删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

裂纹矩张量反演的传感器排布形式*

本站小编 Free考研考试/2021-12-25

能源问题是当前中国面临的重大问题,因此推动页岩气等非常规油气资源的开采和利用具有非常重要的意义。当前页岩气开采多采用水力压裂技术,其中实时监测水力致裂裂纹的发展情况、判读裂纹开裂机制能够为压裂方案的优化提供切实的依据,对提高页岩气产量至关重要。目前广泛采用的方法是基于矩张量理论的裂纹实时监测方法,即通过裂纹开裂产生的声发射信号反演裂纹矩张量,进而求解裂纹信息[1-2]。矩张量理论最早发展于地球物理学领域,被用来监测地震的震源机制。Burridge和Knopoff[3]根据动力学等效概念,提出了使用动态等效力来描述裂纹张开过程。进而,Knopoff和Randall[4]讨论了几种特殊形式矩张量对应的裂纹形态。为探索矩张量理论的应用价值,早期很多****[5-7]尝试通过面波来反演裂纹矩张量。由于技术水平的限制,为了得到稳定、唯一的矩张量反演结果,计算中需要人工引入多种约束条件。由于约束条件的不同会影响矩张量反演结果,约束条件的选取必须具有可靠的物理依据,由此也引出了关于裂纹类型和矩张量形式的讨论[8-9]。在总结前人研究的基础上,Aki和Richards[10]详细推导了裂纹矩张量等效的理论基础,并给出了矩张量表述的地震波表达式。以此为基础,Ohtsu[11]提出利用地震波中远场压缩波(P波)成分反演矩张量的方法,该方法形式简单并且针对工程应用条件作了相应的改进和简化。后续对矩张量反演方法的研究大多是针对矩张量反演过程的改进[12-13]和反演结果可靠性的分析[14-15]
在矩张量反演中,噪声是一个不可忽视的问题。由于地质结构存在显著的不均匀性和各向异性[16-17],弹性波在介质中传播时会发生明显的散射、反射等现象[18-19]。另外,矩张量反演中的点震源假设和远场假设将弹性波信号理想化,导致反演过程不考虑裂纹开裂产生的高频波和中近场成分的影响。对于矩张量反演,这部分弹性波成分也可以看作特殊的噪声信号。由于噪声信号成分大多具有不确定性,因此矩张量反演结果会出现无法预料的偏差甚至错误[20-21]。针对噪声问题,目前常用的手段是在开始反演前,使用数字信号处理方法对声发射信号进行处理[22],然而,裂纹动力学特性无法预先了解,地质结构也是复杂且未知的,导致噪声信号的特征很难评估,由此可见对噪声信号的筛选和处理是一件非常困难的事情。
裂纹矩张量反演方法的本质,是通过传感器捕捉裂纹开裂产生的声发射信号幅值在空间中的分布规律,进而识别特定的裂纹。合理的传感器空间排布形式能够降低噪声对反演结果的影响,提高反演结果的精度。目前,对矩张量反演中传感器位置的研究还比较少。对于地震的矩张量反演[20, 23-24],由于地震台站多为永久性建筑,工程中一般根据震源定位选择临近的地震台站所得地震波形进行反演。对于实验室条件下的岩石压裂声发射实验[25-27],虽然试件尺寸较小且传感器布置的自由度很高,研究中传感器位置的选取仅仅根据均匀排布、尽可能扩大覆盖面等依据来确定。总体来看,矩张量反演中对于传感器(台站)位置选择的研究还不够深入。因此,本文从传感器空间排布形式入手,以相应的理论分析为基础,研究在声发射信号包含一定噪声的情况下,不同的传感器排布方案取得的矩张量反演精度,为工程应用提供相关的意见和指导,即如何选择合适的传感器排布形式来提高裂纹矩张量反演精度。
1 理论分析 1.1 裂纹矩张量反演理论 根据矩张量理论的裂纹载荷等效原理[10],任何一个裂纹都可以通过唯一的矩张量来描述。在均匀各向同性介质中,对于一个裂纹,假设裂纹面的法向向量为n,裂纹面开裂的位移向量为l,则其对应的矩张量形式为
(1)

