doi:10.12202/j.0476-0301.2020114胡峻,
孙焕美,,
王世轩北京理工大学数学与统计学院,100081,北京
基金项目:国家自然科学基金资助项目(11525102)
详细信息 中图分类号:O152.6
计量
文章访问数:112
HTML全文浏览量:54
PDF下载量:13
被引次数:0
出版历程
收稿日期:2020-04-02
网络出版日期:2021-01-21
刊出日期:2021-05-08
On the primitive idempotents of the Weyl group of type Dn
Jun HU,
Huanmei SUN,,
Shixuan WANGSchool of Mathematical and Statistics, Beijing Institute of Technology, 100081, Beijing, China
摘要 HTML全文 图(0)表(0)参考文献(22)相关文章施引文献资源附件(0)访问统计 摘要 摘要:设
$n {\text{≥}}4$是自然数,
$W(D_n) $是
$D_n $型的有限外尔群,设
K是一个域且群代数
$K[W(D_n)] $在域
K上分裂半单.对于
$K[W(D_n )]$的每一个单模
U,精确构造了一个拟幂等元
${z_U} \in K\left[ {W\left( {{D_n}} \right)} \right]$,即存在
${c_U} \in {K^ \times }$,有
$z_U^2 = {c_U}{z_U}$,使得
$c_U^{ - 1}{z_U}$为本原幂等元,并且
${z_U}K\left[ {W\left( {{D_n}} \right)} \right]$作为右
$K\left[ {W\left( {{D_n}} \right)} \right]$-模同构于
U.主要研究结果推广了Dipper、James关于
A型及
B型外尔群半单群代数的本原幂等元的构造.
关键词:外尔群/
群代数/
本原幂等元Abstract:Let
$4{\text{≤}} n\in {\bf{N}}$ and
$W(D_n) $ the Weyl group of Type
$D_n $.Let
K be a field and group algebra
$K[W(D_n)] $ is split semisimple on the field
K.for each simple module
U of
$K[W(D_n )]$, we explicitly construct a quasi-idempotent
${z_U} \in K\left[ {W\left( {{D_n}} \right)} \right]$ (i.e.,
$z_U^2=c_U z_U$ for some
${c_U} \in {K^ \times }$ such that
$c_U^{-1} z_U$ is a primitive idempotent and
${z_U}K\left[ {W\left( {{D_n}} \right)} \right] \cong U$ as a right
$K[W(D_n )]$-module.The main results of this paper generalize the construction of primitive idempotents by Dipper and James on semi-simple group algebras of type
A and
B Weyl groups.
Key words:Weyl group/
group algebra/
primitive idempotent