Zhou G Y, Li S X, Liu H Y, Chen X P, Wen S J, Liang X Q. Correlation analysis of root and aboveground traits in peanut (Arachis hypogaea L.)
Chin J Trop Crops, 2009,30:657-660 (in Chinese with English abstract).

[本文引用: 1]

Soleymani A, Shahrajabian M H, Naranjani L. Determination of the suitable planting date and plant density for different cultivars of barley (Hordeum vulgare L.) in Fars
Afr J Plant Sci, 2011,5:284-286.

[本文引用: 1]

Moosavi S G, Seghatoleslami M J, Moazeni A. Effect of planting date and plant density on morphological traits, LAI and forage corn (Sc. 370) yield in second cultivation
Intl Res J Appl Basic Sci, 2012,3:57-63.

[本文引用: 1]

修俊杰. 不同密度单粒精播对花生农艺性状光合特性及荚果产量的影响
农业与技术, 2018,38(9):4-7.

[本文引用: 1]

Xiu J J. Effects of different density on agronomic characters, photosynthetic characteristics and pod yield of peanut under single seed precision sowing
Agric Technol, 2018,38(9):4-7 (in Chinese).

[本文引用: 1]

王才斌, 成波, 迟玉成, 孙秀山, 张吉民, 苗丰柞, 宇仁娥. 高产花生单粒植群体密度研究
花生科技, 1996, (3):17-19.

[本文引用: 1]

Wang C B, Cheng B, Chi Y C, Sun X S, Zhang J M, Miao F Z, Yu R E. Study on population density of high yield peanut under single seed planting
Peanut Sci Technol, 1996, (3):17-19 (in Chinese).

[本文引用: 1]

相关话题/作物 土壤 根系 氮肥 密度