式中:mpq为矩张量元素;λμ为拉梅常数;当p=q时,δpq取1,否则取0;lklp为裂纹面位移单位向量的分量;nknq为裂纹面法向单位向量的分量;V为裂纹开裂体积。
由矩张量表述的裂纹开裂弹性波位移场的表达式为[10]
(2)

式中:un为弹性体中某处沿方向n的位移,n=1, 2, 3,分别代表xyz 3个坐标方向; Σ代表裂纹面; Gnp, q为第2类格林函数; S(t)为震源函数。由于式(2)展开后的形式过于复杂,不利于工程应用,因此引入远场假设和点震源假设来对其进行简化,其中远场假设认为传感器与震源的距离足够远,此时声发射信号中只包含远场成分;点震源假设认为震源尺寸远小于弹性波波长,因此裂纹面上每个点发出的弹性波的相位都相同,且每个点到任意一个传感器的距离也相同,此时裂纹的真实几何形状可以忽略。则由矩张量表述的裂纹弹性波表达式可简化为[10]
(3)

式中:rnrprq为震源-传感器连线方向余弦的分量,n, p, q=1, 2, 3,分别代表xyz 3个坐标方向;ρ为介质材料密度;R为传感器与震源的距离;vpvs分别为纵波波速和横波波速。进一步,可认为震源函数具有单位阶跃形式[28],且考虑到压缩波(P波)成分的波速最快,工程中使用式(4)来反演矩张量[29]
(4)

式中:An为传感器接收到的沿n方向位移信号的初动极大值;Cs为传感器灵敏度参数,工程中该参数一般通过试验测定,数值试验中取1;Ref(t, r)表示反射系数,用于修正地面反射对弹性波幅值的影响,数值试验中取rnmpq表示矩张量元素,一个完整的矩张量包含9个元素,其中独立元素有6个。也就是说,通过6个不同位置的传感器可以得到6个与式(4)形式相同的代数方程,方程联立可以求解得到完整的矩张量。
1.2 传感器位置选择理论 矩张量反演方法的核心是求解一组方程组,即由6个传感器得到的形如式(4)的方程所组成的方程组,当考虑噪声信号时,方程组可以写成的矩阵形式为
(5)

进而式(5)可写成

其中:B为方程组的系数矩阵;Me为矩张量元素组成的列向量;AS为真实信号幅值;AN为噪声信号幅值。本文希望在AN取值出现小幅度变化时,解向量Me的求解结果能够保持稳定。为了降低列向量Me对噪声信号的敏感度,根据数值分析理论,需要降低系数矩阵B的条件数,条件数的定义为
(6)

适中:范数取无穷范数形式。
选择合理传感器的依据是使得系数矩阵的条件数尽可能的取小值。对比式(4)和式(5)可知,影响系数矩阵B取值的因素包括传感器之间的相对位置和传感器与震源的相对位置。一般情况下,传感器的位置选定与地震发生之前,研究传感器与震源的相对位置意义较小且会大幅度增加研究复杂性。因此研究只考虑传感器之间的相对位置。由于矩张量反演至少涉及6个传感器,即6个空间位置,18个自由度。通过理论推导传感器最佳位置非常困难,因此本文通过枚举的方法,通过大量的随机分布实验寻找传感器布局的一般规律。
2 随机分布实验 2.1 传感器位置选取及坐标变换 为了寻找传感器布局的一般规律,研究使用枚举法随机选择不同的传感器布局,通过对比不同传感器布局下的矩张量反演误差来寻求最优的分布模式。首先在x-y面上一个半径为1 m的圆内(记作C0圆)随机选择6个初始传感器坐标点,记作L0,其中L0是6×3阶矩阵,每一行存储一个传感器的坐标。然后将传感器坐标进行坐标变换:
(7)

