删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于统计形变模型的多模医学图像非刚性配准方法研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于统计形变模型的多模医学图像非刚性配准方法研究
Statistical Deformation Model Based Non-Rigid Multimodal Medical Image Registration
投稿时间:2018-10-20
DOI:10.15918/j.tbit1001-0645.2019.s1.010
中文关键词:多模医学图像非刚性配准统计形变模型目标配准误差
English Keywords:multimodal medical imagenon-rigid registrationstatistical deformation modeltarget registration error
基金项目:科技部十三五国家重点研发计划资助项目(2017YFB1303100)
作者单位E-mail
张健源华中科技大学 生命科学与技术学院, 湖北, 武汉 430074
朱星星华中科技大学 生命科学与技术学院, 湖北, 武汉 430074
张旭明华中科技大学 生命科学与技术学院, 湖北, 武汉 430074zxmboshi@hust.edu.cn
摘要点击次数:3968
全文下载次数:296
中文摘要:
多模医学图像间可能存在复杂的非刚性形变,矫正这类形变需要采用具有较高自由度的非线性变换模型.直接求解非线性变换的高维参数,不仅会增加配准时间,而且也影响配准精度.为此,本文提出一种基于统计形变模型的配准算法,该算法利用统计形变模型对大量多模图像间的非刚性形变进行统计学习,利用由此建立的模型大幅减少变换模型的参数,达到提高图像配准效率和精度的目的.大量的实验结果表明:与基于传统自由形变模型的配准算法相比,本文提出的基于统计形变模型的配准算法其效率可以提高52%,同时目标配准误差平均减少0.503 2个像素.
English Summary:
There may exist the complex non-rigid deformation among multimodal medical images. To correct such deformations, the nonlinear transformation models with a high degree of freedom must be used. Solving the high-dimensional parameters of the nonlinear transformation directly will not only increase registration time but also affect registration accuracy. To solve this problem, a registration method was proposed based on statistical deformation model in this paper. Firstly, a statistical deformation model was established to statistically learn the non-rigid deformation among a large number of multimodal images, and to greatly reduce the number of parameters in the transformation model, to improve image registration efficiency and accuracy. Experimental results show that, compared with the registration method based on traditional free-form deformation model, the efficiency of the proposed statistical deformation model based registration method can be improved by 52%, and the target registration error can be reduced by 0.503 2 pixels.
查看全文查看/发表评论下载PDF阅读器
相关话题/统计 图像 华中科技大学 生命科学与技术学院 湖北