孙立鑫1,
杨薇1, 2,,
1.北京师范大学环境学院,100875,北京
2.北京师范大学水环境模拟国家重点实验室,100875,北京
基金项目:国家水体污染控制与治理科技重大专项资助项目(2018ZX07110001);国家重点基础研发计划资助项目(2017YFC0404505)
详细信息
通讯作者:杨薇(1979-),女,博士,副教授. 研究方向:湿地生态流量调控效应. E-mail: yangwei@bnu.edu.cn
中图分类号:X171计量
文章访问数:77
HTML全文浏览量:109
PDF下载量:18
被引次数:0
出版历程
收稿日期:2020-09-15
网络出版日期:2021-02-23
刊出日期:2021-02-01
Eco-functional regionalization of Baiyangdian Lake water system according to self-organizing feature map of neural networks
Yiyuan TIAN1,Lixin SUN1,
Wei YANG1, 2,,
1. School of Environment, Beijing Normal University, 100875, Beijing, China
2. State Key Laboratory of Water Environment Simulation, 100875, Beijing, China
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:以白洋淀淀区为研究案例,在水文、气象、水化学、水生态以及人类活动干扰多要素基础上,耦合生态系统服务空间分布,形成水生态分区指标体系框架,通过自组织特征映射(self-organizing feature map,SOFM)神经网络,并将案例区划分为核心湿地保护区、湿地生态缓冲区、入淀河流缓冲区和生态屏障区4类水生态功能区域,面积分别为9763.81、9538.59、5953.15和5417.53 hm2,分别占白洋淀淀区面积的31.83%、31.10%、19.41%、17.66%.分区结果体现了一定的层次结构与空间特征差异,可为未来科学识别不同区域压力源、淀区精准修复以及差别化水质管理提供科学的数据支撑.
关键词:生态功能分区/
自组织特征映射神经网络/
生态系统服务/
白洋淀
Abstract:Under constant pressure for improvement in water quality and restoration of water ecology, rational eco-functional regionalization plays an important role in resources utilization and management promotion of lakes.An index framework for Baiyangdian Lake was developed here aiming at eco-functional regionalization using self-organzing feature map(SOFM), taking into account hydrological, meteorological, chemical indictors, human disturbances, and evaluation of ecosystem services.Consequently, Baiyangdian Lake was divided into 4 functional zones: core protection zone, ecological buffer zone, ecological buffer zone of upstream rivers, ecological barrier zones, each area measured 9763.81, 9538.59, 5953.15, and 5417.53 hm2, accounting for 31.83%, 31.10%, 19.41% and 17.66% of the total lake area respectively.This eco-functional regionalization reflected fully lake spatial heterogeneity.This work will support identification of pressure sources in different regions and enable efficient administration of the lake water quality.
Key words:eco-functional regionalization/
SOFM neural network/
ecosystem services/
Baiyangdian Lake