式中:D为平移矩阵,每一行都相同且等于方向向量 L0T是矩阵L0的坐标变换,L0T存储的点坐标仍位于半径为1 m的圆内(记作C1圆),但是圆所在的平面垂直于方向向量d。本文的研究对象是传感器排布形式,传感器之间的距离和传感器与震源的距离并非本文的关注内容,其取值不会对研究结论造成影响。工程实际中,距离的取值取决于实际的工程条件,其在不同的工程实践中差别很大。为提高反演精度,传感器之间的距离应尽可能取较大的值。在确保不同次实验结果之间具有可比性的前提下,为了简化研究过程,本文直接取R=1 000 m,经过式(7)所示的计算过程后,L中存储了最终的传感器位置,此时传感器位于同一个平面内的一个半径为100 m的圆内(记作C2圆)。以L中存储的传感器位置坐标开展矩张量反演,并作为一次实验。
2.2 声发射信号构造 为了探究合理的传感器排布形式,研究需要合适的声发射数据用于矩张量反演。为了简化研究,排除其他因素的影响。本文使用人工合成的声发射信号,在基础信号中叠加一定比例的噪声信号,考察不同传感器排布形式对噪声信号的敏感程度。针对特定的裂纹类型,基础信号使用式(3)计算,震源函数取类单位阶跃形式[11]。噪声信号的幅值根据基础信号的均方根计算:
(8)

式中:F为基础信号的整体幅值水平;f0(ti)为ti时刻基础信号的数值;N为位移序列中元素的个数。在基础信号f0(ti)的基础上,叠加白噪声信号,即
(9)

其中:f(ti)为叠加上噪声信号之后的声发射信号,称之为真实信号;α为噪声信号占基础信号的比例;Rand(-1, 1)表示区间[-1, 1]上的一个均布随机数。
2.3 反演误差计算 为了定量研究传感器排布形式对裂纹矩张量反演精度的影响,本文提出了一种矩张量反演误差计算方法。传统的矩张量分解处理方法计算过程复杂,且处理结果重点反映了裂纹的物理特性,对矩张量数学特征的反映则不够直接和明显。因此,参照线性代数中范数的概念,将矩张量看作一个3×3的矩阵,通过构造特定形式的范数来定量表征矩张量反演误差。
裂纹矩张量反演结果的误差计算方法应综合考虑2个方面:一方面,最终的误差结果应考虑所有矩张量元素的误差情况;另一方面,根据各个矩张量元素取值的大小,不同矩张量元素误差对最终误差结果影响的权重应具有区分度。综合以上两方面的考虑,误差计算方式为
(10)

式中:e为矩张量的反演误差;M为矩张量反演结果;M0为矩张量真实结果;Ne为矩张量元素的个数;max(M0)为矩阵中所有元素绝对值中的最大值;||·||F表示矩阵Frobenius范数,相应的表达式为
(11)

3 数值实验结果 根据式(7)产生100组传感器随机分布形式,进而根据式(3)求解相应位置处的声发射信号,根据式(4)反演矩张量,最后通过式(10)求解反演误差。文献[10]表明,地震裂纹主要以剪切裂纹为主,因此实验选择剪切裂纹作为震源。在岩石介质中,存在同一个区域内包含多个裂纹源的情况,多个裂纹的识别主要依赖于声发射信号初至波到时的拾取精度。另外,声发射事件的强度也是一个重要指标,但声发射事件强度的识别依赖于声发射信号初至波幅值的识别精度。总体来看,声发射事件的发生数和强度的识别主要依赖于信号处理精度,与传感器排布形式的关系相对较小。因此,为了简化研究过程,数值实验中只考虑单一震源具有相同震源强度的情况。
当噪声水平α=2%时,相应的误差统计结果如图 1所示。图中每一个点代表一种随机传感器分布模式,极坐标图径向坐标代表反演误差,周向坐标随机选取,没有实际物理意义,其作用是区分每次反演结果。
图 1 100种传感器随机排布形式反演得到的矩张量反演误差对比 Fig. 1 Comparison of moment-tensor inversion errors calculated with 100 sensor stochastic arrangements
图选项




