删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于一种改进的一维卷积神经网络电机故障诊断方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于一种改进的一维卷积神经网络电机故障诊断方法
Motor Fault Diagnosis Method Based on an Improved One-Dimensional Convolutional Neural Network
投稿时间:2019-07-18
DOI:10.15918/j.tbit1001-0645.2019.201
中文关键词:一维卷积神经网络空间金字塔池化电机故障诊断
English Keywords:one-dimensional convolutional neural networkspatial pyramid poolingmotorfault diagnosis
基金项目:国家自然科学基金资助项目(61873032)
作者单位
马立玲北京理工大学 自动化学院, 北京 100081
刘潇然北京理工大学 自动化学院, 北京 100081
沈伟北京理工大学 自动化学院, 北京 100081
王军政北京理工大学 自动化学院, 北京 100081
摘要点击次数:1703
全文下载次数:2096
中文摘要:
故障诊断对于保障电机正常运行有着重要意义,卷积神经网络(CNN)对单一电机故障有着良好的诊断效果.然而传统CNN在处理不同尺寸的数据上存在局限性.针对这一问题,提出了一种基于空间金字塔池化和一维卷积神经网络相结合的故障诊断方法与参数优化策略.该方法不仅使网络可以处理不同尺寸的数据,还降低了网络结构的复杂性和所需运算量.所提出的参数优化策略从理论上解决了诊断过程中可能会发生的金字塔池化的尺度失配问题.仿真结果表明,与传统网络相比,所提出的方法提高了网络结构的鲁棒性与泛化能力,可以更加快速准确地实现电机的故障诊断.
English Summary:
Fault diagnosis is essential to ensure proper operation of the motor. Convolutional neural network (CNN) has showed a better performance on diagnosing single motor faults. However, traditional CNN has limitations in dealing with different sizes of data. To solve this problem, a fault diagnosis method was proposed based on spatial pyramid pooling (SPP), one-dimensional convolutional neural network and a parameter optimization strategy. The method was arranged to make not only the network be possible to process different sizes of data, but also reduce the complexity of the network structure and the amount of computation required. The parameter optimization strategy was designed to solve the scale mismatch problem in pyramid pooling during the diagnosis process. The simulation results show that, compared with the traditional network, the proposed method can improve the robustness and generalization ability of the network structure, making the fault diagnosis more quickly and accurately for motor.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 北京理工大学 自动化 电机 网络