图 1中找出最靠近中心,即误差最小的3个结果,画出对应的传感器排布形式,如图 2所示,图中星号代表传感器位置。由图 2可以看出,3种传感器排布形式存在一定的相似性,即一个传感器接近圆形区域的圆心,其他5个传感器则靠近圆形边界,且传感器之间的方位差别相对比较均衡。由此可以猜想,性能最好的传感器排布形式是正五边形的形式:第1个传感器布置在圆形,其他5个传感器分别布置在圆形内接正五边形的5个角点上,如图 3所示,图中黑色原点代表传感器位置。
图 2 图 1中矩张量反演误差最小的3个结果对应的传感器排布形式示意图 Fig. 2 Schematic of sensor arrangements corresponding to three moment-tensor inversion errors with minimum values in Fig. 1
图选项




图 3 传感器正五边形排布形式示意图 Fig. 3 Schematic of sensors with an arrangement of regular pentagon
图选项




为了探究正五边形传感器排布形式下的矩张量反演表现,将正五边形传感器排布形式应用于矩张量反演中,并将计算结果与随机传感器排布形式所得结果进行对比。根据式(7)计算出正五边形形式中6个传感器的空间最终位置为
(12)

为使结果具有可比性,正五边形传感器(见式(12))分布在一个半径为100 m的圆形区域内,与随机传感器的分布范围相同。将不同传感器排布形式计算得到的矩张量反演误差画图,如图 4所示。其中,十字符号(10个)代表正五边形传感器排布形式得到的矩张量反演误差,米字符号(100个)代表随机传感器排布形式得到的反演误差。噪声水平α取1%,2%和3%。
图 4 不同噪声水平下多种传感器排布形式反演得到的矩张量反演误差对比 Fig. 4 Comparison of moment-tensor inversion errors inverted with different sensor arrangements under different noise levels
图选项




图 4可以看出,在不同的噪声水平下,误差分布规律具有一致性。根据正五边形传感器排布形式计算得到的误差(符号)均集中于坐标图的中央,而随机传感器排布形式计算得到的误差则分布在周围很大的范围内。以上结果表明正五边形传感器排布形式在矩张量反演中具有非常优秀的精度表现,虽然随机噪声信号导致正五边形传感器分布形式的反演结果出现波动,但是波动的幅度很小,多次反演的结果非常接近并且集中,由此可知在正五边形传感器排布形式的条件下,矩张量反演结果非常稳定。相对于其他传感器排布形式,此时的矩张量反演结果对噪声的敏感程度很低。
4 原理分析 由第3节可知,正五边形传感器排布形式在矩张量反演中具有较好的精度表现。这一结论可以通过方程组的条件数来验证和解释。根据式(6),可以计算出传感器正五边形排布以及每种随机排布形式得到的线性方程组的条件数,所有条件数如图 5所示。图中底部横线为传感器正五边形排布形式对应的条件数,星号表示每一次随机排布形式对应的条件数。图中横坐标表示每一次传感器随机排布的实验编号,纵坐标表示条件数。
图 5 矩张量反演中不同传感器排布形式对应的方程组条件数对比 Fig. 5 Comparison of condition numbers of equation set corresponding to different sensor arrangements in moment-tensor inversion
图选项




图 5可知,数值试验涉及的传感器随机排布形式对应的条件数均大于正五边形排布形式对应的条件数,也就是说传感器正五边形排布形式的条件数是目前计算考虑的所有传感器排布形式的下界。当传感器排布形式取正五边形形式时,方程组中方程之间的线性度最低,良性度最高。此时,计算结果对噪声的敏感度最低。在相同的噪声水平下,反演结果最接近理论值,反演精度最高。
5 结论 1) 裂纹矩张量反演中,传感器接收到的声发射信号总包含一定比例的噪声信号,这些噪声信号会影响矩张量的反演精度,甚至导致反演结果完全错误。优化传感器排布形式能够有效降低反演结果对噪声的敏感程度,提高矩张量的求解精度和稳定性。
2) 数值实验结果表明,对于单震源的情况,将传感器按照正五边形布置的方案性能最好。该方案中,5个传感器布置在一个圆环上,且相邻传感器方位角间隔(传感器-圆心连线的夹角)为72°,第6个传感器布置在圆心。这种排布形式可以明显降低信号噪声对矩张量精度的影响,相比于相同分布范围内其他的排布形式,此时的矩张量反演结果更接近真实值,稳定性更好。需要指出的是,当传感器以正五边形形式排布时,根据工程应用条件,尽可能增大传感器的分布范围(即圆环半径)可进一步提高矩张量的反演精度。
3) 裂纹矩张量反演的核心是求解一组线性方程组。当传感器以正五边形形式排布时,方程组系数矩阵的条件数较小,此时虽然位移列向量由于噪声发生小幅度变化,求解结果依然非常接近真实值,且波动较小。

参考文献
[1] BAIG A, URBANCIC T. Microseismic moment tensors:A path to understanding FRAC growth[J]. The Leading Edge, 2010, 29(3): 320-324. DOI:10.1190/1.3353729
[2] BAIG A, URBANCIC T, PRINCE M.Microseismic moment tensors: A path to understanding growth of hydraulic fractures[C]//Canadian Unconventional Resources and International Petroleum Conference.Richardson, Texas: Society of Petroleum Engineers, 2010.
[3] BURRIDGE R, KNOPOFF L. Body force equivalents for seismic dislocations[J]. Bulletin of the Seismological Society of America, 1964, 54(6A): 1875-1888.
[4] KNOPOFF L, RANDALL M J. The compensated linear-vector dipole:A possible mechanism for deep earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4957-4963. DOI:10.1029/JB075i026p04957
[5] AKI K, PATTON H. Determination of seismic moment tensor using surface waves[J]. Tectonophysics, 1978, 49(3-4): 213-222. DOI:10.1016/0040-1951(78)90180-4
[6] KANAMORI H, GIVEN J W. Use of long-period surface waves for rapid determination of earthquake-source parameters[J]. Physics of the Earth and Planetary Interiors, 1981, 27(1): 8-31. DOI:10.1016/0031-9201(81)90083-2
[7] KANAMORI H, GIVEN J W. Use of long-period surface waves for rapid determination of earthquake source parameters 2.Preliminary determination of source mechanisms of large earthquakes(MS ≥ 6.5)in 1980[J]. Physics of the Earth and Planetary Interiors, 1982, 30(2-3): 260-268. DOI:10.1016/0031-9201(82)90112-1
[8] SIPKIN S A. Interpretation of non-double-couple earthquake mechanisms derived from moment tensor inversion[J]. Journal of Geophysical Research, 1986, 91(B1): 531-547. DOI:10.1029/JB091iB01p00531
[9] JULIAN B R, MILLER A D, FOULGER G R.Non-double-couple earthquakes 1.Theory[J].Reviews of Geophysics, 1998, 36(4): 525-549.
[10] AKI K, RICHARDS P G.Quantitative seismology[M].San Francisco, CA: W.H.Freeman & Co., 1980.
[11] OHTSU M. Source inversion of acoustic emission waveform[J]. Doboku Gakkai Ronbunshu, 1988, 1988(398): 71-79.
[12] HUDSON J A, PEARCE R G, ROGERS R M. Source type plot for inversion of the moment tensor[J]. Journal of Geophysical Research, 1989, 94(B1): 765-774. DOI:10.1029/JB094iB01p00765
[13] DAHM T. Relative moment tensor inversion based on ray theory:Theory and synthetic tests[J]. Geophysical Journal International, 1996, 124(1): 245-257. DOI:10.1111/gji.1996.124.issue-1
[14] CHAPMAN C H, LEANEY W S. A new moment-tensor decomposition for seismic events in anisotropic media[J]. Geophysical Journal International, 2012, 188(1): 343-370. DOI:10.1111/gji.2012.188.issue-1
[15] GU C, MARZOUK Y M, TOKS?KZ M.Bayesian moment tensor inversion and uncertainty quantification for induced seismicity:Uncertainties from both the location and velocity model[M]//SEG Technical Program Expanded Abstracts 2017.Tulsa, OK:Society of Exploration Geophysicists, 2017:2784-2790.
[16] STANCHITS S, VINCIGUERRA S, DRESEN G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite[J]. Pure and Applied Geophysics, 2006, 163(5): 975-994.
[17] HAMIEL Y, LYAKHOVSKY V, STANCHITS S, et al. Brittle deformation and damage-induced seismic wave anisotropy in rocks[J]. Geophysical Journal International, 2009, 178(2): 901-909. DOI:10.1111/gji.2009.178.issue-2
[18] HUDSON J A. Overall properties of a cracked solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2008, 88(2): 371.
[19] 刘宁, 李敏, 陈伟民. 基于EMT采用FEM研究含裂纹介质中弹性波传播机制[J]. 北京航空航天大学学报, 2015, 41(9): 1686-1692.
LIU N, LI M, CHEN W M. Wave propagation in cracked elastic media based on EMT using FEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1689-1692. (in Chinese)
[20] FORD S R, DREGER D S, WALTER W R. Identifying isotropic events using a regional moment tensor inversion[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B1): 593-602.
[21] MUSTAC M, TKALCIC H. On the use of data noise as a site-specific weight parameter in a hierarchical bayesian moment tensor inversion:The case study of the geysers and long valley caldera earthquakes[J]. Bulletin of the Seismological Society of America, 2017, 107(4): 1914-1922.
[22] 傅一钦.页岩气水力压裂微地震波的时域-频域二维瞬时谱全波形分析[D].北京: 中国科学院大学, 2017.
FU Y Q.Full-waveform analysis in time-frequency domain of micro-seismic wave during shale hydraulic fracturing[D].Beijing: University of Chinese Academy of Sciences, 2017(in Chinese).
[23] ABDEL-AAL A A K, YAGI Y. Earthquake source characterization, moment tensor solutions, and stress field of small-moderate earthquakes occurred in the northern Red Sea Triple Junction[J]. Geosciences Journal, 2017, 21(2): 235-251.
[24] CESCA S, HEIMANN S, KRIEGEROWSKI M, et al. Moment tensor inversion for nuclear explosions:What can we learn from the 6 January and 9 September 2016 nuclear tests, North Korea[J]. Seismological Research Letters, 2017, 88(2): 300-310.
[25] DAVI R, VAVRY?UK V, CHARALAMPIDOU E-M, et al. Network sensor calibration for retrieving accurate moment tensors of acoustic emissions[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 59-67. DOI:10.1016/j.ijrmms.2013.04.004
[26] KWIATEK G, CHARALAMPIDOU E-M, DRESEN G, et al. An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 153-161. DOI:10.1016/j.ijrmms.2013.11.005
[27] STIERLE E, VAVRYCUK V, KWIATEK G, et al. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments:Sensitivity to attenuation and anisotropy[J]. Geophysical Journal International, 2016, 205(1): 38-50. DOI:10.1093/gji/ggw009
[28] 刘培洵, 陈顺云, 郭彦双, 等. 声发射矩张量反演[J]. 地球物理学报, 2014, 57(3): 858-866.
LIU P X, CHEN S Y, GUO Y S, et al. Moment tensor inversion of acoustic emission[J]. Chinese Journal of Geophysics, 2014, 57(3): 858-866. (in Chinese)
[29] OHTSU M. Acoustic emission theory for moment tensor analysis[J]. Research in Nondestructive Evaluation, 1995, 6(3): 169-184. DOI:10.1080/09349849509409555


相关话题/传感器 信号 计算 实验 工程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于信道复用方法的GNSS共视信号模拟*
    全球导航卫星系统(GlobalNavigationSatelliteSystem,GNSS)共视(CommonView,CV)法是一种准确度较高的时间比对方法。自1980年Allan和Weiss在国际频控年会上首次提出GPS共视法时间传递的概念以来[1],由于该技术具有精度高和简便易行的特点,其研究 ...
    本站小编 Free考研考试 2021-12-25
  • 液氮温区平板蒸发器环路热管实验研究*
    深低温环路热管是一种深低温热传输器件,其应用主要面向空间深冷热控制系统。近年来,深空探测、天文观测等宇航任务持续发展,越来越多的航天器载荷需要深低温工作环境,其中空间红外天文望远镜以及其他先进探测器和光学系统的工作温度都低于80~120K。随着探测器功率及工作温度要求的提高,空间低温环境的制冷器件逐 ...
    本站小编 Free考研考试 2021-12-25
  • 基于多传感器测量的航天器舱段自动对接位姿调整方法*
    舱段对接是影响航天器整体质量的关键因素之一,目前国内仍大多采用人工方式,效率低、精度差、可靠性难以保证,难以满足迫切的市场需求。因此,研发整套的高效、高精、柔性的自动舱段对接系统迫在眉睫[1-3]。在舱段自动对接过程中,需要对舱段的位姿进行精确、快速地测量以得到其相对位姿误差,并针对该误差进行有效的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于代理模型的制导火箭炮发射诸元计算方法*
    作为陆军主要远程压制武器,远程精确制导火箭炮是炮兵对敌远程精确打击的主要力量。在现代及未来战争中,提高火箭炮自身的生存能力至关重要,其中缩短发射准备时间以提高其快速反应能力是最重要的方向之一。因此,在保证一定精度的前提下,研究发射诸元快速计算问题显得尤为重要。在制导火箭炮发射前必须对其发射诸元进行快 ...
    本站小编 Free考研考试 2021-12-25
  • 一种新的非高斯随机振动信号的模拟方法*
    工程中常将随机振动信号假设服从高斯分布[1-2],并且通过功率谱密度(PSD)作为试验条件。然而实际中,结构所受到的振动激励很多不满足高斯分布的假设,比如路面载荷[3]、加载在结构上的波浪载荷[4]以及输电线系统受到的风载[5],而PSD仅仅可以表征信号的低阶统计量,不能够完全表征其高阶统计量,并且 ...
    本站小编 Free考研考试 2021-12-25
  • 能量有效的无线传感器网络分簇路由协议*
    微电子技术、无线通信技术的发展以及计算技术的提高,推动了多功能的低功耗传感器的进步,使其在自身微小体积内能够实现采集信息、处理数据和无线通信等多种功能。无线传感器网络(WirelessSensorNetworks,WSNs)是一种分布式传感器网络,其末梢是可以感知外部世界的廉价传感器,目的是共同感知 ...
    本站小编 Free考研考试 2021-12-25
  • 面向气热耦合的涡轮叶片计算域模型建模方法*
    推重比是航空发动机重要性能参数,提高涡轮前燃气温度是提高推重比有效措施[1]。由于涡轮前燃气温度已远高于叶片常用材料的耐受温度,为保证叶片安全工作及寿命要求,在结构设计中普遍采用复合冷却技术对叶片进行冷却,这使得涡轮叶片结构复杂[2]。准确预测涡轮叶片的温度场是提高冷却效率、延长叶片工作寿命的关键[ ...
    本站小编 Free考研考试 2021-12-25
  • 基于多轴同步控制的微尺度双向加载实验系统*
    随着环境污染、能源短缺等问题的日益突出,微型产品的市场需求显著增加。作为一种先进的微纳制造技术,微细成形具有成本低、效率高、制件性能好等优点,是解决轻质耐高温材料和特殊薄壁微结构制造的最有效途径,在微电子、汽车、航空和医疗等领域得到了广泛应用[1-3]。微细成形虽然继承了传统塑性加工技术的优点,但当 ...
    本站小编 Free考研考试 2021-12-25
  • 基于软件定义微纳卫星的多模式计算光学成像技术*
    面向未来智能卫星发展的国家重大战略需求,为实现有效载荷具备上载软件在轨定义多功能、软件可控多功能、参数可重构的软件定义微纳卫星需求,将重点围绕计算光学、认知成像、最优控制、强化学习、智能控制等基础科学和应用科学问题,突破软件一体化、综合化、人机交互功能扩展化定义等新体制卫星载荷设计和研制的关键技术瓶 ...
    本站小编 Free考研考试 2021-12-25
  • 连续信号交叉口网联自动驾驶车速控制*
    随着全球环境问题的加剧,车辆的低能耗和低排放日益成为人们关注的焦点。信号交叉口是中国城市道路网的重要节点,由于受到信号灯的周期性干扰,车辆通常需要在信号交叉口处停车等待,导致交叉口交通拥堵,增加车辆的旅行时间、燃油消耗和污染物排放[1-2],并且会对车辆运行过程中的安全性和舒适性造成影响。相关研究表 ...
    本站小编 Free考研考试 2021-12-25